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Abstract—In this paper, we present a logarithmic barrier
method based on a new majorant function for solving a convex
quadratic program. The proposed majorant function allows the
computation of the displacement step easily and in a short time,
unlike the line search method which is expensive in terms of
computational volume and necessitates much time. To compare
the proposed majorant function’s performance against that of
line search, we conducted numerical experiments on numerous
collections of test problems. The computational results indicate
the efficiency and the accuracy of our new majorant function.

Index Terms—quadratic programming, interior point meth-
ods, line search, majorant function

I. INTRODUCTION

QUADRATIC programming is a particular type of non-
linear programming, and it appears in many areas

of applications, such as in finance, agriculture, economics,
optimal control and geometric problems. For solving such
problems, various methods and techniques have been pro-
posed and developed. The Frank-Wolfe method [14], which
is one of the first powerful algorithms used to solve nonlin-
ear optimization problems. Another method of Frank-Wolfe
was used in [24]; this method consists of transforming the
problem to a linear one to apply then the simplex method.
However, this method needs to add an essential number of
constraints and artificial variables. In 2004, Dozzi [12] has
treated an example with two variables, using the simplex
method and manipulated ten variables. Many other methods
exist (see [5]), and all these methods give approximate
solutions. Gärtner and Schönherr [15] developed a method
that provides an exact solution. This method is considered
as a generalization of the simplex method for quadratic
programming. Still, this method does not apply to any
problem because it must be dense and have a few variables or
constraints. Yunong and Jun [25] proposed a neural network
called dual neural network for convex quadratic program-
ming subject to linear equality and inequality constraints. In
2009, Chikhaoui et al. [9] proposed an algorithm to resolve
a quadratic function under its canonical form. Elias and
Santosh [13] introduced a new heuristic for convex quadratic
programming. In 2012, Belabbaci et al. [3] proposed a new
algorithm for finding the exact optimal solution without
introducing any other variables. Besides, in 2017, Belabbaci
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and Djebbar [4] proposed a method of separation and e-
limination based on the principle of concentric spheres or
ellipsoids.

However, during the past two decades, and based on
the famous Karmarkar’s method [23], the most dramatic
progress in computational optimization has been achieved
in the implementation of interior point methods ([20],[22]).
Roumili and Boudjellal [21] provided an infeasible interior
point method for convex quadratic problems. In particular,
feasible primal-dual path-following methods are considered
the most popular among interior point methods. The derived
algorithms of these methods are efficient and have polyno-
mial complexity. These algorithms trace approximately the
so-called central path. This central path is a curve that lies
in the feasible region of the problem at hand, and then they
reach an optimal solution to this problem. In 2006, Achache
[1] derived an algorithm based on new techniques for finding
a new class of search directions. The primal-dual interior
point methods based on the kernel function technique are
extensively studied, such as linear optimization (LO) Bai
et al. [2]. They provided a large class of eligible kernel
functions. In 2020, Boudjellal et al. [7] have also proposed a
primal-dual interior point algorithm for the convex quadratic
problem (CQP). They also provide numerical tests to show
the efficiency of their proposed approach. Roumili and Boud-
jellal [21] also provided an infeasible interior point method
for convex quadratic problems.

In parallel and independently of previous works, different
logarithmic barrier interior point methods based on
majorant or minorant function techniques were considered.
Crouzeix and Merikhi [10], are the first to introduce a
logarithmic barrier algorithm based on majorant functions
for semidefinite programming. Inspiring from [10], Menniche
and Benterki [19] proposed a barrier method based on new
majorant functions for linear programming. Bachir Cherif
and Merikhi [8] extended this idea to provide a mojorant
function for nonlinear programming. On the other hand,
Leulmi et al. [18], and [17] proposed minorant functions
for semidefinite programming and linear programming,
respectively.

Inspiring previous works, we are interested in optimizing
a convex quadratic function under linear inequality
constraints. Our aim consists of elaborating an efficient
and straightforward logarithmic barrier method based on a
new majorant function. This majorant function’s object is
to compute the displacement step in the algorithm quickly
and simply and reduce the computation time required by
the line search method.
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The paper is organized as follows. In section 2, we
introduce the problem at hand and its associated perturbed
problem; then, we prove the later problem’s convergence
into the initial one. In section 3, we are interested in
resolving the perturbed problem. We present our main result
by introducing a new majorant function to compute the dis-
placement step of the obtained logarithmic barrier algorithm.
In section 4, we describe our algorithm briefly and provide
a computational study. The conclusion is summarized in the
last section.

II. POSITION OF THE PROBLEM

Consider the following convex quadratic problem:

(PQ)
{

min q(x) = 1
2x

tQx+ ctx
x ∈ D,

where Q is a Rn×n symmetric semidefinite matrix,
c ∈ Rn and D = {x ∈ Rn : Ax ≥ b}, such that b ∈ Rm
and A is a Rm×n matrix.

1) The matrix A has full row rank (rank(A) = m < n).
2) (PQ) satisfies the interior-point condition, i.e., there

exist x0 ∈ Rn such that:

Ax0 > b. (1)

3) The set of optimal solutions of the problem (PQ) is
nonempty and bounded.

Recall that the scalar product of x, y ∈ Rn is given by:

< x, y >= xty =

n∑
i=1

xiyi

and the Euclidean norm of y is

‖y‖ =
√
< y, y > =

√√√√ n∑
i=1

y2i

A. The perturbed problem of (PQ)

Let (PQr) be the unconstrained perturbed problem asso-
ciated with (PQ). This problem takes the form.{

min qr(x)
x ∈ Rn, (PQr)

where qr : Rn → (−∞,+∞] is a barrier function defined
by:

qr(x) =

 q(x)− r
m∑
i=1

ln < ei, Ax− b > if Ax− b > 0,

+∞ otherwise.

Where (e1, e2, ..., em) is the canonical base in Rm .

We know that (PQ) is convex and by assumption (3) its
solutions set is nonempty and bounded, then according to
Bachir Cherif and Merikhi [8], the strictly convex problem
(PQr) admits a unique optimal solution x∗r , for each r > 0.

We aim to solve the problem (PQr) since the resolution
of the problem (PQ) is equivalent to the resolution of (PQr)
when r tends to 0.
Firstly, we need to study the convergence of (PQr) to (PQ).

B. Convergence of the perturbed problem (PQr)

Let r > 0, for all x ∈ D, we define φ(x, r) = qr(x).

Lemma 1: Let r > 0. If xr is an optimal solution of the
problem (PQr), such that lim

r→0
xr = x∗, then x∗ is an optimal

solution of the problem (PQ).
Proof: It follows from the necessary and sufficient

conditions and the differentiability of the function φ at the
point (xr, r) that:

∇xφ(xr, r) = ∇qr(xr) = 0

and for all x checking Ax− b > 0, we have:

q(x) = φ(x, 0) ≥ φ(xr, r)+ < x− xr,∇xφ(xr, r) >
+ (0− r)φ′r(xr, r)

then,

q(x) ≥ q(xr)− r
m∑
i=1

ln < ei, Ax− b >

+ r
m∑
i=1

ln < ei, Ax− b >= q(xr)

hence

min
x∈D

q(x) ≥ q(xr),∀r > 0,

on the other hand we have

min
x∈D

q(x) ≤ q(xr),∀r > 0,

therefore,

min
x∈D

q(x) = lim
r→0

q(xr) = q(x∗)

which implies the claimed result.

III. RESOLUTION OF THE PERTURBED PROBLEM

Based on the necessary and sufficient optimality conditions
of the convex problem (PQr), xr is an optimal solution of
(PQr) if and only if it satisfies the nonlinear system:

∇qr(xr) = 0. (2)

To solve this system, we propose a logarithmic interior
point method based on Newton’s approach, which consists
of constructing a sequence ((xr)k = xk) of interior points,
such that this sequence converges into the optimal solution of
(PQ). The iteration of Newton is defined by xk+1 = xk+dk,
where dk is the descent direction solution of the linear system

∇2qr(xr)dk = −∇qr(xr) (3)

Note this approach does not ensure the feasibility of
the interior points xk generated in each iteration of the
algorithm, i.e., there is no guarantee that A(xk+dk) > b. We
introduce a displacement step αk to remedy this difficulty.
The iteration becomes: xk+1 = xk + αkdk.

There are two main techniques used for computing the
displacement step αk:
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1) Line search methods: such as Wolfe method,
Goldstein-Armijo method, Fibonacci method, etc.
These methods are based on the minimization of the
unidimensional function

ϕ(α) = min
α>0

qr(xr + αd)

Unfortunately, they are very delicate and time-
consuming.

2) Majorant function: the technique of the majorant
function was first proposed by Crouzeix and Merikhi
[10] for the positive semidefinite programming. This
technique relies on approximating the function

θ(α) =
1

r
(qr(xr + αd)− qr(xr))

by another function whose minimum can easily be
computed, which permits the computation of the dis-
placement step at each iteration in a relatively short
time and with a smaller number of instructions in
contrast to line search technique.

We start with the following lemma, and in the rest of the
paper we consider x instead of xr.

Lemma 2: For all α ∈ [0, α̃[, such that α̃ = mini∈I−{−1yi }
and I− = {i : yi < 0}, the function θ can be written as
follows:

θ(α) = α

(
m∑
i=1

yi − ‖y‖2
)
−

m∑
i=1

ln(1 + αyi)

+
1

r
(
1

2
α2dtQd− αdtQd).

Where yi = <ei,Ad>
<ei,Ax−b> , i ∈ {1, ...,m}.

Proof:

θ(α) =
1

r
(qr(x+ αd)− qr(x))

=
1

r

(
1

2
(x+ αd)tQ(x+ αd) + ct(x+ αd)

)
− 1

2r
xtQx− 1

r
ctx

−
m∑
i=1

ln

(
1 + α

< ei, Ad >

< ei, Ax− b >

)
=

1

r

(
1

2
αdtQx+

1

2
αxtQd+

1

2
α2dtQd

)
−

m∑
i=1

ln

(
1 + α

< ei, Ad >

< ei, Ax− b >

)
+

1

r
αctd

As Q is symmetric then xtQd = dtQx, then

θ(α) =
1

r

(
αdtQx+

1

2
α2dtQd+ αctd

)
−

m∑
i=1

ln

(
1 + α

< ei, Ad >

< ei, Ax− b >

)
we have also

∇qr(x) = Qx+ c− r
m∑
i=1

Atei
< ei, Ax− b >

(4)

and

∇2qr(x) = Q+ r
m∑
i=1

Atei(A
tei)

t

(< ei, Ax− b >)2

and from (3)

dt∇qr(x) = −dt∇2qr(x)d

we obtain
dtQx+ dtc− rdt

m∑
i=1

Atei
<ei,Ax−b> = −dtQd

− r
m∑
i=1

<ei,Ad>
2

<ei,Ax−b>2

then

dtQx+ dtc = −dtQd− r
m∑
i=1

< ei, Ad >
2

< ei, Ax− b >2
+

rdt
m∑
i=1

Atei
< ei, Ax− b >

which gives

θ(α) =
1

r

(1
2
α2dtQd− αdtQd

− rα

m∑
i=1

< ei, Ad >
2

< ei, Ax− b >2

+ rαdt
m∑
i=1

Atei
< ei, Ax− b >

)
−

m∑
i=1

ln

(
1 + α

< ei, Ad >

< ei, Ax− b >

)

=
1

r

(
1

2
α2dtQd− αdtQd

)
+ α

(
m∑
i=1

yi − ‖y‖2
)

−
m∑
i=1

ln(1 + αyi).

which implies the claimed result.
Now, we give the main result of the paper.

A. New majorant function

To introduce our new majorant function, we use the
following well known inequality [19]:

α
m∑
i=1

yi + α‖y‖+ ln(1− α‖y‖)−
m∑
i=1

ln(1 + αyi) ≤ 0 (5)

Lemma 3: For α ∈ Iα = [0, α̂[∩[0, α̃[, we have:

θ(α) ≤ θC(α).

Where θC is a majorant function of θ defined on [0, α̂[
with 0 < α̂ < 1

‖y‖ by:

θC(α) = −α(‖y‖+‖y‖2)− ln(1− α‖y‖) + 1

2r
α̂2dtQd.

Proof: For α ∈ Iα and from inequality (5), we have

α
m∑
i=1

yi −
m∑
i=1

ln(1 + αyi)− α‖y‖2 ≤ −α‖y‖−α‖y‖2

− ln(1− α‖y‖)
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So we have
1

2r
α2dtQd <

1

2r
α̂2dtQd,∀α ∈ Iα,

and
−αdtQd ≤ 0, ∀α ∈ Iα,

this yields

θ(α) = α
m∑
i=1

yi −
m∑
i=1

ln(1 + αyi)− α‖y‖2

+
1

r
(
1

2
α2dtQd− αdtQd)

≤ −α(‖y‖+‖y‖2)− ln(1− α‖y‖)

+
1

2r
α̂2dtQd = θC(α)

Hence

∀α ∈ Iα, θ(α) ≤ θC(α).

which implies the claimed result.
Remark 1: We note that θ

′′

C(α) =
‖y‖2

(1−α‖y‖)2 ≥ 0, ∀α ∈
[0, α̂[, hence θC is convex and if it admits a minimum, this
minimum is global.

1) Minimization of the majorant function: θC is defined
and convex on [0, α̂[, then its global minimum is reached
when θ

′

C(α) = 0. Therefore, finding the minimum of the
function θC is equivalent to solving the equation θ

′

C(α) = 0.
The solution of this later is the root of the equation:

α(‖y‖2+‖y‖3)− ‖y‖2= 0 (6)

The root of the equation (6) is

α∗ =
1

1 + ‖y‖
∈ Iα,

which is the global minimum of the function θC .

The logarithmic barrier algorithm is described as follows.

IV. DESCRIPTION OF THE ALGORITHM

In the following, we give a brief description of the
logarithmic barrier algorithm.

Algorithm 1 Logarithmic barrier algorithm (LB)
Data: A quadratic program (PQ) and its system of in-
equalities Ax ≥ b, a strictly feasible solution x0 of (PQ),
r > 0 , ε a given precision, k = 0.
Result: Optimal solution x∗ of (PQ).
while ‖∇qr(xk)‖> ε do

-Solve the linear system ∇2qr(xk)dk = −∇qr(xk).
-Compute the displacement step αk.
-Set xk+1 = xk + αkdk and k = k + 1.
-Take r = ρr, 0 < ρ < 1.

end while
Return x∗.

The following Lemma indicates that the interior point
xk+1 generated in each iteration k of the algorithm (LB)
ensures the decrease of the function qr.

Lemma 4: The function qr significantly decrease from
iteration k to iteration k + 1, that is, if xk and xk+1 are

two feasible solutions obtained at iteration k and k + 1
respectively, then

qr(xk+1) < qr(xk).

Proof: Let xk and xk+1 be two feasible solutions
obtained at iteration k and k + 1 respectively, we have

qr(xk+1) ' qr(xk)+ < ∇qr(xk), xk+1 − xk >

and
xk+1 = xk + αkdk

then

qr(xk+1)− qr(xk) ' < ∇qr(xk), αkdk >
' −αk < ∇2qr(xk)dk, dk >< 0

Hence,
qr(xk+1) < qr(xk).

which implies the claimed result.

A. Computational study

To measure the performance of the proposed method,
we present a comparison of the results obtained by the
proposed algorithm (LB) using our new majorant function
to compute the displacement step and those obtained by
using the line search Wolfe’s method. We use examples
with fixed and variable sizes to carry out the numerical tests.

1) Example with fixed size: The examples with fixed
size considered in TABLE I are randomly generated by
MATLAB.

2) Example with variable size: The following examples
of variable size are taken from the literature.

Example 4.1: n = 2m,A[i, j] = 0 if i 6= j or (i+1) 6= j,
A[i, i] = A[i, i+m] = 1, c[i] = −1,

b[i] = 2, c[i+m] = 0, for i = 1, ..,m. j = 1, .., n.

Q [i, j] =

 2j − 1 i > j
2i− 1 i < j
i(i+ 1)− 1 i = j, i, j = 1, .., n.

Example 4.2: n = 2m, A[i, j] = 0 if i 6= j or (i+1) 6= j,
A[i, i] = A[i, i+m] = 1, c[j] = j,

b[i] = i+1
2 , for i = 1, ..,m. j = 1, .., n. Q[1, 1] = 1

Q[i, i] = i2 + 1
Q[i, i− 1] = Q[i− 1, i] = i i = 2, .., n

Example 4.3: n = 2m, A[i, j] = 0 if i 6= j or (i+1) 6=
j, A[i, i] = A[i, i+m] = 1, c[j] = j+1

2 ,
b[i] = 4 for i = 1, ..,m. j = 1, .., n. Q [1, 1] = Q [n, n] = 1

Q [i, i] = 4 i = 2, .., n− 1
Q [i, i− 1] = A [i− 1, i] = 1 i = 2, .., n

Example 4.4: n = 2m, A[i, j] = 0 if i 6= j or (i+1) 6= j,
A[i, i] = A[i, i+m] = 1, c[j] = 2j,
b[i] = i2, for i = 1, ...,m. j = 1, .., n.

Q [i, j] = 1
i+j for i, j = 1, .., n.
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TABLE I: Example with fixed size
method LS method MF

ex (m,n) Itr time (s) Itr time (s)
ex1 (2, 4) 7 0.087533 3 0.031245
ex2 (3, 5) 13 0.089912 9 0.041121
ex3 (3, 6) 19 0.103447 13 0.072488
ex4 (5, 7) 28 0.173312 17 0.080330
ex5 (6, 10) 29 0.222309 19 0.090031

TABLE II: Example with variable size (example 4.1)
method LS method MF

ex (m,n) Itr time (s) Itr time (s)
(300, 600) 26 22.524009 11 6.922453
(400, 800) 35 97.103447 14 41.842410
(600, 1200) 48 224.321200 23 89.412109
(1000, 2000) 51 497.011652 33 113.310561
(1500, 3000) 78 1321.032778 40 305.021560

TABLE III: Example with variable size (example 4.2)
method LS method MF

ex (m,n) Itr time (s) Itr time (s)
(300, 600) 38 22.524009 20 8.912566
(400, 800) 45 88.112347 34 49.003558
(600, 1200) 66 148.621033 37 66.655410
(1000, 2000) 70 2004.112568 46 125.142130
(1500, 3000) 101 2453.923121 77 344.614112

TABLE IV: Example with variable size (example 4.3)
method LS method MF

ex (m,n) Itr time (s) Itr time (s)
(300, 600) 21 34.322156 14 7.752230
(400, 800) 31 172.325501 22 71.402198
(600, 1200) 53 503.443160 33 111.312557
(1000, 2000) 67 2033.500621 41 168.099711
(1500, 3000) 132 3121.113031 59 386.741103

TABLE V: Example with variable size (example 4.4)
method LS method MF

ex (m,n) Itr time (s) Itr time (s)
(300, 600) 16 29.123309 7 6.433098
(400, 800) 27 84.150012 13 29.712501
(600, 1200) 55 153.922103 34 77.001290
(1000, 2000) 68 2213.114310 41 191.511230
(1500, 3000) 124 3121.113031 54 375.265401

In the above tables, we reported the results obtained by
implementing the algorithm (LB) in MATLAB.
We denote by:
-ex(m,n): the example of m constraints and n variables.
-LS: the strategy that uses line search of Wolfe.
-MF : the strategy that uses majorant function.
-Itr: the number of iterations needed to find an optimal
solution.
-time: runtime in seconds.

3) Comments: From the above tables, we conclude the
proposed method is more effective than the line search, and
it can improve the results obtained by the line search method.
This is especially true when the instances get larger. Besides,
the improvement in time is significant, since we can easily
see the time needed to get the optimal solution by the line
search method is at least twice the time required by the
proposed method.

V. CONCLUSION

In this paper, we addressed a convex quadratic problem
with inequality constraints. We used a logarithmic barrier
method and proposed a new majorant function to compute
the displacement step, and we showed the the technique of

the majorant function is more effective than the line search
technique.

Our future exciting work is to improve the computational
time further of the logarithmic barrier algorithm by proposing
a more efficient majorant function. But extensions would be
envisaged to the nonlinear, not necessarily to the quadratic
optimization problem.
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