
 

 

Abstract—Distributed generators (DGs) are recognized as an 

effective method for controlling the power loss, voltage stability, 

etc.. In this paper, a novel hybrid algorithm of beetle antennae 

search (BAS) and particle swarm optimization (PSO) is 

presented for optimal allocation of DGs in radial distribution 

network. The BAS describes the beetle's individual search by 

smell, PSO describes the group search of birds by location. The 

proposed algorithm combines their advantages, proceeds with 

individual optimization while conducting group optimization. 

Therefore, the proposed algorithm searches widely, and 

converges fast. In this paper, a series of improvement measures 

are proposed to deal with the shortcoming of PSO-BAS which is 

easy to fall into local optimum. These methods include equal 

interval initialization, cross mutation, and non-linear learning 

factor. This paper will show the comparison results of PSO-BAS 

and IPSO-BAS in the six confessed test functions to prove the 

necessity of the improved methods. Simultaneously, in order to 

verify the feasibility and effectiveness of this proposed algorithm 

in terms of practical application, it is tested on the standard 

IEEE 33-bus, IEEE 69-bus and IEEE 119-bus systems. The 

results of active power loss and voltage stability show that 

proposed algorithm is more effective and more suitable for the 

power distribution system than other algorithms. At the same 

time, this article also explores the impact of new energy sources 

on the annual network loss. Besides, a method for optimizing the 

annual network loss is proposed. Here, the IPSO-BAS algorithm 
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is used to adjust the size of multiple biomass energy sources 

within 24 hours to optimize the network loss, and a comparison 

plan is designed to verify the feasibility of the proposed method. 

According to the final result, this proposed method can greatly 

reduce the annual network loss. 

Index Terms—distributed generators (DGs), improvement 

measures, hybrid algorithm, new energy, annual network loss. 

I. INTRODUCTION 

ODERN large-scale power distribution network is 

constantly facing an ever-growing load demand. 

Therefore, the distribution network gradually becomes more 

complex than before. At the same time, there are also plenty 

of problems such as the power loss, voltage stability, etc.. In 

order to solve these problems, distributed generators (DGs) [1] 

were proposed, DGs have qualitatively improved this 

problem. Usually, the distributed generators are installed in a 

radial distribution network [2, 3]. Among many feasible 

devices, because DGs can provide both active and reactive 

power, they have many applications in the distribution system. 

Besides, people began to vigorously promote renewable 

energy as a distributed power source in modern times. This 

article explores that the optimal network loss is caused by 

renewable energies under the 24-hour daily load curve. For 

renewable energy, this article proposes three types, called 

wind energy, solar energy and biomass energy. Among them, 

biomass energy is the most flexible, and the other two energy 

sources are restricted by natural factors. 

Consequently, the ODGA (Optimal DG Allocation) is 

critical. Here is a method to reduce the power loss, enhance 

voltage stability by adjusting the location and size of DGs. 

Hence, the optimal location and size of DGs are necessary 

tasks for this paper. 
In order to achieve the optimal allocation of DGs in a radial 

distribution network, there is a large amount of literature that 

has conducted in-depth research on this optimization problem. 

In literature [4], particle swarm optimization (PSO) decides 

the optimal allocation and penetration of wind DGs in the 

distribution network in order to minimize the Average 

Multi-Objective Index (AIMO), here is a kind of renewable 

energy (wind DGs) and a new evaluation index, which put 

forward a new direction for the sustainable development and 

stability evaluation of the power system. In literature [5], the 

PGSA has been modified and simulations have been carried 

out to prove the advantages of the proposed algorithm 

(MPGSA) of faster convergence. PGSA is based on the plant 
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growth process, and the root is the initial point of growth. 

Similar to initialization, the main stem and branches grow. 

Starting from the node is like searching for the best value, this 

article puts forward a new point of view, which roughly 

converts static power into dynamic power. Moradi and 

Abedini proposed the GA/PSO algorithm, which is a fusion of 

GA and PSO, and the algorithm can significantly reduce the 

network loss and improve the voltage stability by adjusting 

the position and size of DGs on the IEEE 33-bus and IEEE 

69-bus systems. Because the two algorithms have their own 

characteristics, it is a reasonable method to combine them. 

Compared with PSO and GA, its performance is significantly 

improved, but it still cannot get an excellent result [6]. Kumar 

and Kumar proposed loss sensitivity factor simulated 

annealing (LSFSA) in order to explore the potential for the 

optimal size and location of the DGs. LSFSA has extremely 

high performance on low-dimensional problem, but the 

complexity of the problem increases, the performance of 

LSFSA gradually deteriorates [7]. Aiming at the joint 

execution of the Grasshopper Optimization Algorithm (GOA) 

and Cuckoo Search (CS), a hybrid technique is proposed, 

which determines the ideal position of the DG unit in terms of 

power loss, line flow, and voltage, this technique perfectly 

combines the two bionic algorithms by their biological 

characteristics, and the performance has been greatly 

improved, this technique provides a new idea for the fusion of 

algorithms [8]. Hybrid algorithm (DE-PS) is used as a 

meta-heuristic optimization tool to solve the best capacitor 

location problem and to estimate the optimal parallel 

capacitor compensation level/size required to reduce line 

power loss within voltage constraints, this hybrid algorithm 

provides more ideas for algorithm fusion thinking by fusing 

two mathematical thinking algorithms [9]. In literature [10], 

the basic shortcoming of the original teaching-learning-based 

optimization algorithm (TLBO) is that it provides a 

near-optimal solution within a limited iteration period, rather 

than an optimal solution. Distributed generators have an 

overall positive impact on distribution system, although this 

algorithm only provides a fast iterative idea, its core essence 

can be integrated into other algorithms and improve its 

performance. In literature [11], a novel method about the 

combination of the Genetic Algorithm (GA) and  Intelligent 

Water Drops (IWD) is proposed to find the suitable location 

and size of DGs to minimize the system power loss, improve 

the voltage regulation and voltage stability within constraints 

of the distribution system. This algorithm combines 

biological genetic characteristics and natural characteristics. 

It has better performance than GA/PSO, but it cannot also get 

excellent results. In literature [12], three kinds of renewable 

energy (biomass, wind and photovoltaic) are applied to the 

distribution network, and a method is proposed to adjust the 

energy size to obtain the minimum energy loss for every year, 

and this article provides more methods for the sustainable 

development of distribution power generation and initially 

transforms the static system loss to the dynamic system loss. 

In this article, a hybrid algorithm (PSO-BAS) is proposed 

here. The main reason for choosing the two algorithms is that 

the two algorithms are the group search and individual search. 

PSO-BAS perfectly combines these two algorithms biological 

characteristics and core ideas. Compared with PSO, 

PSO-BAS’s performance has been greatly improved, and it 

has better performance on high-dimensional issues. In the 

second section of this article, here is a list of constraint 

formulas for each indicator of the power system, and the 

algorithm is strictly designed by these constraints. In the third 

section, here is a brief introduction to the PSO and BAS 

algorithms, and this section focuses on the PSO-BAS 

algorithm flow and its pseudo-code. Since the algorithm may 

fall into a local optimum, here is a detailed explanation of the 

improvement method of the algorithm to obtain the 

IPSO-BAS, parameter optimization, crossover mutation, 

equal interval initialization, and nonlinear learning factor. In 

the fourth section of this article, IPSO-BAS is introduced into 

the IEEE 33-bus, IEEE 69-bus and IEEE 119-bus systems to 

obtain the optimal network active power loss, and it is found 

that IPSO-BAS will obtain faster convergence and broader 

search space over PSO-BAS, GA, PSO, GA/PSO, TLBO, 

GA-IWD, and LSFSA on high-dimensional system. In 

addition, this section also explores the insertion of renewable 

energy on the IEEE 69-bus system, and counts the active 

network loss for each hour. Here, a new method is proposed to 

minimize the annual network loss and initially convert the 

static network loss into a dynamic network loss. The last two 

sections of this article analyze and summarize the previous 

data, and show the IPSO-BAS is effective for obtaining the 

optimal network loss and the annual optimal network loss of 

the power system. 

II. FORMULATION 

The optimal locations and sizes of DG units are critical to 

reduce active power loss while satisfying all constrains of the 

distribution system [13-16]. 

A. Active power loss(
LP  ) 

The active power loss is calculated as follows: 

 2

1

LN

L k k

k

P R I


   (1) 

where, Rk is the resistance of the kth branch, Ik is the current 

passing through the kth branch. 

B. Minimize annual network loss 

In this paper, it will also introduce new energy sources as 

distributed power sources, and discuss the practicability of 

new energy sources, and the corresponding formula for 

minimizing network loss each year is as follows: 

  
24

oss 1
365* *L Lossi

MinE Min P i t


    (2) 

where, Ploss(i) is the active power loss in the ith time interval, 

 t is an hour. 

C. Objective function 

In order to prove whether the proposed algorithm is 

effective and suitable, this paper will analyze the results of the 

objective function, active power loss. 

  LF Min P   (3) 

About the above objective function, this paper will proceed 

analysis and comparison of the calculation results between the 

improved algorithm and other algorithms under the same 

conditions of the power model.  

D. System constrains 

If the stable system can maintain running normally, it will 

be limited by various indicators. In this paper, the distribution 

network is subject to certain aspects, they are described by the 

following equalities and inequalities [17]. 
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i. Load balance constraint 

In this distribution network, each bus must be satisfied the 

constraints of power flow calculation as follows [18]:  
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        (4) 
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        (5) 

where, Pis and Qis are the given active power and reactive 

power in the ith branch, ei is the real part of the ith node 

voltage, fi is the imaginary part of the ith node voltage, Gij is 

the real part of the admittance between the ith and the jth 

branch, Bij is the imaginary part of the admittance between the 

ith and the jth branch. 

ii. Voltage limits 

Each node voltage amplitude should be limited within the 

lower and upper bounds as follows: 

 
, ,Min i i Max iV V V    (6) 

where, i=1,2,3…NB, VMin,i is the lowest voltage amplitude in 

the ith bus, VMax,i is the highest voltage amplitude in the ith 

bus. 

iii. Current limits 

Each branch current should not exceed the maximum limit 

as follows: 

 ,k Max kI I   (7) 

where, k=1,2,3…NL, IMax,k is the maximun of the current in the 

kth branch. 

iv. DG unit technical contraints 

Here are some uniform limits about single DG in any given 

location, in order to make sure the DG working normally, any 

limit for DG should be maintain within the lower and upper 

bounds , DG capacity limit is as follows [19, 20]: 

 , ,

DG DG DG

Min i i Max iP P P    (8) 

 , ,

DG DG DG

Min i i Max iQ Q Q    (9) 

where, i=1,2,3…NDG, P
DG 

Min,i is the lowest active power limit of 

ith DG, P
DG 

Max,i is the highest active power limit of ith DG, Q
DG 

Min,i 

is the lowest reactive power limit of ith DG, Q
DG 

Max,i is the 

highest reactive power limit of ith DG. 

DG power factor limit is as follows [21]: 

 ,m ,

DG DG DG

Min m Max mpf pf pf    (10) 

where 
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  (11) 

m=1,2,3…NDG, pf
DG 

Min,m is the lowest power factor of the mth 

DG, pf
DG 

Max,m is the highest power factor of the mth DG. 

III. METHODOLOGY 

A. Particle swarm optimization(PSO) 

Particle Swarm Optimization (PSO) [22-27] was first 

proposed by Eberhart and Kennedy in 1995, and its basic 

concept stems from the research on the foraging behavior of 

birds. 

A kind of particle is used to simulate the above bird 

individual. Each particle can be regarded as a search 

individual in the N-dimensional search space. The current 

position of the particle is a candidate solution for the 

corresponding optimization problem, and the flight process of  

the particle is the individual search process.  

B. Beetle antennae search 

Beetle Antennae Search (BAS) [28, 29], also called Beetle 

Antennae Search-BAS, is an efficient intelligent optimization 

algorithm proposed in 2017. Similar to other intelligent 

optimization algorithms such as genetic algorithm, particle 

swarm optimization, simulated annealing, etc., beetle search 

does not need to know the specific form of the function, and 

does not need gradient information to achieve efficient 

optimization. 

Compared with particle swarm optimization, the beetle 

search requires only one individual, that is, one beetle, which 

greatly reduces the amount of calculation. 

 

The maximum number of iterations:  

maxIterator

Number of iterations:  i=1

Initial population of data loading:  

Sample

Individual objective function value:  

F=fit(Sample)

Global optimal value:  G=min(F)

start

i<maxIterator?

For the whole Sample

V=wV+C1*random*(F-

Sample)+C2*random*(G-Sample)

Sample=rate*V+(1-rate)*Y

F=fit(Sample)

G=min(F)

Output the 

G of each 

iteration

N

For each individual in the 

Sample

Y=Y+step*V*sign(fleft-

fright) end

Cross mutation

 
Fig.1  The flow chart of the IPSO-BAS 

 

C. The hybrid algorithm of particle swarm optimization and 

beetle antennae search 

The hybrid algorithm of particle swarm optimization and 

beetle antennae search (PSO-BAS) combines the advantages 

of both. PSO is a group optimization algorithm and BAS is an 

individual optimization algorithm. Whether it is from the 

perspective of mathematics or bionics, both are very suitable 

algorithms for combining the process of group optimization 

and individual optimization. 

Step 1: Initialization 

This method of initialization sets the number of initial 

population to 30 and limits the value range of each individual 
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to the DG unit controllable range, then the maximum number 

of iterations is 100. 

Step 2: Target value calculation 

This step brings the initial value of the population into the 

fitness function (fit), then it can get a series of the target values 

of the active power loss (floss), and take the smallest of all the 

calculated floss as the global optimal value (gloss) 

  loss initialf fit value   (12) 

  loss lossg Min f   (13) 

Step 3: Group search  

According to the PSO's group optimization rules, the next 

speed is obtained by the current speed and position, the local 

optimal position and the global optimal position. 

 1* *( - ) 2* *( - )V wV C r F Sample C r G Sample    (14) 

where, r is a random number from 0 to 1, F and G are the local 

optimal position and the global optimal position, The C1 and 

C2 are learning factors, Sample is the current position. 

Step 4: Individual search 

Through the individual optimization rules of the BAS, the 

individual searches the left and right optimal values one by 

one and uses the calculated speed to speed up the optimization 

when the position is updated. 

 * * ( ( ) - ( ))Y Y step V sign fit left fit right    (15) 

where, left and right are the variables on the left and right. 

Step 5: Location update 

The individual search value and group search value above 

are added together in a certain proportion to obtain the final 

contemporary location value.Then, the current position value 

is brought into fit to get the floss and the minimum value gloss 

for the next iteration is obtained by sorting from floss. 

 * (1- )*Sample rate V rate Y    (16) 

where, rate is a number from 0 to 1. 

Step 6: Circular judgment 

This step determines whether the current number of 

iterations reaches the maximum number of iterations, if not, 

jumps to step 3. Otherwise it outputs the global optimal value 

of each generation. 

 
3iterations

iterations

iterations Max
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  (17) 

The flow chart of the PSO-BAS is shown in the Fig.1 

D. Improved measure 

i. Parameter optimization 

The original PSO-BAS has achieved good results in terms 

of optimal allocation of DGs on the radial network. However, 

an improvement point will be introduced in order to make 

PSO-BAS to obtain faster  convergence speed, broader search 

range, and does not fall into local optimum. 

 From pseudo code of the BAS, we can know the eta is a 

constant and it is set to 0.95 normally. If eta becomes a 

variable which is correlated with the number of iterations, this 

algorithm will get better performance as the increment for 

number of iterations in small-scale optimization. In the paper, 

eta is modified to a variable calculated by following formula 

(18): 

  10*
1 0 1* /

Iterator

k Iterato

max

max reta step step step    (18) 

where, the maxIterator is the maximum number of iterations, 

k is the current iterations, step1 and step0 are the two constant 

values and they can quickly adjust the rate of change of eta 

through them. 

ii. Cross mutation 

Thoughts based on GA algorithm, an idea of cross mutation 

is introduced here. 

Cross: when the current random probability is greater than 

the crossover probability, this method randomly takes two 

individuals to exchange partial value. (The preset cross 

probability value is generally 0.5~0.8) 

    1:1:i jP pos P pos   (19) 

    1: 1:j iP pos end P pos end     (20) 

where, i≠  j, but i,j=1,2,3,4…nSample, pos is a random 

position between 1 and MaxNumberDG (3 or 6), Pi is the ith  

individual in the population.  

Mutation: before the mutation operation, a concentration 

calculation is introduced here to judge whether the particles 

are too concentrated in a certain range and may fall into the 

local optimum by the similarity between each individual. 

Regarding the calculation of similarity, it is judged here 

how many identical variable values exist between each 

individual and other individuals. If the ratio of the same 

number reaches 0.7 or more, then the current individual 

similar concentration is added by 1, and finally the similar 

concentration coefficient formula is by following formula 

(21): 

  
2

/ 1similar similarcoe count Sample    (21) 

where, coesimilar is similar concentration coefficient, Sample is 

the number of population, countsimilar is individual similar 

concentration. 

The mutation probability is proportional to coesimilar, and the 

formula is by following formula (22): 

 ( )*P Min Max Min similarmu mu mu mu coe     (22) 

where, mup is the mutation probability, muMin is minimum 

value of the mutation probability, muMax is maximum value of 

the mutation probability. Here, the fitness is sorted into the 

last 10 populations, and the mutation operation is performed. 

The specific process is to randomly generate a variable from 0 

to 1. If the current variable is less than the mutation 

probability (The preset mutation probability value is 

generally 0.1~0.4), then each selected individual will perform 

the following formula (23): 

   ( )*i max miP pos randn min     (23) 

where, max and min are the upper and lower limits of the 

value range, rand  is a random number in the range 0~1.  

Cross mutation is performed on the initial value of each 

iteration to expand its search range, avoid falling into local 

optimization, and improve the performance of PSO-BAS 

algorithm. 

iii. Initialize the population at equal intervals 

The intelligent optimization algorithm is very sensitive to 

the selection of the initial value, especially in a complex 

model, this phenomenon is more obvious, so an initial value 

selection method is proposed here to improve the search range 

and convergence speed of the algorithm. This method is 

called the equidistant method. As the name implies, when the 

population is initialized, each value of each population is 

evenly distributed within the whole ranges, so that the values 

of various sizes can be obtained as much as possible in the 

first value process. Besides, this method will prevent the 

algorithm from falling into a local optimum. 
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TABLE I  SIX CONFESSED TEST FUNCTIONS 

Test function Ranges 
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Fig.2  Initialize the population at equal intervals 

 

In Fig.2, each circle represents a population, and it can be 

clearly observed that the distance between each circle is equal. 

The value of each population is by following formula (24): 

  * /i Min Max MinSample x x x i N       (24) 

where, Sample is the ith value of population,xMax and xMin are 

the maximum and minimum values of each dimension, N is 

the number of population. 

iv. Non-linear learning factor 

PSO-BAS has a fast convergence rate, this character will 

inevitably lead to a drawback, which is to fall into the local 

optimum. To further improve the algorithm, this article will 

introduce a non-linear learning factor. 

In Fig.3, it shows the changing trend of C1 and C2. 
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Fig.3 The changing trend of C1 and C2 

About the non-linear learning factor, they will satisfy the 

following formula (25)-(26): 

  2 2

1 /C C k maxiterator   (25) 

  2 2

2 1 /C C k maxiterator    (26) 

where, C is set to 2,maxiterator is the maximum number of 

iterations, k is the kth iteration. This method makes PSO-BAS 

bias towards global optimization in the early stage and partial 

optimization in the later stage. 

Through these improvement measures, the search scheme 

of PSO-BAS has changed from a fixed step size to a 

progressive search in order to verify whether these measures 

achieve the effect of improvement. This paper will compare 

the results of PSO-BAS and improved algorithm (IPSO-BAS) 

on the IEEE 33-bus, IEEE 69-bus, IEEE 119-bus systems. 

IV. SIMULATION AND ANALYSIS 

First of all, we need to know whether the performance of 

the proposed hybrid algorithm has been improved by 

comparing its result with the consequence of original 

algorithm and whether the improved methods in this article 

are effective. Here, the PSO, PSO-BAS, and IPSO-BAS 

algorithms are simultaneously introduced into the six 

confessed test functions. About these test functions, here are a 

number of same conditions that need to be set, for example, 

the maximum number of iterations is set to 500, the dimension 

of initial population (D) is 30, the initial population is set to 

the same random population for PSO, PSO-BAS, IPSO-BAS. 

The six confessed test functions will be shown in TABLE I. 

The fitness value of the three algorithms in six confessed 

test functions can be observed in TABLE II, IPSO-BAS will 

chalk up the best results over PSO-BAS and PSO in all test 

functions, the proposed improvement methods are capable of 

making PSO-BAS get better performance by observing 

Fig.6-Fig.11. Except the value of f1(x), the results of 

PSO-BAS will be better than PSO. A conclusion that 

algorithm fusion and a series of necessary improvement 
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methods will be obtained. This conclusion is not 

comprehensive, because the six test functions only exist on a 

theoretical level and do not consider the constraints of real 

physical conditions. 

Therefore, in order to verify the superiority of the proposed 

improved algorithm in terms of practical application, it will be 

tested on the IEEE 33-bus, IEEE 69-bus, IEEE 119-bus 

systems and its results will be compared with other algorithms. 

In this paper, the IPSO-BAS algorithm based on the optimal 

DGs allocation of MATLAB codes is developed, and it is 

integrated together for simulation. At last, result data is 

obtained on the three models to verify the performance of 

IPSO-BAS. In this paper, two cases are proposed. About the 

case 1, the power factor is operated as unity (only supply 

active power for each generation). As for case 2, it is operated 

as 0.866 leading (supply active power and reactive power at 

the same time for each generation). 

The simulation results are all based on MATLAB code to 

achieve. In all test models, the population of proposed 

IPSO-BAS is set to 30. 

About IPSO-BAS, the initial value of each variable is as 

follows, the moving step (step) is equal to 500, constant for 

controlling step size (c) is equal to 2, the minimum initial step 

(step1) is equal to 0.4 and the maximum initial step (step0) is 

equal to 1.5. 
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Fig.4  Active power loss using different rate for IPSO-BAS on the IEEE 

33-bus system 
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Fig.5  Active power loss using different rate for PSO-BAS on the IEEE 

33-bus system 
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Fig.6 The iteration graph of f1(x) 
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Fig.7 The iteration graph of f2(x)  
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Fig.8 The iteration graph of f3(x) 
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Fig.9 The iteration graph of f4(x) 
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Fig.10 The iteration graph of f5(x)  
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Fig.11 The iteration graph of f6(x) 

 
 

TABLE II THE FITNESS VALUE OF THE THREE ALGORITHMS IN THE SIX CONFESSED TEST FUNCTIONS 

Test function IPSO-BAS PSO-BAS PSO 

f1(x) 251.01 12429 974.52 

f2(x) 6.56 41.87 63.04 

f3(x) 0.23 0.35 0.51 

f4(x) -6360.53 -5440.75 -5276.38 

f5(x) 4.27 6.28 6.93 

f6(x) 3.88 5.75 12.12 
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A. IEEE 33-bus radial distribution system 

In order to explore the performance of the algorithm on 

different models, here, the algorithm is first applied to the 

simpler IEEE 33-bus model for testing to verify how effective 

the algorithm is on low-dimensional data. 

The maximum iteration of IPSO-BAS is set to 100 for case 

1 and case 2. The line data and load data are given in [30]. The 

most important, when the power factor is 0.866 leading, it can 

be seen from Fig.4 that the proportion of fusion of two 

algorithms (rate=0.8) for IPSO-BAS gives the active power 

loss, 28.21kW. And in Fig.5, the same rate for PSO-BAS 

gives the active power loss, 29.42kW. 

The distribution system has 33 nodes, and its nominal 

voltage is 12.66kV. The basic power value of the distribution 

system is 10MVA. The singline map about the distribution 

system is shown in Fig.24. The total load active power and 

reactive power of the distribution network are 3.715MW and 

2.3MVar. The upper and lower voltage magnitude limits at all 

buses are 1.05 p.u. and 0.95 p.u., respectively. In order to 

ensure the fairness of the each algorithm, 3 DGs with the same 

parameter are uniformly accessed whether the power factor is 

unity or 0.866 leading [31-33]. 

The active power loss and reactive power loss of these 

radial distribution system are 210.998 kW and 143kVar 

without the installation of DGs. In order to prove the 

performance of these algorithms, DGs will be inserted into 

this distribution network to minimize active power loss. The 

ratings of DGs are set to the range of 0.5 p.u. to 1.2 p.u.. For 

each DG, their power factor will be set to unity and 0.866 

leading. 

The detailed results about the placement and the capacity 

of DGs, active power loss, critical bus number (CBN) and 

critical bus voltage (CBV) for two different cases (0.866 

leading and unity) by different optimization algorithms are 

shown in TABLE III and TABLE IV. 

Using the optimization performance of the algorithm, 

various algorithms can be found here to adjust the size of DGs 

to obtain the minimum system active power loss. 

While the power factor is set to unity, various algorithms 

will get different results about active power loss in TABLE III. 

As the most classic optimization algorithm, the PSO has a 

strong convergence speed, which reduces the active power 

loss from 210.998kW to 105.35 kW [6], the 106.30 kW is 

obtained by GA [6], the active power loss of PSO/GA is 

103.40 kW [6], the 82.03 kW is obtained by LSFSA [7], the 

110.51 kW is obtained by the GA-IWD [11]. The TLBO 

obtains a smaller active power loss, 75.540 kW [10]. However, 

the PSO-BAS and IPSO-BAS can not obtain the best active 

power loss on the IEEE 33-bus radial distribution system, 

90.21 kW and 89.40 kW. They are inferior to TLBO [10] and 

LSFSA [7]. On the other hand, when the power factor is set to 

0.866 leading, 26.720 kW is obtained by the LSFSA [7], 

29.42 kW is obtained by the PSO-BAS, 28.21 kW is obtained 

by IPSO-BAS. 

 It can be seen from the above data analysis that the same 

algorithm and different power factors have a huge gap in 

results, which also shows that DGs introduce reactive power, 

it will reduce the active power loss of the system to a greater 

extent. So for each DG, introduces active power and reactive 

power into power system at the same time is to maximize 

utility. 

In Fig.12, using the unity power factor, the node voltages of 

a IEEE 33-bus distribution network for various algorithms are 

shown. The 0.866 leading power factor of DGs insert into this 

IEEE 33-bus to obtain different curves, and the curves of node 

voltages are shown in Fig.13, in addition, the iteration graph 

of network loss about PSO-BAS and IPSO-BAS will be 

obtained by the optimal active power network loss of each 

iteration in Fig.14. The convergence speed of IPSO-BAS and  

PSO-BAS can be observed here. They have the fastest rate of 

change from the first generation to the second generation, and 

the value of the second generation approaches the optimal 

value. From the perspective of convergence speed, 

IPSO-BAS fully converges in the 27th generation, PSO-BAS 

fully converges in the 5th generation. Although IPSO-BAS 

gets a better value of power loss than PSO-BAS, sacrifices the 

speed of convergence, this trade-off is certainly worthy, 

because the convergence speed of IPSO-BAS is already 

extremely fast. 

B. IEEE 69-bus radial distribution system 

In order to explore the advantages of IPSO-BAS, a more 

complex IEEE 69-bus distribution network will be tested here, 

and the results of different algorithms will be studied and 

analyzed.  

The maximum iteration of IPSO-BAS is set to 100 for case 

1 and case 2. The data of line and load are given in [34]. The 

radial distribution system has 48 load buses, and its rated 

voltage is 12.66kV. The base value of power for the 

distribution system is 100MVA. The single-line diagram of 

the IEEE 69-bus distribution system is shown in Fig.26. The 

total load active power and reactive power of the distribution 

network are 3.80 MW and 2.69 MVar. The upper and lower 

voltage ranges of all buses are limited to 1.05 p.u. and 0.95 

p.u., respectively. In order to ensure the fairness of these 

algorithms, there are the same conditions as on the IEEE 

33-bus, three DGs with the same parameter are uniformly 

accessed whether the power factor is unity or 0.866 leading. 

The active power loss and reactive power loss of these 

radial distribution system are 224.7 kW and 120.13 kVar 

without installation of DGs. In order to ensure the stability of 

the power system after inserting DGs, the ratings of DGs are 

limited to 0.4 p.u. to 2.0. p.u.. For each DG, their power factor 

will be set to unity and 0.866 leading.  

Various indicators about the final result using two different 

cases (0.866 leading and unity) will be shown in TABLE VII 

and TABLE VIII, which include the location and the size of 

DGs, active power loss, CBN and CBV [35]. It can be known 

from TABLE VII, while the power factor is unity, it can be 

observed that there is an obvious change for the value of 

results on the IEEE 69-bus. The 72.06 kW is gained by 

IPSO-BAS, the 73.521 kW is gained by PSO-BAS, the 

72.406 kW is gained by TBLO [10], the 77.100 kW is gained 

by LSFSA [7], the 89.000 kW is gained by GA [6], the 83.200 

kW is gained by PSO [6], the 81.100 kW is gained by 

GA/PSO [6], the 80.91 kW is gained by GA-IWD [11]. The 

node voltages of IEEE 69-bus distribution system using 

different algorithms will be shown in Fig.27, while the power 

factor is unity. Here, in the condition of another power factor, 

about 0.866 leading power factor, the node voltages of IEEE 

69-bus distribution system are shown in Fig.28. 
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TABLE III  

THE RESULTS OF VARIOUS ALGORITHMS FOR UNITY POWER FACTOR ON THE IEEE 33-BUS DISTRIBUTION SYSTEM WITH ACTIVE 

POWER LOSS, PLACEMENT AND CAPACITY (MW) OF DGs, CBN, CBV. 

IPSO-BAS   PSO-BAS   TBLO [10]   LSFSA [7]  

Best DG 

placement 

Best DG 

capacity  

 Best DG 

placement 

Best DG 

capacity 

 Best DG 

placement 

Best DG 

capacity 

 Best DG 

placement 

Best DG 

capacity 

8 

13 

32 

0.8314 

0.6429 

0.8527 

 8 

13 

32 

1.0853 

0.5312 

0.5878 

 10 

24 

31 

0.8246 

1.0311 

0.8862 

 6 

18 

30 

1.1124 

0.4874 

0.8679 

           

PSO [6]   GA [6]   GA/PSO [6]   GA-IWD [11]  

Best DG 

placement 

Best DG 

capacity 

 Best DG 

placement 

Best DG 

capacity 

 Best DG 

placement 

Best DG 

capacity 

 Best DG 

placement 

Best DG 

capacity 

8 

13 

32 

1.1768 

0.9816 

0.8297 

 11 

29 

30 

1.5000 

0.4228 

1.0714 

 11 

16 

32 

0.9250 

0.8630 

1.2000 

 11 

16 

32 

1.2214 

0.6833 

1.2135 

 

 IPSO-BAS PSO-BAS TBLO [10] LSFSA [7] PSO [6] GA [6] GA/PSO [6] GA-IWD [11] 

PL(kW) 

Reduction rate(%) 

CBN 

CBV(p.u.) 

89.40 

57.63 

30 

0.9709 

90.21 

57.25 

30 

0.9644 

75.540 

64.20 

_  

_  

82.03 

61.12 

14 

0.96767 

105.350 

50.07 

30 

0.98063 

106.300 

49.48 

25 

0.98094 

103.400 

50.99 

25 

0.98083 

110.51 

47.63 

_ 

_ 

 

0 5 10 15 20 25 30 35
0.9

0.92

0.94

0.96

0.98

1

1.02

Bus Number

B
u
s
 V

o
lta

g
e
(p

.u
.)

 

 

Original Case

IPSO-BAS

PSO-BAS

TBLO

LFSFA

PSO

GA

GA/PSO

GA-IWD

 
Fig.12  The node voltages for different algorithms and origin case on the IEEE 33-bus distribution network (unity power factor) 

 

TABLE IV  
THE RESULTS OF VARIOUS ALGORITHMS FOR 0.866 LEADING POWER FACTOR ON THE IEEE 33-BUS DISTRIBUTION SYSTEM WITH 

ACTIVE POWER LOSS, PLACEMENT AND CAPACITY OF DGs, CBN, CBV. 

IPSO-BAS     PSO-BAS    

Best DG 

placement 

 Best DG capacity   Best DG 

placement 

 Best DG capacity  

  Active power 

(MW) 

Reactive power 

(MVar) 

   Active power 

(MW) 

Reactive power 

(MVar) 

8 

13 

32 

 0.9087 

0.6192 

0.7563 

0.5362 

0.5362 

0.5362 

 8 

13 

32 

 0.6192 

0.6192 

0.6192 

0.5581 

0.5361 

0.5824 

         

LSFSA [7]         

Best DG 

placement 

 Best DG capacity       

  Active power 

(MW) 

Reactive power 

(MVar) 

     

6 

18 

30 

 1.1976 

0.4778 

0.9205 

0.6915 

0.2759 

0.5315 

     

 

 IPSO-BAS PSO-BAS LSFSA 

PL(kW) 

Reduction rate(%) 

CBN 

CBV(p.u.) 

28.21 

86.02 

31 

0.99301 

29.42 

84.88 

31 

0.98511 

26.720 

87.34 

25 

0.98266 
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Fig.13  The node voltages for different algorithms and origin case on the IEEE 33-bus distribution network (0.866 leading power factor) 
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Fig.14  The active power loss convergence curves using IPSO-BAS and PSO-BAS on the IEEE 33-bus distribution network (0.866 leading power factor)

 

Due to the increased complexity of the node model, the 

value of rate needs to be reselected here to ensure that 

IPSO-BAS and PSO-BSA using 0.866 leading power factor 

also obtain the best results. In Fig.15 and Fig.16, it can 

observe that various rate will obtain different results for 

IPSO-BAS and PSO-BAS. In Fig.17, although the same result 

(7.602kW) is obtained by two different parameters (rate=0.8 

and rate=0.6) for IPSO-BAS, the convergence generation is 

26th when rate is 0.8, then rate is 0.6, the convergence 

generation is 46th. In summary, the best result will be 

obtained when rate is 0.8. 

Then, in Fig.29, the convergence speed of IPSO-BAS and 

PSO-BAS will be shown here, it can be known that 

IPSO-BAS and PSO-BAS have the fastest rate of change from 

the first generation to the second generation. However, the 

second generation value of IPSO-BAS is only half  the second 

generation value of PSO-BAS, and the IPSO-BAS fully 

converges in the 26th generation, the PSO-BAS fully 

converges in the 52nd generation. The result of IPSO-BAS is 

7.602 kW, then the result of PSO-BAS is 8.098 kW, 16.260 

kW is obtained by LSFSA [7]. 
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Fig.15   Active power loss using different rate for IPSO-BAS on the IEEE 

69-bus system 
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Fig.16   Active power loss using different rate for PSO-BAS on the IEEE 

69-bus system 
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Fig.17   Convergence graph using for IPSO-BAS (0.5 and 0.8) 

 

In addition to the above calculations on how to obtain the 

optimal distributed power size under the peak load, the new 

energy generators on the IEEE 69-bus distribution network 

will be introduced and a strategy for regulating the optimal 

network loss of the annual load is proposed.  

In literature [12], there are the daily load curve of the power 

system load and the corresponding network power loss, and 

they are shown Fig.18 in and Fig.19. 

In this article, three renewable energy sources are 

introduced as distributed power sources, namely biomass, 

wind energy and solar photovoltaic. Among them, the 

biomass power is modeled as a synchronous motor, the wind 

power is modeled as a double-fed induction generator (DFIG) 

or full-converter synchronous motors, the photovoltaic 

power sources are integrated using converters. 

The power generation of solar photovoltaic and wind 

power are limited by natural factors. The power generation 

curve is shown in Fig.20. 
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Fig.18   The daily load demand curve. 
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Fig.19   The daily power loss curve. 
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Fig.20   The daily capacity of solar and wind 

 

On the contrary, biomass power will not be restricted by 

natural factors, so the size can be adjusted artificially with 

high flexibility. 

Through the calculation and analysis of each node of the 

system by the IPSO-BAS algorithm, the best position of 

inserting node, the 61st node, is obtained. Then, for the three 

energy sources, they are individually inserted into the 61st 

node of the system, and the power generation of biomass 

energy is fully regulated within a controlled range. For 

photovoltaic and wind power sources, because they are 

limited by natural factors, the power generations need to be 

slightly adjusted according to their real-time capacity. 

In the Fig.21, the adjustable size of these three renewable 

energy sources in 24 hours are shown here. 

At the same time, in the TABLE V, it shows the annual 

network loss about plugging three types of renewable energy 

into the network and the original network. It can be observed 
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TABLE V  
THE ANNUAL NETWORK LOSS ABOUT PLUGGING THREE TYPES OF RENEWABLE ENERGY INTO THE NETWORK AND THE 

ORIGINAL NETWORK 

 Origin Biomass energy  Wind energy  Solar energy 

  IPSO-BAS 
Proposed 

method [12] 

 
IPSO-BAS 

Proposed 

method [12] 

 
IPSO-BAS 

Proposed 

method [12] 

Best DG 

placement 
_ 61 61 

 
61 61 

 
61 61 

Network 

loss (MWh) 
1381.53 152.37 184.68 

 
286.46 307.52 

 
622.84 648.06 
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Fig.21   The size of these three renewable energy sources in one day. 

 

here that the annual network loss value is obtained by the 

IPSO-BAS algorithm in this paper, which is less than the 

calculated annual network loss value by the method in 

literature [12], and it can be observed that the difference in the 

network loss value of biomass energy is the largest. 

From the above results, it can be analyzed that adjusting the 

size of the generator according to the daily load curve will 

obtain the optimal annual network loss value. In the above 

case, the generator is only inserted in one node. Here, this 

paper will explore the position of multiple generators that can 

be adjusted in real time. 

Because biomass energy is not restricted by natural factors 

and flexible regulation, this paper will study how much the 

annual network loss is caused by two and three biomass power 

sources respectively to be plugged into the IEEE 69-bus 

distribution network. In order to improve accuracy, here, the 

amount of biomass energy and network loss at each time of 

the day will be calculated based on the daily load curve, and 

the annual network loss value can be obtained through 

formula (2). In the TABLE VI, it will show the size of the 

network loss of the various cases in the year. And in the Fig.22 

and Fig.23, they will show the size of the generators at each 

moment when two and three generators are inserted into the 

IEEE 69-bus system under the same total load capacity. 

C. IEEE 119-bus radial distribution system 

The performance of IPSO-BAS on the IEEE 69-bus has 

been greatly improved over the IEEE 33-bus. Here, this paper 

will introduce more complex model (IEEE 119-bus) to prove 

whether the more complex the model, the performance of 

IPSO-BAS will gradually improve. 

About the IEEE 119-bus, this paper only explores when the 

power factor is 0.866 leading. The maximum iteration of 

IPSO-BAS is set to 100. The radial distribution network has 

117 load buses, and its rated voltage is 12.66kV. The base 

value of power for the distribution system is 100MVA. The 

single-line diagram of IEEE 119-bus distribution system is 

shown in Fig.25. The total load active power and reactive 

power of the distribution network are 22.71 MW and 17.04 

MVar. The upper and lower voltage ranges about all buses are 

limited to 1.1 p.u. and 0.9 p.u.. The node voltages for IEEE 

119-bus distribution network are shown in Fig.30. The active 

power loss and reactive power loss of the IEEE 119-bus are 

978.1 kW and 718.8 kVar without DGs. For five connected 

DGs, their ratings are limited to 1.0 p.u. to 5.0. p.u, and they 

own the same physical properties as the DGs on the IEEE 

69-bus and IEEE 33-bus. 682.26 kW is obtained by PSO [6], 

603.57kW is obtained by PSO-BAS, 562.86kW is obtained 

by IPSO-BAS. In TABLE IX, it shows the installation 

position and size of five DGs, active power loss, critical bus 

CBN and CBV. The active power loss convergence curves are 

shown in Fig.31. 

V. STATISTICAL ANALYSIS 

The comparative analysis of the data is obtained from IEEE 

33-bus, IEEE 69-bus and IEEE 119-bus distribution systems 

to get the advantages of the IPSO-BAS algorithm. For each 

algorithm, node voltage can obtain stable data, here, this 

paper will not discuss whether IPSO-BAS and other 

algorithms have advantages in voltage stability, and put the 

main research and analysis on active power loss. 

First, this paper needs to consider whether rate has 

different effects on the complexity of the data and the model.  
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Fig.22   The total size of the two inserted biomass power sources 
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Fig.23   The total size of the three inserted biomass power sources 
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As can be seen from Fig.4, Fig.5, Fig.15, Fig.16 and Fig.17, 

the rate is  0.8, the optimal value or the fastest convergence 

speed is always obtained, so we judge that rate is equal to 0.8, 

and it is the optimal value of IPSO-BAS and PSO-BAS. 

 

TABLE VI  
COMPARISON OF ENERGY LOSS OF THREE SCHEMES 

 One biomass Two biomass Three biomass 

Best DG placement 61 61,63 17,61,63 

Network loss (MWh) 152.37 172.12 60.55 

Secondly, when the power factor is unity, the obtained 

result data by IPSO-BAS on the IEEE 33-bus system is 

obviously inferior. It can be seen that the value of IPSO-BAS 

is 89.40kW, although it is better than the data of PSO, GA, 

GA/PSO, it is obviously insufficient compared with TBLO 

and LSFSA, and the differences among the values are large. It 

can be obtained from the analysis of the result data. The gap 

with TBLO is 13.86kW and the gap with LSFSA is 7.37kW.  

When the power factor is 0.866 leading, in other words,
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Fig.24   The schematic diagram of IEEE 33-bus radial distribution system. 
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Fig.25   The schematic diagram of IEEE 119-bus radial distribution system 
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Fig.26   The schematic diagram of IEEE 69-bus radial distribution system. 
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Fig.27   The node voltage for different algorithms and origin case on the IEEE 69-bus distribution network (unity power factor) 

 
TABLE VII  

THE RESULTS OF VARIOUS ALGORITHMS FOR UNITY POWER FACTOR ON THE IEEE 69-BUS DISTRIBUTION SYSTEM WITH ACTIVE 

POWER LOSS, PLACEMENT AND CAPACITY (MW) OF DGs, CBN, CBV. 

IPSO-BAS   PSO-BAS   TBLO [10]   LSFSA [7]  

Best DG 

placement 

Best DG 

capacity 

 Best DG 

placement 

Best DG 

capacity 

 Best DG 

placement 

Best DG 

capacity 

 Best DG 

placement 

Best DG 

capacity 

17 

61 

63 

0.5808 

1.2521 

0.6099 

 17 

61 

63 

0.5188 

0.6152 

1.0599 

 15 

61 

63 

0.5919 

0.8188 

0.9003 

 18 

60 

65 

0.4204 

1.3311 

0.4298 

           

PSO [6]   GA [6]   GA/PSO [6]   GA-IWD [11]  

Best DG 

placement 

Best DG 

capacity 

 Best DG 

placement 

Best DG 

capacity 

 Best DG 

placement 

Best DG 

capacity 

 Best DG 

placement 

Best DG 

capacity 

17 

61 

63 

0.9925 

1.1998 

0.7956 

 21 

62 

64 

0.9297 

1.0752 

0.9925 

 21 

61 

63 

0.9105 

1.1926 

0.8849 

 64 

61 

20 

0.8059 

1.3926 

0.9115 

            

 IPSO-BAS PSO-BAS TBLO [10] LSFSA [7] PSO [6] GA [6] GA/PSO [6] GA-IWD [11] 

PL(kW) 

Reduction rate(%) 

CBN 

CBV(p.u.) 

72.06 

67.93 

65 

0.97091 

73.521 

67.28 

65 

0.96442 

72.406 

67.78 

_  

_  

82.03 

63.49 

61 

0.98115 

83.200 

62.97 

65 

0.99007 

89.000 

60.39 

57 

0.99360 

81.100 

63.91 

65 

0.99249 

80.91 

63.99 

_ 

_ 
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TABLE VIII  

THE RESULTS OF VARIOUS ALGORITHMS FOR 0.866 LEADING POWER FACTOR ON THE IEEE 69-BUS DISTRIBUTION SYSTEM WITH 

ACTIVE POWER LOSS, PLACEMENT AND CAPACITY OF DGs, CBN, CBV. 

IPSO-BAS     PSO-BAS    

Best DG 

placement 

 Best DG capacity   Best DG 

placement 

 Best DG capacity  

  Active power 

(MW) 

Reactive power 

(MVar) 

   Active power 

(MW) 

Reactive power 

(MVar) 

17 

61 

63 

 0.5251 

1.2311 

0.5056 

0.4378 

0.7881 

0.4378 

 17 

61 

63 

 0.5056 

1.1865 

0.5056 

0.4378 

0.4378 

0.7532 

         

LSFSA [7]         

Best DG 

placement 

 Best DG capacity       

  Active power 

(MW) 

Reactive power 

(MVar) 

     

18 

60 

65 

 0.5498 

1.1954 

0.3122 

0.3175 

0.8635 

0.1803 

     

 IPSO-BAS PSO-BAS LSFSA 

PL(kW) 

Reduction rate(%) 

CBN 

CBV(p.u.) 

7.602 

96.62 

60 

0.9990 

8.098 

96.40 

60 

0.9971 

16.260 

92.76 

61 

0.9885 
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Fig.28   The node voltages for different algorithms and origin case on the IEEE 69-bus distribution network (0.866 leading power factor) 
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Fig.29   The active power loss convergence curves using IPSO-BAS and PSO-BAS on the IEEE 69-bus distribution network (0.866 leading power factor) 
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TABLE IX  
THE RESULTS OF VARIOUS ALGORITHMS FOR 0.866 LEADING POWER FACTOR ON THE IEEE 119-BUS DISTRIBUTION SYSTEM WITH 

ACTIVE POWER LOSS, PLACEMENT AND CAPACITY OF DGs, CBN, CBV. 

IPSO-BAS     PSO-BAS    

Best DG  

placement 

 Best DG capacity   Best DG  

placement 

 Best DG capacity  

  Active power 

(MW) 

Reactive power 

(MVar) 

   Active power 

(MW) 

Reactive power 

(MVar) 

25 

53 

63 

37 

89 

 1.0010 

1.5778 

0.8577 

3.7919 

1.2397 

0.6568 

1.5638 

0.6568 

3.0191 

0.6568 

 25 

53 

63 

37 

89 

 0.7690 

0.7584 

0.7599 

3.7893 

0.7592 

0.6568 

0.6707 

0.6568 

3.2834 

0.6568 

   

   

         

PSO [6]         

Best DG  

placement 

 Best DG capacity       

  Active power 

(MW) 

Reactive power 

(MVar) 

     

25 

53 

63 

37 

89 

 0.7959 

0.8203 

0.7709 

0.8057 

0.7967 

0.6676 

0.6693 

0.7041 

0.6951 

0.6676 

     

      

      

 IPSO-BAS PSO-BAS PSO 

PL(kW) 

Reduction rate(%) 

CBN 

CBV(p.u.) 

562.86 

42.45 

73 

0.9871 

603.57 

38.29 

73 

0.9726 

682.26 

30.25 

82 

0.9833 
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Fig.30  The node voltages for different algorithms and origin case on the IEEE 119-bus distribution network (0.866 leading power factor) 
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Fig.31  The active power loss convergence curves using PSO, IPSO-BAS and PSO-BAS on the IEEE 119-bus distribution network (0.866 leading power 

factor) 
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when the input variable becomes a higher dimension (both 

active and reactive power), the performance of IPSO-BAS is 

significantly improved. Although the result value is still not 

better than LSFSA, it can be seen that the gap between the two 

algorithms is reduced, and the gap is 2.781kW. 

Next, when the power system model is changed from IEEE 

33-bus to IEEE 69-bus, the complexity of the model increases. 

At the same time, it can also be observed that the performance 

of IPSO-BAS has also been significantly improved. When the 

power factor is unity, IPSO-BAS obtains the smallest active 

power loss, the value is 72.06kW. 

When the complexity of input variable increases again, the 

power factor is 0.866 leading, IPSO-BAS shows more 

performance advantages, its power loss is 7.6kW, and the 

power loss of LSFSA is 16.260kW, the best result is obtained 

by IPSO-BAS, and it is only half the size of LSFSA. 

When the network model transitioned from IEEE 69-bus to 

IEEE 119-bus, active power loss of the entire system has also 

increased from 224.7 to 978.1, nearly 4 times. In such a high 

power loss system, IPSO-BAS still maintains the best 

performance, and it is far superior to PSO using 0.866 leading 

power factor. The difference between their results exceeds 

100kW. 

Finally, the results of IPSO-BAS and PSO-BAS will be 

compared to analyze the performance of the improvement 

measures. From TABLE III, TABLE IV, TABLE VII, 

TABLE VIII and TABLE IX, it can be analyzed that the value 

of PSO-BAS has always been inferior to IPSO-BAS. 

When the power factor is 0.866 leading, the convergence 

speed of PSO-BAS is faster than IPSO-BAS on the IEEE 

33-bus, but when the complexity of the model increases, the 

convergence speed of IPSO-BAS is significantly faster than 

PSO-BAS on the IEEE 69-bus distribution network. 

Especially on the IEEE 119-bus, IPSO-BAS not only has a 

faster convergence speed than PSO-BAS, but its active power 

loss is also 40.71kW smaller than PSO-BAS. 

In addition, this article also deeply explores the use of new 

energy power supplies on the IEEE 69-bus network and 

proposes a plan to obtain the optimal annual network loss. 

Under the same total capacity, this article inserts 1, 2, and 3 

biomass energies into the IEEE 69-bus distribution network to 

verify the superiority of the proposed method. According to 

Fig.21, Fig.22 and Fig.23, it can be seen that the trend of the 

total capacity curve of the three schemes is roughly similar, 

but a closer look can reveal that the three energy schemes are 

inserted at each moment, the total energy capacity is 

significantly larger than the other two schemes, ranging from 

1.2 to 2.4, but the annual energy loss of inserting three energy 

sources is the smallest, and the value is 60.55MWh, which is 

about 100MWh less than the other two schemes. 

VI. CONCLUSION 

It can be obtained from the above data analysis that 

IPSO-BAS has poor performance on simple models with low 

dimensions, but the dimensions and model complexity 

increase, the performance of the IPSO-BAS algorithm has 

been significantly improved. From TABLE III and TABLE 

IV, they show that when the power factor is unity, the result 

value of IPSO-BAS is not ideal, and it differs greatly from the 

optimal value. When the power factor is 0.866 leading (both 

reactive power and active power), the result value of 

IPSO-BAS is still not the optimal value, but the gap with the 

optimal value has been significantly reduced. It can be 

observed from TABLE VII and TABLE VIII that regardless 

of the power factor is unity or 0.866 leading, the value of 

IPSO-BAS has achieved the optimal value. In TABLE IX, 

IPSO-BAS still maintain the best result value, and there is a 

further improvement in the numerical gap 

As can be seen from Fig.14, although the improvement 

measures achieved better results on the IEEE 33-bus 

distribution network, IPSO-BAS sacrificed the convergence 

speed. In Fig.29, on the IEEE 69-bus distribution network, it 

can be seen that the convergence speed has been significantly 

improved than before, and the numerical value does also not 

effect, the size is still the optimal value. In Fig.31, the 

performance of IPSO-BAS is significantly better than 

PSO-BAS on the IEEE 119-bus, and the difference in their 

reduction rate of active power loss increases from 0.22% to 

4.16%. 

As can be seen from the above summary, the IPSO-BAS 

algorithm has extremely fast convergence speed, strong 

search range capabilities, and the extremely obvious 

advantages in high-dimensional complex problems. Hence, 

the algorithm can be generalized to higher-dimensional or 

more complex problems. 

In addition to explore the performance of IPSO-BAS, this 

article also proposes a scheme to optimize the annual energy 

loss value. The optimal installation position and size by the 

IPSO-BAS algorithm is used to insert 1, 2, and 3 biomass 

energy sources respectively.  

According to the above data analysis, it can be known that 

inserting three biomass energy sources will obtain the best 

annual energy loss value, but it also requires the largest total 

energy capacity. If biomass energy can be changed in real 

time, then the real-time optimal total energy loss value will be 

obtained. The size of biomass energy only changes in every 

hour of 24 hours, and the obtained optimal network loss value 

is also based on this situation to estimate the annual energy 

loss value, but through comparative analysis, it is determined 

that the optimal result will be obtained by inserting three 

biomass energy sources at the same time, which provides the 

basis for the subsequent real-time regulation. 
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