Normalized Laplacian Spectra of Two Subdivision-coronae of Three Regular Graphs

Fei Wen, You Zhang, Wei Wang

Abstract

In this paper, we first introduce two new graph operations called the subdivision vertex-edge neighbourhood vertex-corona and the subdivision vertex-edge neighbourhood edge-corona for three graphs G_{1}, G_{2} and G_{3}, and the resulting graphs are respectively denoted by $G_{1}^{S} \bowtie\left(G_{2}^{V} \cup G_{3}^{E}\right)$ and $G_{1}^{S} \diamond\left(G_{2}^{V} \cup G_{3}^{E}\right)$, and then, their normalized Laplacian spectra are determined in terms of the corresponding normalized Laplacian spectra of the connected regular graphs G_{1}, G_{2} and G_{3}, which extend the corresponding results of Das and Panigrahi [19]. As applications, these results enable us to construct infinitely many pairs of normalized Laplacian cospectral graphs. Moreover, we also give the number of the spanning trees, the multiplicative degree-Kirchhoff index and Kemeny's constant of $G_{1}^{S} \bowtie\left(G_{2}^{V} \cup G_{3}^{E}\right)\left(\right.$ resp. $\left.G_{1}^{S} \diamond\left(G_{2}^{V} \cup G_{3}^{E}\right)\right)$.

Index Terms-subdivision vertex-edge neighbourhood vertexcorona, subdivision vertex-edge neighbourhood edge-corona, normalized Laplacian spectrum, cospectral graphs.

I. Introduction

THROUGHOUT this paper, we are concerned only with simple connected graphs (loops and multiple edges are not allowed). Let G be a graph with vertex set $V(G)=$ $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edge set $E(G)=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ where $|V(G)|=n$ and $|E(G)|=m$. The line graph $\ell(G)$ of G is a graph whose vertices corresponding the edges of G, and where two vertices are adjacent iff the corresponding edges of G are adjacent. We denote the complete graph and the cycle of order n by K_{n} and $C_{n}(n \geq 3)$, respectively. A graph matrix $M=M(G)$ is defined to be a symmetric matrix with respect to adjacency matrix $A(G)$ of G. The M-characteristic polynomial of G is defined as $\Phi_{M}(x)=$ $\operatorname{det}(x I-M)$, where I is the identity matrix. The M eigenvalues of G are the roots of its M-characteristic polynomial. The M-spectrum, denoted by $\operatorname{Spec}_{M}(G)$, of G is a multiset consisting of the M-eigenvalues. And two graphs G and H are M-cospectral if $\Phi_{M(G)}(x)=\Phi_{M(H)}(x)$.

Let $D(G)=\operatorname{diag}\left(d\left(v_{1}\right), d\left(v_{2}\right), \ldots, d\left(v_{n}\right)\right)$ be the degree diagonal matrix of G. The graph matrix $M=M(G)$ is respectively called adjacency matrix, signless Laplacian matrix and normalized Laplacian matrix of G if M equals $A(G)$, $Q(G)=D(G)+A(G)$ and $\mathcal{L}(G)=D(G)^{-1 / 2}(D(G)-$

[^0]$A(G)) D(G)^{-1 / 2}=I-D(G)^{-1 / 2} A(G) D(G)^{-1 / 2}$, respectively. Conventionally, the adjacency eigenvalues and normalized Laplacian eigenvalues of graph G are ordered respectively in non-increased sequence as follows: $\nu_{1} \geq \nu_{2} \geq$ $\cdots \geq \nu_{n}$ and $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}=0$. In fact, Chung [1] has proved that $\lambda_{i} \leq 2$ for all i.

As far as we know, many graph operations such as the disjoint union, the corona, the edge corona and the neighborhood corona etc. were introduced in [2]-[9] to determine their spectra. Note that the subdivision graph $S(G)$ of a graph G is the graph obtained by inserting a new vertex into every edge of G. Based on the subdivision, some new graph operations such as subdivision-vertex join and subdivision-edge join were defined in [10], and their A-spectrum were also investigated. Further works on their L-spectrum were considered in [11]. Recently, Wen et al. in [12] introduced another operation called subdivision-vertexedge join for three regular graphs, and then A, L, Q-spectra of the graph were calculated. By the way, they constructed many infinite families of pairs of cospectral graphs, which generalized those results of [10] and [11].

In addition, Lu and Miao [14] determined the A-spectra of graphs called subdivision-vertex corona and subdivision-edge corona, respectively. As a further extension, Liu and Lu [13] respectively considered the A-spectra of subdivision-vertex neighborhood corona and subdivision-edge neighborhood corona. Subsequently, Song and Huang [15] obtained the A spectrum and L-spectrum of subdivision vertex-edge corona $G_{1}^{S} \circ\left(G_{2}^{V} \cup G_{3}^{E}\right)$ (see $P_{4}^{S} \circ\left(P_{2}^{V} \cup P_{1}^{E}\right)$, shown in Fig. 1 for instance).
In this section, it was motivated by literatures [13] and [14] that two new graph operations are introduced below: Let G_{i} be a graph with order n_{i} and size m_{i}, where $i=1,2,3$. Let $S\left(G_{1}\right)$ be the subdividing graph of G_{1} whose vertex set has two parts: one the original vertices $V\left(G_{1}\right)$, another, denoted by $I\left(G_{1}\right)$, the inserting vertices corresponding to the edges of G_{1}. Suppose that G_{2} and G_{3} are two disjoint graphs. Then we have the following definitions.

Definition I.1. Subdivision vertex-edge neighbourhood vertex-corona (short for SVEV-corona) of G_{1} with G_{2} and G_{3}, denoted by $G_{1}^{S} \bowtie\left(G_{2}^{V} \cup G_{3}^{E}\right)$, is the graph consisting of $S\left(G_{1}\right),\left|V\left(G_{1}\right)\right|$ copies of G_{2} and $\left|I\left(G_{1}\right)\right|$ copies of G_{3}, all vertex-disjoint, and joining the neighbours of the i-th vertex of $V\left(G_{1}\right)$ to every vertex in the i -th copy of G_{2} and i -th vertex of $I\left(G_{1}\right)$ to each vertex in the i-th copy of G_{3}.

For simplicity, we depict $P_{4}^{S} \bowtie\left(P_{2}^{V} \cup P_{1}^{E}\right)$ in Fig.1. By the Definition I.1, $G_{1}^{S} \bowtie\left(G_{2}^{V} \cup G_{3}^{E}\right)$ has $n=n_{1}+m_{1}+$ $n_{1} n_{2}+m_{1} n_{3}$ vertices and $m=2 m_{1}+n_{1} m_{2}+m_{1} m_{3}+$ $2 m_{1} n_{2}+m_{1} n_{3}$ edges. We see that $G_{1}^{S} \bowtie\left(G_{2}^{V} \cup G_{3}^{E}\right)$ will be a subdivision-vertex neighbourhood corona (see [13]) if G_{3} is null, and will be a subdivision-edge corona (see [14])
if G_{2} is null. Thus subdivision vertex-edge neighbourhood vertex-corona can be viewed as the generalizations of both subdivision-vertex neighbourhood corona (denoted by $G_{1} \downarrow$ G_{2}) and subdivision-edge corona (denoted by $G_{1} \ominus G_{3}$).

Definition I.2. Subdivision vertex-edge neighbourhood edge-corona (short for SVEE-corona) of G_{1} with G_{2} and G_{3}, denoted by $G_{1}^{S} \diamond\left(G_{2}^{V} \cup G_{3}^{E}\right)$, is the graph consisting of $S\left(G_{1}\right),\left|V\left(G_{1}\right)\right|$ copies of G_{3} and $\left|I\left(G_{1}\right)\right|$ copies of G_{2}, all vertex-disjoint, joining the neighbours of the i-th vertex of $I\left(G_{1}\right)$ to every vertex in the i-th copy of G_{2} and i-th vertex of $V\left(G_{1}\right)$ to each vertex in the i-th copy of G_{3}.

As an illustration, we depict $P_{4}^{S} \diamond\left(P_{2}^{V} \cup P_{1}^{E}\right)$ in Fig.1. By the Definition I.2, $G_{1}^{S} \diamond\left(G_{2}^{V} \cup G_{3}^{E}\right)$ has $n=n_{1}+m_{1}+$ $m_{1} n_{2}+n_{1} n_{3}$ vertices and $m=2 m_{1}+m_{1} m_{2}+n_{1} m_{3}+$ $n_{1} n_{3}+2 m_{1} n_{2}$ edges. We see that $G_{1}^{S} \diamond\left(G_{2}^{V} \cup G_{3}^{E}\right)$ will be a subdivision-edge neighbourhood corona (see [13]) if G_{3} is null, and will be a subdivision-vertex corona (see [14]) if G_{2} is null. Thus subdivision vertex-edge neighbourhood edge-corona can be viewed as the generalizations of both subdivision-edge neighbourhood corona (denoted by $G_{1} \boxminus$ G_{2}) and subdivision-vertex corona (denoted by $G_{1} \odot G_{3}$).

Fig. 1. Some related graphs

The normalized Laplacian matrix of a graph was introduced in [1], it was a rather new but important tool popularized by Chung in 1990s. The normalized Laplacian eigenvalues of a graph have a good relationship with other graph invariants for general graphs in a way that other eigenvalues of matrices (such as adjacency, signless Laplacian etc.) fail to do. Thus, for a given graph, calculating its normalized Laplacian spectrum as well as formulating the normalized Laplacian characteristic polynomial is a fundamental and very meaningful work in spectral graph theory. In recent years, several graph operations (see [12], [17], [18], [20]) their normalized Laplacian spectra were computed taking different approaches. In 2017, Das and Panigrahi in [19] have determined the normalized Laplacian spectra of subdivision-vertex(edge)coronas [14] and subdivision-vertex (edge) neighbourhood coronas [13].

In this paper, we focus on determining the normalized Laplacian spectra of $G_{1}^{S} \bowtie\left(G_{2}^{V} \cup G_{3}^{E}\right)$ and $G_{1}^{S} \diamond\left(G_{2}^{V} \cup G_{3}^{E}\right)$ in terms of the corresponding normalized Laplacian spectra of three connected regular graphs G_{1}, G_{2} and G_{3}, which extends the corresponding results of [19]. As applications, these results enable us to construct infinitely many pairs of
\mathcal{L}-cospectral graphs. Moreover, we also give the number of the spanning trees, the multiplicative degree-Kirchhoff index and Kemeny's constant of $G_{1}^{S} \bowtie\left(G_{2}^{V} \cup G_{3}^{E}\right)$ (resp. $\left.G_{1}^{S} \diamond\left(G_{2}^{V} \cup G_{3}^{E}\right)\right)$.

II. Preliminaries

In this section, we first list some known results for latter use.

Lemma II. 1 ([2]). For a graph G, let $R(G)$ and $\ell(G)$ be the incidence matrix of G and the line graph of G, respectively. Then

$$
\begin{equation*}
R(G)^{T} R(G)=2 I_{m}+A(\ell(G)) \tag{1}
\end{equation*}
$$

where m is the number of edges of G.
Note that

$$
\begin{equation*}
R(G) R(G)^{T}=D(G)+A(G)=Q(G) \tag{2}
\end{equation*}
$$

Since non-zero eigenvalues of both $R(G) R(G)^{T}$ and $R(G)^{T} R(G)$ are the same, from the relations (1) and (2) one can obtain

$$
\begin{equation*}
\Phi_{A(\ell(G))}(x)=(x+2)^{m-n} \Phi_{Q(G)}(x+2) . \tag{3}
\end{equation*}
$$

In particular, if G is r-regular graph, then by Lemma II.1, we immediately have the following corollary.

Corollary II.1. Let G be an r-regular graph of order n. Then

$$
\begin{aligned}
& \Phi_{A(\ell(G))}(x)=(x+2)^{m-n} \cdot \prod_{i=1}^{n}\left(x-(r-2)-\nu_{i}(G)\right), \\
& \Phi_{A(\ell(G))}(x)=(x+2)^{m-n} \cdot \prod_{i=1}^{n}\left(x-(2 r-2)+r \lambda_{i}(G)\right)
\end{aligned}
$$

where $\nu_{i}(G)$ and $\lambda_{i}(G)$ are the eigenvalues of $A(G)$ and $\mathcal{L}(G)$ for $i=1,2, \ldots, n$, respectively.

As usual, we denote by $\mathbf{1}_{n}$ and $\mathbf{0}_{n}$ the column vector of size n with all the entries equal one and all the entries equal 0 , respectively. For a graph matrix M of order n, M-coronal $\Gamma_{M}(\lambda)$ is defined, in [3] and [6], to be the sum of the entries of the matrix $(\lambda I-M)^{-1}$, i.e.,

$$
\begin{equation*}
\Gamma_{M}(\lambda)=\mathbf{1}_{n}^{T}(\lambda I-M)^{-1} \mathbf{1}_{n} . \tag{4}
\end{equation*}
$$

If M has constant row sum t, it is easy to verify that

$$
\begin{equation*}
\Gamma_{M}(\lambda)=\frac{\mathbf{1}_{n}^{T} \mathbf{1}_{n}}{\lambda-t}=\frac{n}{\lambda-t} . \tag{5}
\end{equation*}
$$

It is well-known for invertible matrix M_{1} and M_{4} that

$$
\operatorname{det}\left(\begin{array}{ll}
M_{1} & M_{2} \tag{6}\\
M_{3} & M_{4}
\end{array}\right)=\operatorname{det}\left(M_{4}\right) \cdot \operatorname{det}\left(M_{1}-M_{2} M_{4}^{-1} M_{3}\right)
$$

where $M_{1}-M_{2} M_{4}^{-1} M_{3}$ and $M_{4}-M_{3} M_{1}^{-1} M_{2}$ are called the Schur complements [16] of M_{4} and M_{1}, respectively.
For two matrices $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$, of same size $m \times n$, the Hadamard product $A \bullet B=\left(c_{i j}\right)$ of A and B is a matrix of the same size $m \times n$ with entries given by $c_{i j}=$ $a_{i j} \times b_{i j}$ (entrywise multiplication). The Kronecker product $A \otimes B$ of two matrices $A=\left(a_{i j}\right)_{m \times n}$ and $B=\left(b_{i j}\right)_{p \times q}$ is the $m p \times n q$ matrix obtained from A by replacing each element $a_{i j}$ by $a_{i j} B$. This is an associative operation with the property that $(A \otimes B)^{T}=A^{T} \otimes B^{T}$ and $(A \otimes B)(C \otimes D)=$ $A C \otimes B D$ whenever the products $A C$ and $B D$ exist. The
latter implies $(A \otimes B)^{-1}=A^{-1} \otimes B^{-1}$ for nonsingular matrices A and B. Moreover, if A and B are $n \times n$ and $p \times p$ matrices, then $\operatorname{det}(A \otimes B)=\operatorname{det}(A)^{p} \operatorname{det}(B)^{n}$. The reader is referred to [7] for other properties of the Kronecker product not mentioned here.

III. The \mathcal{L}-spectra of SVEV-corona and SVEE-CORONA

In this section, we mainly determine the normalized Laplacian spectra of SVEV-corona and SVEE-corona, respectively. For the sake of convenience, we write \mathcal{G} as $G_{1}^{S} \bowtie\left(G_{2}^{V} \cup G_{3}^{E}\right)$, and \mathcal{H} as $G_{1}^{S} \diamond\left(G_{2}^{V} \cup G_{3}^{E}\right)$. And we respectively denote the eigenvalues of $\mathcal{L}\left(G_{1}\right), \mathcal{L}\left(G_{2}\right)$ and $\mathcal{L}\left(G_{3}\right)$ by $\theta_{i}\left(i=1,2, \ldots, n_{1}\right), \mu_{j}\left(j=1,2, \ldots, n_{2}\right)$ and $\eta_{k}\left(k=1,2, \ldots, n_{3}\right)$. Those symbols will be persisted in what follows.

Theorem III.1. Let G_{i} be an r_{i}-regular graph with n_{i} vertices and m_{i} edges, where $i=1,2,3$. Then

$$
\mathcal{L}(\mathcal{G})=\left(\begin{array}{cccc}
I_{n_{1}} & -a R\left(G_{1}\right) & O_{n_{1} \times n_{1} n_{2}} & O_{n_{1} \times m_{1} n_{3}} \tag{7}\\
-a R\left(G_{1}\right)^{T} & I_{m_{1}} & \boldsymbol{g}_{11} & -I_{m_{1}} \otimes c_{n_{3}}^{T} \\
O_{n_{1} n_{2} \times n_{1}} & \boldsymbol{g}_{12} & \boldsymbol{g}_{13} & \boldsymbol{g}_{14} \\
O_{m_{1} n_{3} \times n_{1}} & -I_{m_{1}} \otimes c_{n_{3}} & \boldsymbol{g}_{15} & \boldsymbol{g}_{16}
\end{array}\right)
$$

where $\boldsymbol{g}_{11}=-R\left(G_{1}\right)^{T} \otimes b_{n_{2}}^{T}, \boldsymbol{g}_{12}=-R\left(G_{1}\right) \otimes b_{n_{2}}, \boldsymbol{g}_{13}=$ $I_{n_{1}} \otimes\left(\mathcal{L}\left(G_{2}\right) \bullet B\left(G_{2}\right)\right), \boldsymbol{g}_{14}=O_{n_{1} n_{2} \times m_{1} n_{3}}, \boldsymbol{g}_{15}=O_{m_{1} n_{3} \times n_{1} n_{2}}$, $\boldsymbol{g}_{16}=I_{m_{1}} \otimes\left(\mathcal{L}\left(G_{3}\right) \bullet B\left(G_{3}\right)\right), \quad b_{n_{2}}=\frac{1}{\sqrt{\left(r_{1}+r_{2}\right)\left(2 n_{2}+n_{3}+2\right)}} \mathbf{1}_{n_{2}}$, $B\left(G_{2}\right)=\frac{r_{2}}{r_{1}+r_{2}} J_{n_{2}}+\frac{r_{1}}{r_{1}+r_{2}} I_{n_{2}}, c_{n_{3}}=\frac{1}{\sqrt{\left(r_{3}+1\right)\left(2 n_{2}+n_{3}+2\right)}} \mathbf{1}_{n_{3}}$, $B\left(G_{3}\right)=\frac{r_{3}}{r_{3}+1} J_{n_{3}}+\frac{1}{r_{3}+1} I_{n_{3}}$. Moreover, J_{n} is a all-1 matrix of order n, and $a=\frac{1}{\sqrt{r_{1}\left(2 n_{2}+n_{3}+2\right)}}$ is a constant.

$$
\mathcal{L}(\mathcal{H})=\left(\begin{array}{cccc}
I_{n_{1}} & -a R\left(G_{1}\right) & \boldsymbol{h}_{11} & -I_{n_{1}} \otimes c_{n_{3}}^{T} \tag{8}\\
-a R\left(G_{1}\right)^{T} & I_{m_{1}} & O_{m_{1} \times m_{1} n_{2}} & O_{m_{1} \times n_{1} n_{3}} \\
\boldsymbol{h}_{12} & O_{m_{1} n_{2} \times m_{1}} & \boldsymbol{h}_{13} & \boldsymbol{h}_{14} \\
-I_{n_{1}} \otimes c_{n_{3}} & O_{n_{1} n_{3} \times m_{1}} & \boldsymbol{h}_{15} & \boldsymbol{h}_{16}
\end{array}\right)
$$

where $\boldsymbol{h}_{11}=-R\left(G_{1}\right) \otimes b_{n_{2}}^{T}, \boldsymbol{h}_{12}=-R\left(G_{1}\right)^{T} \otimes b_{n_{2}}, \boldsymbol{h}_{13}=$ $I_{m_{1}} \otimes\left(\mathcal{L}\left(G_{2}\right) \cdot B\left(G_{2}\right)\right), \boldsymbol{h}_{14}=O_{m_{1} n_{2} \times n_{1} n_{3}}, \boldsymbol{h}_{15}=O_{n_{1} n_{3} \times m_{1} n_{2}}$, $\boldsymbol{h}_{16}=I_{n_{1}} \otimes\left(\mathcal{L}\left(G_{3}\right) \bullet B\left(G_{3}\right)\right), b_{n_{2}}=\frac{1}{\sqrt{\left(r_{2}+2\right)\left(r_{1} n_{2}+r_{1}+n_{3}\right)}} \mathbf{1}_{n_{2}}$, $B\left(G_{2}\right)=\frac{r_{2}}{r_{2}+2} J_{n_{2}}+\frac{2}{r_{2}+2} I_{n_{2}}, \quad c_{n_{3}}=\frac{1}{\sqrt{\left(r_{3}+1\right)\left(r_{1} n_{2}+r_{1}+n_{3}\right)}} \mathbf{1}_{n_{3}}$, $B\left(G_{3}\right)=\frac{r_{3}}{r_{3}+1} J_{n_{3}}+\frac{1}{r_{3}+1} I_{n_{3}}$ and $a=\frac{1}{\sqrt{2\left(r_{1} n_{2}+r_{1}+n_{3}\right)}}$ is a constant.

Proof: The proof of Eq.(8) is similar to the Eq.(10), so it's only necessary to show the result given in Eq.(10) as follows.

We first label the vertices of $\mathcal{G}: V\left(G_{1}\right)=\left\{v_{1}, v_{2}, \ldots\right.$, $\left.v_{n_{1}}\right\}, I\left(G_{1}\right)=\left\{e_{1}, e_{2}, \ldots, e_{m_{1}}\right\}, V\left(G_{2}\right)=\left\{u_{1}, u_{2}, \ldots\right.$, $\left.u_{n_{2}}\right\}$ and $V\left(G_{3}\right)=\left\{w_{1}, w_{2}, \ldots, w_{n_{3}}\right\}$. For $i=1,2, \ldots, n_{1}$, let $U_{i}=\left\{u_{1}^{i}, u_{2}^{i}, \ldots, u_{n_{2}}^{i}\right\}$ denote the vertices of the i-th copy of G_{2} in \mathcal{G}, and $W_{j}=\left\{w_{1}^{j}, w_{2}^{j}, \ldots, w_{n_{3}}^{j}\right\}(j=1$, $2, \ldots, m_{1}$) the j-th copy of G_{3} in \mathcal{G}. Then the vertices of \mathcal{G} are partitioned by
$V\left(G_{1}\right) \cup I\left(G_{1}\right) \cup\left(U_{1} \cup U_{2} \cup \ldots \cup U_{n_{1}}\right) \cup\left(W_{1} \cup W_{2} \cup \ldots \cup W_{m_{1}}\right)$.
(9)

By Definition I. 1 we see that
$\left\{\begin{array}{rlr}d_{\mathcal{G}}\left(v_{i}\right)=d_{G_{1}}\left(v_{i}\right)=r_{1}, & & i=1,2, \ldots, n_{1} ; \\ d_{\mathcal{G}}\left(e_{i}\right)=2 n_{2}+n_{3}+2, & & i=1,2, \ldots, m_{1} ; \\ d_{\mathcal{G}}\left(u_{j}^{i}\right)=d_{G_{2}}\left(u_{j}\right)+d_{G_{1}}\left(v_{i}\right) & \\ & =r_{2}+r_{1}, & j=1, \ldots, n_{2}, i=1, \ldots, n_{1} ; \\ d_{\mathcal{G}}\left(w_{j}^{i}\right) & =d_{G_{3}}\left(w_{j}\right)+1 & \\ & =r_{3}+1, & j=1,2, \ldots, n_{3}, i=1,2, \ldots, m_{1} .\end{array}\right.$

So one can get
$\left.D(\mathcal{G})=\left(\begin{array}{llll}r_{1} I_{n_{1}} & & & \\ & \left(2 n_{2}+n_{3}+2\right) I_{m_{1}} & & \\ & & & \left(r_{1}+r_{2}\right) I_{n_{1} n_{2}} \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \end{array}\right) I_{m_{1} n_{3}}\right)$.
Let $R\left(G_{1}\right)$ be the vertex-edge incidence matrix of G_{1}. Then, according to the ordering of (9), the adjacency matrix of \mathcal{G} can be represented in the form of block-matrix below
$A(\mathcal{G})=\left(\begin{array}{cccc}O_{n_{1} \times n_{1}} & R\left(G_{1}\right) & O_{n_{1} \times n_{1} n_{2}} & O_{n_{1} \times m_{1} n_{3}} \\ R\left(G_{1}\right)^{T} & O_{m_{1} \times m_{1}} & R\left(G_{1}\right)^{T} \otimes \mathbf{1}_{n_{2}}^{T} & I_{m_{1}} \otimes \mathbf{1}_{n_{3}}^{T} \\ O_{n_{1} n_{2} \times n_{1}} & R\left(G_{1}\right) \otimes \mathbf{1}_{n_{2}} & I_{n_{1}} \otimes A\left(G_{2}\right) & \boldsymbol{g}_{14} \\ O_{m_{1} n_{3} \times n_{1}} & I_{m_{1}} \otimes \mathbf{1}_{n_{3}} & \boldsymbol{g}_{15} & I_{m_{1}} \otimes A\left(G_{3}\right)\end{array}\right)$
where $A\left(G_{2}\right)$ and $A\left(G_{3}\right)$ represent the adjacency matrices of G_{2} and G_{3}, respectively.
Since G_{2} is an r_{2}-regular graph we have $\mathcal{L}\left(G_{2}\right)=I_{n_{2}}-$ $\frac{1}{r_{2}} A\left(G_{2}\right)$. Thus,
$\mathcal{L}\left(G_{2}\right) \bullet B\left(G_{2}\right)=\left(I_{n_{2}}-\frac{1}{r_{2}} A\left(G_{2}\right)\right) \bullet B\left(G_{2}\right)=I_{n_{2}}-\frac{1}{r_{1}+r_{2}} A\left(G_{2}\right)$.
By direct computation, one can obtain that

$$
I_{n_{1} n_{2}}-\frac{1}{r_{1}+r_{2}} I_{n_{1}} \otimes A\left(G_{2}\right)=I_{n_{1}} \otimes\left(\mathcal{L}\left(G_{2}\right) \bullet B\left(G_{2}\right)\right)
$$

Furthermore, we can obtain that

$$
I_{m_{1} n_{3}}-\frac{1}{r_{3}+1} I_{m_{1}} \otimes A\left(G_{3}\right)=I_{m_{1}} \otimes\left(\mathcal{L}\left(G_{3}\right) \bullet B\left(G_{3}\right)\right)
$$

By $\mathcal{L}(\mathcal{G})=I-D(\mathcal{G})^{-1 / 2} A(\mathcal{G}) D(\mathcal{G})^{-1 / 2}$, the required normalized Laplacian matrix is given in the following:

$$
\mathcal{L}(\mathcal{G})=\left(\begin{array}{cccc}
I_{n_{1}} & -a R\left(G_{1}\right) & O_{n_{1} \times n_{1} n_{2}} & O_{n_{1} \times m_{1} n_{3}} \tag{10}\\
-a R\left(G_{1}\right)^{T} & I_{m_{1}} & \boldsymbol{g}_{11} & -I_{m_{1}} \otimes c_{n_{3}}^{T} \\
O_{n_{1} n_{2} \times n_{1}} & \boldsymbol{g}_{12} & \boldsymbol{g}_{13} & \boldsymbol{g}_{14} \\
O_{m_{1} n_{3} \times n_{1}} & -I_{m_{1}} \otimes c_{n_{3}} & \boldsymbol{g}_{15} & \boldsymbol{g}_{16}
\end{array}\right)
$$

The proof is completed.
Remark III.1. Obviously, using the same partition of (9) to the graph \mathcal{H}, one can obtain

$$
\left\{\begin{array}{rlr}
d_{\mathcal{H}}\left(e_{i}\right) & =2, & i=1,2, \ldots, m_{1} ; \\
d_{\mathcal{H}}\left(u_{j}^{i}\right) & =d_{G_{2}}\left(u_{j}\right)+2 \\
& =r_{2}+2, & j=1,2, \ldots, n_{2}, i=1,2, \ldots, m_{1} ; \\
d_{\mathcal{H}}\left(w_{j}^{i}\right) & =d_{G_{3}}\left(w_{j}\right)+1 \\
& =r_{3}+1, & j=1,2, \ldots, n_{3}, i=1,2, \ldots, n_{1} ; \\
d_{\mathcal{H}}\left(v_{i}\right) & =\left(n_{2}+1\right) d_{G_{1}}\left(v_{i}\right)+n_{3} \\
& =\left(n_{2}+1\right) r_{1}+n_{3}, & i=1,2, \ldots, n_{1} ;
\end{array}\right.
$$

and
$A(\mathcal{H})=\left(\begin{array}{cccc}O_{n_{1} \times n_{1}} & R\left(G_{1}\right) & \boldsymbol{h}_{21} & I_{n_{1}} \otimes \boldsymbol{I}_{n_{3}}^{T} \\ R^{T}\left(G_{1}\right) & O_{m_{1} \times m_{1}} & I_{m_{1}} \otimes \boldsymbol{0}_{n_{2}}^{T} & R^{T}\left(G_{1}\right) \otimes \boldsymbol{0}_{n_{3}}^{T} \\ \boldsymbol{h}_{22} & I_{m_{1}} \otimes \boldsymbol{0}_{n_{2}} & I_{m_{1}} \otimes A\left(G_{2}\right) & \boldsymbol{h}_{23} \\ I_{n_{1}} \otimes \boldsymbol{I}_{n_{3}} & R\left(G_{1}\right) \otimes \boldsymbol{0}_{n_{3}} & \boldsymbol{h}_{24} & I_{n_{1}} \otimes A\left(G_{3}\right)\end{array}\right)$.
where $\boldsymbol{h}_{21}=R\left(G_{1}\right) \otimes \boldsymbol{1}_{n_{2}}^{T}, \boldsymbol{h}_{22}=R^{T}\left(G_{1}\right) \otimes \boldsymbol{1}_{n_{2}}, \boldsymbol{h}_{23}=$ $R^{T}\left(G_{1}\right) \otimes O_{n_{2} \times n_{3}}^{T}, \boldsymbol{h}_{24}=R\left(G_{1}\right) \otimes O_{n_{3} \times n_{2}}$. By immediate calculation, the $\mathcal{L}(\mathcal{H})$ follows.

Theorem III.2. Let G_{i} be an r_{i}-regular graph with n_{i} vertices and m_{i} edges, where $i=1,2,3$. Then

$$
\text { (i) } \begin{aligned}
& \Phi_{\mathcal{L}(\mathcal{G})}(\lambda)=\left(\lambda-1-\frac{n_{3}}{\left(r_{3}+1\right)\left(2 n_{2}+n_{3}+2\right)\left(\lambda-\frac{1}{r_{3}+1}\right)}\right)^{m_{1}-n_{1}} \\
& \times \prod_{j=1}^{n_{2}}\left(\lambda-\frac{r_{1}+r_{2} \mu_{j}}{r_{1}+r_{2}}\right)^{n_{1}} \cdot \prod_{k=1}^{n_{3}}\left(\lambda-\frac{1+r_{3} \eta_{k}}{r_{3}+1}\right)^{m_{1}} \\
& \times \prod_{i=1}^{n_{1}}\left((\lambda-1)\left(\lambda-1-\frac{n_{3}}{\left(r_{3}+1\right)\left(2 n_{2}+n_{3}+2\right)\left(\lambda-\frac{1}{r_{3}+1}\right)}\right)\right. \\
& \left.-\frac{\left(2-\theta_{i}\right)\left(\left(r_{1}+r_{2}+n_{2} r_{1}\right) \lambda-\left(1+n_{2}\right) r_{1}\right)}{\left(r_{1}+r_{2}\right)\left(2 n_{2}+n_{3}+2\right)\left(\lambda-\frac{r_{1}}{r_{1}+r_{2}}\right)}\right) \\
& \text { (ii) } \Phi_{\mathcal{L}(\mathcal{H})}(\lambda)=(\lambda-1)^{m_{1}-n_{1}} \cdot \prod_{j=1}^{n_{2}}\left(\lambda-\frac{2+r_{2} \mu_{j}}{r_{2}+2}\right)^{m_{1}} \\
& \quad \times \prod_{k=1}^{n_{3}}\left(\lambda-\frac{1+r_{3} \eta_{k}}{r_{3}+1}\right)^{n_{1}} \cdot \prod_{i=1}^{n_{1}}((\lambda-1) \\
& \quad \times\left(\lambda-1-\frac{n_{3}}{\left(r_{3}+1\right)\left(r_{1} n_{2}+n_{3}+r_{1}\right)\left(\lambda-\frac{1}{r_{3}+1}\right)}\right) \\
& \left.\quad-\frac{r_{1}\left(2-\theta_{i}\right)\left(\left(2 n_{2}+r_{2}+2\right) \lambda-2 n_{2}-2\right)}{2\left(r_{2}+2\right)\left(r_{1} n_{2}+n_{3}+r_{1}\right)\left(\lambda-\frac{2}{r_{2}+2}\right)}\right)
\end{aligned}
$$

where θ_{i}, μ_{j} and η_{k} are the eigenvalues of $\mathcal{L}\left(G_{1}\right), \mathcal{L}\left(G_{2}\right)$ and $\mathcal{L}\left(G_{3}\right)$, respectively.

Proof: According to Theorem III.1, the normalized Laplacian characteristic polynomial of \mathcal{G} is given by

$$
\Phi_{\mathcal{L}(\mathcal{G})}(\lambda)=\operatorname{det}\left(\lambda I_{n}-\mathcal{L}(\mathcal{G})\right)=\operatorname{det}\left(B_{0}\right)
$$

where
$B_{0}=\left(\begin{array}{cccc}(\lambda-1) I_{n_{1}} & a R\left(G_{1}\right) & O & O \\ a R\left(G_{1}\right)^{T} & (\lambda-1) I_{m_{1}} & R\left(G_{1}\right)^{T} \otimes b_{n_{2}}^{T} & I_{m_{1}} \otimes c_{n_{3}}^{T} \\ O & R\left(G_{1}\right) \otimes b_{n_{2}} & \boldsymbol{g}_{21} & O \\ O & I_{m_{1}} \otimes c_{n_{3}} & O & \boldsymbol{g}_{22}\end{array}\right)$,
$\boldsymbol{g}_{21}=I_{n_{1}} \otimes\left(\lambda I_{n_{2}}-\mathcal{L}\left(G_{2}\right) \bullet B\left(G_{2}\right)\right)$ and $\boldsymbol{g}_{22}=I_{m_{1}} \otimes\left(\lambda I_{n_{3}}\right.$ $\left.-\mathcal{L}\left(G_{3}\right) \bullet B\left(G_{3}\right)\right)$.
We write P as the elementary block matrix below

$$
P=\left(\begin{array}{cccc}
I_{n_{1}} & O & O & O \\
O & I_{m_{1}} & \boldsymbol{g}_{31} & \boldsymbol{g}_{32} \\
O & O & I_{n_{1}} \otimes I_{n_{2}} & O \\
O & O & O & I_{m_{1}} \otimes I_{n_{3}}
\end{array}\right)
$$

where $\quad \boldsymbol{g}_{31}=-R\left(G_{1}\right)^{T} \otimes\left(b_{n_{2}}^{T}\left(\lambda I_{n_{2}}-\mathcal{L}\left(G_{2}\right) \bullet B\left(G_{2}\right)\right)^{-1}\right)$ and $\boldsymbol{g}_{32}=-I_{m_{1}} \otimes\left(c_{n_{3}}^{T}\left(\lambda I_{n_{3}}-\mathcal{L}\left(G_{3}\right) \bullet B\left(G_{3}\right)\right)^{-1}\right)$.

Let $B=P B_{0}$. Then

$$
B=\left(\begin{array}{cccc}
(\lambda-1) I_{n_{1}} & a R\left(G_{1}\right) & O & O \\
a R\left(G_{1}\right)^{T} & \boldsymbol{g}_{41} & O & O \\
O & R\left(G_{1}\right) \otimes b_{n_{2}} & \boldsymbol{g}_{42} & O \\
O & I_{m_{1}} \otimes c_{n_{3}} & O & \boldsymbol{g}_{43}
\end{array}\right)
$$

where $\Gamma_{2}(\lambda)=b_{n_{2}}^{T}\left(\lambda I_{n_{2}}-\mathcal{L}\left(G_{2}\right) \bullet B\left(G_{2}\right)\right)^{-1} b_{n_{2}}, \Gamma_{3}(\lambda)=$ $c_{n_{3}}^{T}\left(\lambda I_{n_{3}}-\mathcal{L}\left(G_{3}\right) \bullet B\left(G_{3}\right)\right)^{-1} c_{n_{3}}, \boldsymbol{g}_{41}=\left(\lambda-1-\Gamma_{3}(\lambda)\right) I_{m_{1}}-$ $\Gamma_{2}(\lambda) R\left(G_{1}\right)^{T} R\left(G_{1}\right), \boldsymbol{g}_{42}=I_{n_{1}} \otimes\left(\lambda I_{n_{2}}-\mathcal{L}\left(G_{2}\right) \bullet B\left(G_{2}\right)\right)$ and $\boldsymbol{g}_{43}=I_{m_{1}} \otimes\left(\lambda I_{n_{3}}-\mathcal{L}\left(G_{3}\right) \bullet B\left(G_{3}\right)\right)$.

Note that $\operatorname{det}(P)=1$. So we have

$$
\Phi_{\mathcal{L}(\mathcal{G})}(\lambda)=\operatorname{det}\left(B_{0}\right)=\operatorname{det}\left(P^{-1}\right) \operatorname{det}(B)=\operatorname{det}(B) .
$$

For the matrix B, one can get

$$
\begin{aligned}
& \operatorname{det}(B)=\operatorname{det}\left(I_{n_{1}} \otimes\left(\lambda I_{n_{2}}-\mathcal{L}\left(G_{2}\right) \bullet B\left(G_{2}\right)\right)\right) \\
& \times \operatorname{det}\left(I_{m_{1}} \otimes\left(\lambda I_{n_{3}}-\mathcal{L}\left(G_{3}\right) \bullet B\left(G_{3}\right)\right)\right) \cdot \operatorname{det}\left(S_{1}\right)
\end{aligned}
$$

where
$S_{1}=\left(\begin{array}{c}(\lambda-1) I_{n_{1}} \\ a R\left(G_{1}\right)^{T} \\ a R\left(G_{1}\right) \\ \left(\lambda-1-\Gamma_{3}(\lambda)\right) I_{m_{1}}-\Gamma_{2}(\lambda) R\left(G_{1}\right)^{T} R\left(G_{1}\right)\end{array}\right)$.

Let θ_{i}, μ_{j} and η_{k} be the eigenvalues of $\mathcal{L}\left(G_{1}\right), \mathcal{L}\left(G_{2}\right)$ and $\mathcal{L}\left(G_{3}\right)$, respectively. By applying Eq.(6), the following result follows from Corollary II. 1 that

$$
\begin{aligned}
\operatorname{det}\left(S_{1}\right) & =\left|\begin{array}{cc}
(\lambda-1) I_{n_{1}} & a R\left(G_{1}\right) \\
a R\left(G_{1}\right)^{T} & \left(\lambda-1-\Gamma_{3}(\lambda)\right) I_{m_{1}}-\Gamma_{2}(\lambda) R\left(G_{1}\right)^{T} R\left(G_{1}\right)
\end{array}\right| \\
& =\operatorname{det}\left((\lambda-1) I_{n_{1}}\right) \cdot \operatorname{det}\left(\left(\lambda-1-\Gamma_{3}(\lambda)\right) I_{m_{1}}\right. \\
& \left.-\left(\Gamma_{2}(\lambda)+\frac{a^{2}}{\lambda-1}\right) \cdot R\left(G_{1}\right)^{T} R\left(G_{1}\right)\right) \\
& =(\lambda-1)^{n_{1}} \operatorname{det}\left(\left(\lambda-1-\Gamma_{3}(\lambda)\right) I_{m_{1}}\right. \\
& \left.-\left(\Gamma_{2}(\lambda)+\frac{a^{2}}{\lambda-1}\right)\left(A\left(\ell\left(G_{1}\right)\right)+2 I_{m_{1}}\right)\right) \\
& =(\lambda-1)^{n_{1}} \cdot\left(\left(\lambda-1-\Gamma_{3}(\lambda)\right)\right. \\
& \left.-\left(\Gamma_{2}(\lambda)+\frac{a^{2}}{\lambda-1}\right) \cdot(-2+2)\right)^{m_{1}-n_{1}} \\
& \times \operatorname{det}\left(\left(\lambda-1-\Gamma_{3}(\lambda)\right) I_{n_{1}}-\left(\Gamma_{2}(\lambda)+\frac{a^{2}}{\lambda-1}\right)\right. \\
& \times\left(2 r_{1} I_{n_{1}}-r_{1} \mathcal{L}\left(G_{1}\right)\right) \\
& =\left(\lambda-1-\Gamma_{3}(\lambda)\right)^{m_{1}-n_{1}} \cdot \operatorname{det}\left((\lambda-1)\left(\lambda-1-\Gamma_{3}(\lambda)\right) I_{n_{1}}\right. \\
& \left.-r_{1}\left((\lambda-1) \Gamma_{2}(\lambda)+a^{2}\right)\left(2 I_{n_{1}}-\mathcal{L}\left(G_{1}\right)\right)\right) \\
& =\left(\lambda-1-\Gamma_{3}(\lambda)\right)^{m_{1}-n_{1}} \cdot \prod_{i=1}^{n_{1}}\left((\lambda-1)\left(\lambda-1-\Gamma_{3}(\lambda)\right)\right. \\
& \left.-r_{1}\left((\lambda-1) \Gamma_{2}(\lambda)+\frac{1}{r_{1}\left(2 n_{2}+n_{3}+2\right)}\right)\left(2-\theta_{i}\right)\right) .
\end{aligned}
$$

Since $\mathcal{L}\left(G_{2}\right) \bullet B\left(G_{2}\right)=I_{n_{2}}-\frac{1}{r_{1}+r_{2}} A\left(G_{2}\right)$ and $A\left(G_{2}\right)=r_{2}\left(I_{n_{2}}\right.$ $\left.-\mathcal{L}\left(G_{2}\right)\right)$ we get $\mathcal{L}\left(G_{2}\right) \bullet B\left(G_{2}\right)=\frac{1}{r_{1}+r_{2}}\left(r_{1} I_{n_{2}}+r_{2} \mathcal{L}\left(G_{2}\right)\right)$. Similarly, $\mathcal{L}\left(G_{3}\right) \bullet B\left(G_{3}\right)=\frac{1}{r_{3}+1}\left(I_{n_{3}}+r_{3} \mathcal{L}\left(G_{3}\right)\right)$.
Also since G_{2} is r_{2}-regular, the sum of all entries on every row of its normalized Laplacian matrix is zero. In other words, $\mathcal{L}\left(G_{2}\right) b_{n_{2}}=\left(1-\frac{r_{2}}{r_{2}}\right) b_{n_{2}}=0 \cdot b_{n_{2}}=\mathbf{0}$. Then $\left(\mathcal{L}\left(G_{2}\right) \bullet B\left(G_{2}\right)\right) b_{n_{2}}=\left(1-\frac{r_{2}}{r_{1}+r_{2}}\right) b_{n_{2}}=\frac{r_{1}}{r_{1}+r_{2}} b_{n_{2}}$ and $\left(\lambda I_{n_{2}}-\left(\mathcal{L}\left(G_{2}\right) \bullet B\left(G_{2}\right)\right)\right) b_{n_{2}}=\left(\lambda-\frac{r_{1}}{r_{1}+r_{2}}\right) b_{n_{2}}$. In addition, $b_{n_{2}}^{T} b_{n_{2}}=\frac{n_{2}}{\left(r_{1}+r_{2}\right)\left(2 n_{2}+n_{3}+2\right)}$. Thus

$$
\begin{aligned}
\Gamma_{2}(\lambda) & =b_{n_{2}}^{T}\left(\lambda I_{n_{2}}-\mathcal{L}\left(G_{2}\right) \bullet B\left(G_{2}\right)\right)^{-1} b_{n_{2}}=\frac{b_{n_{2}}^{T} b_{n_{2}}}{\lambda-\frac{r_{1}}{r_{1}+r_{2}}} \\
& =\frac{n_{2}}{\left(r_{1}+r_{2}\right)\left(2 n_{2}+n_{3}+2\right)\left(\lambda-\frac{r_{1}}{r_{1}+r_{2}}\right)}
\end{aligned}
$$

We notice that the value of $\Gamma_{3}(\lambda)$ is similar to that of $\Gamma_{2}(\lambda)$, and so,

$$
\begin{aligned}
\Gamma_{3}(\lambda) & =c_{n_{3}}^{T}\left(\lambda I_{n_{3}}-\mathcal{L}\left(G_{3}\right) \bullet B\left(G_{3}\right)\right)^{-1} c_{n_{3}}=\frac{c_{n_{3}}^{T} c_{n_{3}}}{\lambda-\frac{1}{r_{3}+1}} \\
& =\frac{n_{3}}{\left(r_{3}+1\right)\left(2 n_{2}+n_{3}+2\right)\left(\lambda-\frac{1}{r_{3}+1}\right)}
\end{aligned}
$$

In summary, the normalized Laplacian characteristic polynomial of \mathcal{G} is

$$
\begin{aligned}
& \Phi_{\mathcal{L}(\mathcal{G})}(\lambda)=\prod_{j=1}^{n_{2}}\left(\lambda-\frac{r_{1}+r_{2} \mu_{j}}{r_{1}+r_{2}}\right)^{n_{1}} . \prod_{k=1}^{n_{3}}\left(\lambda-\frac{1+r_{3} \eta_{k}}{r_{3}+1}\right)^{m_{1}} \cdot \operatorname{det}\left(S_{1}\right) \\
& =\left(\lambda-1-\frac{n_{3}}{\left(r_{3}+1\right)\left(2 n_{2}+n_{3}+2\right)\left(\lambda-\frac{1}{r_{3}+1}\right)}\right)^{m_{1}-n_{1}} \\
& \times \prod_{j=1}^{n_{2}}\left(\lambda-\frac{r_{1}+r_{2} \mu_{j}}{r_{1}+r_{2}}\right)^{n_{1}} \cdot \prod_{k=1}^{n_{3}}\left(\lambda-\frac{1+r_{3} \eta_{k}}{r_{3}+1}\right)^{m_{1}} \\
& \times \prod_{i=1}^{n_{1}}\left((\lambda-1)\left(\lambda-1-\frac{n_{3}}{\left(r_{3}+1\right)\left(2 n_{2}+n_{3}+2\right)\left(\lambda-\frac{1}{r_{3}+1}\right)}\right)\right. \\
& \left.-\frac{\left(2-\theta_{i}\right)\left(\left(r_{1}+r_{2}+n_{2} r_{1}\right) \lambda-\left(1+n_{2}\right) r_{1}\right)}{\left(r_{1}+r_{2}\right)\left(2 n_{2}+n_{3}+2\right)\left(\lambda-\frac{r_{1}}{r_{1}+r_{2}}\right)}\right)
\end{aligned}
$$

as required.
The proof of (ii) is similar to (i), and is omitted.
Remark III.2. In Theorem III.2, if one of graphs G_{2} and G_{3} is null in \mathcal{G} or \mathcal{H}, then one can directly deduce the main results(see Theorems 2.2-2.5) due to A. Das and P. Panigrahi in [19]. For the simplicity, we here omit these corollaries (see Theorems 2.2-2.5 in [19]).

From Theorem III.2, one can easily obtain the following corollaries.

Corollary III.1. Let G_{i} be an r_{i}-regular graph with n_{i} vertices and m_{i} edges for $i=1,2,3$. Then the normalized Laplacian spectrum of \mathcal{G} consist of:
(a) $\frac{r_{1}+r_{2} \mu_{j}}{r_{1}+r_{2}}$ repeats n_{1} times for each eigenvalue μ_{j} of $\mathcal{L}\left(G_{2}\right), j=1,2, \ldots, n_{2}-1 ;$
(b) $\frac{1+r_{3} \eta_{k}}{r_{3}+1}$ repeats m_{1} times for each eigenvalue η_{k} of $\mathcal{L}\left(G_{3}\right), k=1,2, \ldots, n_{3}-1 ;$
(c) two roots of the equation

$$
\begin{align*}
& \left(2 n_{2} r_{3}+n_{3} r_{3}+2 r_{3}+2 n_{2}+n_{3}+2\right) \lambda^{2}-\left(2 n_{2} r_{3}\right. \\
& \left.+n_{3} r_{3}+2 r_{3}+4 n_{2}+2 n_{3}+4\right) \lambda+2 n_{2}+2=0 \tag{11}
\end{align*}
$$

where each root repeats $m_{1}-n_{1}$ times;
(d) four roots of the equation

$$
\begin{align*}
& \left(2 n_{2}+n_{3}+2\right)\left(\left(1+r_{3}\right) \lambda-1\right)\left(\left(r_{1}+r_{2}\right) \lambda-r_{1}\right)(\lambda-1)^{2} \\
& -n_{3}(\lambda-1)\left(\left(r_{1}+r_{2}\right) \lambda-r_{1}\right)-\left(2-\theta_{i}\right)\left(\left(r_{1}+r_{2}\right.\right. \tag{12}\\
& \left.\left.+n_{2} r_{1}\right) \lambda-\left(r_{1}+r_{1} n_{2}\right)\right)\left(\left(1+r_{3}\right) \lambda-1\right)=0
\end{align*}
$$

where each eigenvalue θ_{i} of $\mathcal{L}\left(G_{1}\right), i=1,2, \ldots, n_{1}$.
Corollary III.2. If G_{i} is an r_{i}-regular graph with n_{i} vertices and m_{i} edges for $i=1,2,3$, the normalized Laplacian spectrum of \mathcal{H} consist of:
(a) $\frac{2+r_{2} \mu_{j}}{r_{2}+2}$ repeats m_{1} times for each eigenvalue μ_{j} of $\mathcal{L}\left(G_{2}\right), j=1,2, \ldots, n_{2}-1 ;$
(b) $\frac{1+r_{3} \eta_{k}}{r_{3}+1}$ repeats n_{1} times for each eigenvalue η_{k} of $\mathcal{L}\left(G_{3}\right), k=1,2, \ldots, n_{3}-1 ;$
(c) 1 repeats $m_{1}-n_{1}$ times, $\frac{2}{r_{2}+2}$ repeats $m_{1}-n_{1}$ times;
(d) four roots of the equation

$$
\begin{aligned}
& 2\left(r_{1} n_{2}+n_{3}+r_{1}\right)\left(\left(1+r_{3}\right) \lambda-1\right)\left(\left(2+r_{2}\right) \lambda-2\right)(\lambda-1)^{2} \\
& -2 n_{3}(\lambda-1)\left(\left(2+r_{2}\right) \lambda-2\right)-r_{1}\left(2-\theta_{i}\right)\left(\left(2 n_{2}+r_{2}+2\right) \lambda\right. \\
& \left.-2 n_{2}-2\right)\left(\left(1+r_{3}\right) \lambda-1\right)=0
\end{aligned}
$$

where each eigenvalue θ_{i} of $\mathcal{L}\left(G_{1}\right), i=1,2, \ldots, n_{1}$.
Example III.1. Let $G=C_{4}^{S} \bowtie\left(K_{2}^{V} \cup K_{2}^{E}\right)$ and $H=$ $C_{4}^{S} \diamond\left(K_{2}^{V} \cup K_{1}^{E}\right)$ (shown in Fig.2). By simple computation, $\operatorname{Spec}_{\mathcal{L}}\left(C_{4}\right)=\{0,1,1,2\}, \operatorname{Spec}_{\mathcal{L}}\left(K_{2}\right)=\{0,2\}$ and $\operatorname{Spec}_{\mathcal{L}}\left(K_{1}\right)=\{0\}$.
From Corollary III.1, the normalized Laplacian spectrum of G consist of: $\frac{4}{3}$ (multiplicity 4), $\frac{3}{2}$ (multiplicity 4), four roots of the equation $24 x^{4}-76 x^{3}+71 x^{2}-20 x=0$, four roots (multiplicity 2) of the equation $48 x^{4}-152 x^{3}+156 x^{2}-$ $59 x+6=0$, and four roots of the equation $48 x^{4}-152 x^{3}+$ $170 x^{2}-78 x+12=0$.

From Corollary III.2, the normalized Laplacian spectrum of H consist of: $\frac{4}{3}$ (multiplicity 4), four roots of the equation $42 x^{4}-154 x^{3}+176 x^{2}-64 x=0$, four roots (multiplicity 2) of the equation $42 x^{4}-154 x^{3}+190 x^{2}-90 x+12=0$, and four roots of the equation $42 x^{4}-154 x^{3}+204 x^{2}-116 x+24=0$.

Fig. 2. $G=C_{4}^{S} \bowtie\left(K_{2}^{V} \cup K_{2}^{E}\right)$ and $H=C_{4}^{S} \diamond\left(K_{2}^{V} \cup K_{1}^{E}\right)$

IV. Applications

In this section, we will give four distinct applications, such as construction for \mathcal{L}-cospectral graphs, computation for the number of spanning trees, the multiplicative degree-Kirchhoff index and Kemeny's constant on SVEV-corona and SVEEcorona respectively.

A. Construct \mathcal{L}-cospectral graphs

In [21], Dam and Haemers have proposed 'which graphs are determined by their spectra?'. The question for the normalized Laplacian spectrum is also one of the outstanding unsolved problems in the theory of graph spectra. Thus, if one wish to settle the question for graphs in general, it is natural to look for constructing pairs of \mathcal{L}-cospectral graphs. In this section, we will respectively construct many infinite families of pairs of \mathcal{L}-cospectral graphs from SVEV-corona and SVEE-corona, which are generalized Theorem 2.7 due to Das and Panigrahi in [19].

Theorem IV.1. Let G_{i} and H_{i} (not necessarily distinct isomorphic) are pairwise \mathcal{L}-cospectral regular graphs for $i=1,2,3$. Then
(1) $G_{1}^{S} \bowtie\left(G_{2}^{V} \cup G_{3}^{E}\right)$ and $H_{1}^{S} \bowtie\left(H_{2}^{V} \cup H_{3}^{E}\right)$ are \mathcal{L} cospectral graphs;
(2) $G_{1}^{S} \diamond\left(G_{2}^{V} \cup G_{3}^{E}\right)$ and $H_{1}^{S} \diamond\left(H_{2}^{V} \cup H_{3}^{E}\right)$ are \mathcal{L} cospectral graphs.

Proof: From Theorem III. 2 we know that, the normalized Laplacian spectra of $G_{1}^{S} \bowtie\left(G_{2}^{V} \cup G_{3}^{E}\right)$ and $G_{1}^{S} \diamond$ $\left(G_{2}^{V} \cup G_{3}^{E}\right)$ are completely determined by the degrees of regularities, the number of vertices, the number of edges and the normalized Laplacian spectra of regular graphs G_{i} ($i=1,2,3$). So the conclusions follows.

Example IV.1. Let G_{1} and H_{1} be two graphs shown in Fig.3. Then by Matlab 7.0 one can get $\Phi_{A\left(G_{1}\right)}(x)=\Phi_{A\left(H_{1}\right)}(x)=$ $x^{14}-21 x^{12}-2 x^{11}+164 x^{10}+22 x^{9}-599 x^{8}-88 x^{7}+1047 x^{6}+$ $168 x^{5}-800 x^{4}-160 x^{3}+216 x^{2}+40 x-12$. It is easy to see that G_{1} and H_{1} are A-cospectral but not isomorphic with each other. Note that $\mathcal{L}=I-D^{-1 / 2} A D^{-1 / 2}$. And so, two graphs are A-cospectral implies that they are \mathcal{L} cospectral. Consequently, it follows from Theorem IV. 1 that $G_{1}^{S} \bowtie\left(K_{3}^{V} \cup K_{2}^{E}\right)$ and $H_{1}^{S} \bowtie\left(K_{3}^{V} \cup K_{2}^{E}\right)$ are \mathcal{L}-cospectral graphs, so are $G_{1}^{S} \diamond\left(K_{3}^{V} \cup K_{2}^{E}\right)$ and $H_{1}^{S} \diamond\left(K_{3}^{V} \cup K_{2}^{E}\right)$, see Fig. 4 and Fig. 5 for instance.

Fig. 3. G_{1} and H_{1}

Fig. 4. $\quad G_{1}^{S} \bowtie\left(K_{3}^{V} \cup K_{2}^{E}\right)$ and $H_{1}^{S} \bowtie\left(K_{3}^{V} \cup K_{2}^{E}\right)$

Fig. 5. $\quad G_{1}^{S} \diamond\left(K_{3}^{V} \cup K_{2}^{E}\right)$ and $H_{1}^{S} \diamond\left(K_{3}^{V} \cup K_{2}^{E}\right)$

B. The number of spanning trees

Let G be a connected graph of order n. A spanning tree is a spanning subgraph of G that is a tree. A known result from Chung [1] allows the calculation of this number from the normalized Laplacian spectrum and the degrees of all the vertices, thus the number of spanning trees $\tau(G)$ of connected graph G is

$$
\begin{equation*}
\tau(G)=\frac{\Pi_{i=1}^{n} d_{i} \Pi_{i=1}^{n-1} \lambda_{i}}{\sum_{i=1}^{n} d_{i}} \tag{13}
\end{equation*}
$$

Theorem IV.2. Let G_{i} be an r_{i}-regular graph with n_{i} vertices and m_{i} edges for $i=1,2,3$. Then
(1) $\tau(\mathcal{G})=\prod_{i=1}^{n_{1}-1} \theta_{i} \cdot \prod_{j=1}^{n_{2}-1}\left(r_{1}+r_{2} \mu_{j}\right)^{n_{1}} \cdot \prod_{k=1}^{n_{3}-1}\left(1+r_{3} \eta_{k}\right)^{m_{1}} \cdot r_{1}^{2 n_{1}-1}$ $\times\left(1+n_{2}\right)^{m_{1}-1} \times 2^{m_{1}-n_{1}-1}$
$\times \frac{n_{3} r_{1} r_{3}+4 n_{2} r_{1}+2 n_{2} r_{2}+2 n_{3} r_{1}+4 r_{1}}{2 m_{1}+n_{1} m_{2}+m_{1} m_{3}+2 m_{1} n_{2}+m_{1} n_{3}}$.
(2) $\tau(\mathcal{H})=2^{2 m_{1}-n_{1}-1} \cdot \prod_{i=1}^{n_{1}-1}\left(r_{1}+r_{1} n_{2}\right) \theta_{i} \cdot \prod_{j=1}^{n_{2}-1}\left(2+r_{2} \mu_{j}\right)^{m_{1}}$

$$
\begin{aligned}
& \times \prod_{k=1}^{n_{3}-1}\left(1+r_{3} \eta_{k}\right)^{n_{1}} \\
& \times \frac{n_{2} r_{1} r_{2}+4 n_{2} r_{1}+2 n_{3} r_{3}+4 n_{3}+4 r_{1}}{2 m_{1}+m_{1} m_{2}+n_{1} m_{3}+n_{1} n_{3}+2 m_{1} n_{2}} .
\end{aligned}
$$

Proof: The proof of (2) is similar to the proof of (1), it is here need to prove (1). We first consider the normalized Laplacian eigenvalues of \mathcal{G} in the following way:
In Corollary III. 1 (c), one can by the well-known Vieta Theorem obtain the relation of the two roots α_{1} and α_{2} of Eq.(11) such that

$$
\begin{equation*}
\alpha_{1} \alpha_{2}=\frac{2 n_{2}+2}{\left(r_{3}+1\right)\left(2 n_{2}+n_{3}+2\right)} \tag{14}
\end{equation*}
$$

In Corollary III. 1 (d), let $\beta_{1}, \beta_{2}, \beta_{3}$ and β_{4} be the four roots of Eq.(12) for each $\theta_{i}, i=1,2, \ldots, n_{1}-1$. Then

$$
\begin{equation*}
\beta_{1} \beta_{2} \beta_{3} \beta_{4}=\frac{r_{1}\left(1+n_{2}\right) \theta_{i}}{\left(r_{1}+r_{2}\right)\left(1+r_{3}\right)\left(2 n_{2}+n_{3}+2\right)} . \tag{15}
\end{equation*}
$$

For $i=n_{1}$, we notice that $\theta_{n_{1}}=0$. By Eq.(12) one can get

$$
\begin{align*}
& \left(2 n_{2} r_{1} r_{3}+2 n_{2} r_{2} r_{3}+n_{3} r_{1} r_{3}+n_{3} r_{2} r_{3}+2 n_{2} r_{1}+2 n_{2} r_{2}\right. \\
& \left.+n_{3} r_{1}+n_{3} r_{2}+2 r_{1} r_{3}+2 r_{2} r_{3}+2 r_{1}+2 r_{2}\right) \lambda^{4} \\
& -\left(6 n_{2} r_{1} r_{3}+4 n_{2} r_{2} r_{3}+3 n_{3} r_{1} r_{3}+2 n_{3} r_{2} r_{3}+8 n_{2} r_{1}\right. \\
& \left.+6 n_{2} r_{2}+4 n_{3} r_{1}+3 n_{3} r_{2}+6 r_{1} r_{3}+4 r_{2} r_{3}+8 r_{1}+6 r_{2}\right) \lambda^{3} \\
& +\left(4 n_{2} r_{1} r_{3}+2 n_{2} r_{2} r_{3}+3 n_{3} r_{1} r_{3}+n_{3} r_{2} r_{3}+10 n_{2} r_{1}\right. \\
& \left.+6 n_{2} r_{2}+5 n_{3} r_{1}+2 n_{3} r_{2}+4 r_{1} r_{3}+10 r_{1}+4 r_{2}\right) \lambda^{2} \\
& -\left(n_{3} r_{1} r_{3}+4 n_{2} r_{1}+2 n_{2} r_{2}+2 n_{3} r_{1}+4 r_{1}\right) \lambda=0 . \tag{16}
\end{align*}
$$

Suppose that γ_{1}, γ_{2} and γ_{3} are three non-zero roots of Eq.(16). Then by Vieta Theorem,

$$
\begin{equation*}
\gamma_{1} \gamma_{2} \gamma_{3}=\frac{n_{3} r_{1} r_{3}+4 n_{2} r_{1}+2 n_{2} r_{2}+2 n_{3} r_{1}+4 r_{1}}{\left(r_{1}+r_{2}\right)\left(1+r_{3}\right)\left(2 n_{2}+n_{3}+2\right)} \tag{17}
\end{equation*}
$$

In light of Corollary III.1, Eqs.(14), (15) and (17) we see that

$$
\begin{aligned}
& \tau(\mathcal{G})=\frac{\prod_{i=1}^{n} d_{i} \prod_{i=1}^{n-1} \lambda_{i}}{\sum_{i=1}^{n} d_{i}} \\
& =\frac{\left(r_{1}\right)^{n_{1}}\left(2 n_{2}+n_{3}+2\right)^{m_{1}}\left(r_{1}+r_{2}\right)^{n_{1} n_{2}}\left(r_{3}+1\right)^{m_{1} n_{3}}}{2\left(2 m_{1}+n_{1} m_{2}+m_{1} m_{3}+2 m_{1} n_{2}+m_{1} n_{3}\right)} \\
& \times \prod_{k=1}^{n_{3}-1}\left(\frac{1+r_{3} \eta_{k}}{r_{3}+1}\right)^{m_{1}} \cdot \prod_{i=1}^{n_{1}-1} \frac{r_{1}\left(1+n_{2}\right) \theta_{i}}{\left(r_{1}+r_{2}\right)\left(1+r_{3}\right)\left(2 n_{2}+n_{3}+2\right)} \\
& \times \prod_{j=1}^{n_{2}-1}\left(\frac{r_{1}+r_{2} \mu_{j}}{r_{1}+r_{2}}\right)^{n_{1}} \cdot\left(\frac{2 n_{2}+2}{\left(r_{3}+1\right)\left(2 n_{2}+n_{3}+2\right)}\right)^{m_{1}-n_{1}} \\
& \times \frac{n_{3} r_{1} r_{3}+4 n_{2} r_{1}+2 n_{2} r_{2}+2 n_{3} r_{1}+4 r_{1}}{\left(r_{1}+r_{2}\right)\left(r_{3}+1\right)\left(2 n_{2}+n_{3}+2\right)} \\
& =\prod_{i=1}^{n_{1}-1} \theta_{i} \cdot \prod_{j=1}^{n_{2}-1}\left(r_{1}+r_{2} \mu_{j}\right)^{n_{1}} \cdot \prod_{k=1}^{n_{3}-1}\left(1+r_{3} \eta_{k}\right)^{m_{1}} \\
& \times r_{1}^{2 n_{1}-1} \cdot\left(1+n_{2}\right)^{m_{1}-1} \cdot 2^{m_{1}-n_{1}-1} \\
& \times \frac{n_{3} r_{1} r_{3}+4 n_{2} r_{1}+2 n_{2} r_{2}+2 n_{3} r_{1}+4 r_{1}}{2 m_{1}+n_{1} m_{2}+m_{1} m_{3}+2 m_{1} n_{2}+m_{1} n_{3}}
\end{aligned}
$$

as required.
Example IV.2. Let $G=C_{4}^{S} \bowtie\left(K_{2}^{V} \cup K_{2}^{E}\right)$ and $H=$ $C_{4}^{S} \diamond\left(K_{2}^{V} \cup K_{1}^{E}\right)$ (shown in Fig.2). It is easy to see that $\prod_{i=1}^{n_{1}-1} \theta_{i}=2, \prod_{j=1}^{n_{2}-1}\left(r_{1}+r_{2} \mu_{j}\right)^{n_{1}}=4^{4}=2^{8}, \prod_{k=1}^{n_{3}-1}(1+$ $\left.r_{3} \eta_{k}\right)^{m_{1}} \cdot r_{1}^{2 n_{1}-1}=3^{4} \cdot 2^{7},\left(1+n_{2}\right)^{m_{1}-1} \cdot 2^{m_{1}-n_{1}-1}=3^{3} \cdot 2^{-1}$, $n_{3} r_{1} r_{3}+4 n_{2} r_{1}+2 n_{2} r_{2}+2 n_{3} r_{1}+4 r_{1}=40,2 m_{1}+n_{1} m_{2}+$ $m_{1} m_{3}+2 m_{1} n_{2}+m_{1} n_{3}=40$. Thus, by Theorem IV. 2 (1) we get $\tau(G)=2^{15} \cdot 3^{7}$. On the other hand, combining with the Example III. 1 and Eq.(13), one can easily obtain that $\tau(G)=2^{15} \cdot 3^{7}$. Similarly, $\tau(H)=2^{15} \cdot 3^{3}$.

C. The multiplicative degree-Kirchhoff index

In [22], the multiplicative degree-Kirchhoff index of G is defined as

$$
K f^{*}(G)=\sum_{i<j} d_{i} d_{j} r_{i j}
$$

by Chen and Zhang, where $r_{i j}$ is the resistance between i and j. This index is distinct the classical Kirchhoff index $K f(G)=\sum_{i<j} r_{i j}$ since it takes into account the degree distribution of G. Meanwhile, they also have been proved that $K f^{*}(G)$ can be obtained from the non-zero normalized Laplacian eigenvalues of G, i.e.,

$$
\begin{equation*}
K f^{*}(G)=2 m \cdot \sum_{i=1}^{n-1} \frac{1}{\lambda_{i}} . \tag{18}
\end{equation*}
$$

Theorem IV.3. Let G_{i} be an r_{i}-regular graph with n_{i} vertices and m_{i} edges for $i=1,2,3$. Then
(1) $K f^{*}(\mathcal{G})=2\left(2 m_{1}+n_{1} m_{2}+m_{1} m_{3}+2 m_{1} n_{2}+m_{1} n_{3}\right)$

$$
\begin{aligned}
& \times\left(\sum_{j=1}^{n_{2}-1} \frac{n_{1}\left(r_{1}+r_{2}\right)}{r_{1}+r_{2} \mu_{j}}+\sum_{k=1}^{n_{3}-1} \frac{m_{1}\left(r_{3}+1\right)}{1+r_{3} \eta_{k}}\right. \\
& +\frac{\left(m_{1}-n_{1}\right)\left(r_{3}+2\right)\left(2 n_{2}+n_{3}+2\right)}{2 n_{2}+2} \\
& +\frac{\left(2 n_{2}+n_{3}+2\right)\left(6 r_{1}+3 r_{2}+3 r_{1} r_{3}+r_{2} r_{3}\right)-\boldsymbol{g}_{51}}{\left(4 r_{1}+r_{2}+r_{1} r_{3}\right)\left(2 n_{2}+n_{3}+2\right)-\boldsymbol{g}_{52}} \\
& +\sum_{i=1}^{n_{1}-1} \frac{\left(4 r_{1}+r_{2}+r_{1} r_{3}\right)\left(2 n_{2}+n_{3}+2\right)-n_{3}\left(2 r_{1}+r_{2}\right)}{r_{1}\left(1+n_{2}\right) \theta_{i}} \\
& \left.-\frac{\left(2-\theta_{i}\right)\left(\left(1+n_{2}\right)\left(2 r_{1}+r_{1} r_{3}\right)+r_{2}\right)}{r_{1}\left(1+n_{2}\right) \theta_{i}}\right) .
\end{aligned}
$$

where $\boldsymbol{g}_{51}=n_{3}\left(r_{1}+r_{2}\right)+2\left(r_{3}+1\right)\left(r_{1}+r_{2}+r_{1} n_{2}\right)$, $\boldsymbol{g}_{52}=$ $\left(2 r_{1} n_{3}+r_{2} n_{3}+2 r_{2}\right)+\left(2+2 n_{2}\right)\left(2 r_{1}+r_{1} r_{3}\right)$,
(2) $K f^{*}(\mathcal{H})=2\left(2 m_{1}+m_{1} m_{2}+n_{1} m_{3}+n_{1} n_{3}+2 m_{1} n_{2}\right)$

$$
\begin{aligned}
& \times\left(\sum_{j=1}^{n_{2}-1} \frac{m_{1}\left(r_{2}+2\right)}{2+r_{2} \mu_{j}}+\sum_{k=1}^{n_{3}-1} \frac{n_{1}\left(r_{3}+1\right)}{1+r_{3} \eta_{k}}+\frac{\left(r_{2}+4\right)\left(m_{1}-n_{1}\right)}{2}\right. \\
& +\frac{2\left(r_{1} n_{2}+r_{1}+n_{3}\right)\left(r_{2} r_{3}+6 r_{3}+3 r_{2}+12\right)-n_{3}\left(2 r_{2}+4\right)}{2 n_{2} r_{1} r_{2}+8 n_{2} r_{1}+4 n_{3} r_{3}+8 n_{3}+8 r_{1}} \\
& -\frac{2 r_{1}\left(r_{3}+1\right)\left(2 n_{2}+r_{2}+2\right)}{2 n_{2} r_{1} r_{2}+8 n_{2} r_{1}+4 n_{3} r_{3}+8 n_{3}+8 r_{1}} \\
& +\sum_{i=1}^{n_{1}-1}\left(\frac{2\left(r_{1} n_{2}+r_{1}+n_{3}\right)\left(2 r_{3}+r_{2}+8\right)-\left(2 r_{2} n_{3}+8 n_{3}\right.}{r_{1}\left(2+2 n_{2}\right) \theta_{i}}\right. \\
& \left.\left.-\frac{r_{1}\left(2-\theta_{i}\right)\left(\left(2+2 n_{2}\right)\left(2+r_{3}\right)+r_{2}\right)}{r_{1}\left(2+2 n_{2}\right) \theta_{i}}\right)\right) .
\end{aligned}
$$

Proof: From Eq.(18), $K f^{*}(\mathcal{G})$ can be computed from the following way:
In Corollary III. 1 (c), let α_{1} and α_{2} be the two eigenvalues of equation (11). Then by Vieta Theorem, we have

$$
\frac{1}{\alpha_{1}}+\frac{1}{\alpha_{2}}=\frac{\alpha_{1}+\alpha_{2}}{\alpha_{1} \alpha_{2}}=\frac{\left(r_{3}+2\right)\left(2 n_{2}+n_{3}+2\right)}{2 n_{2}+2} .
$$

In Corollary III. 1 (d), for each $\theta_{i}\left(i=2,3, \ldots, n_{1}\right)$, let $\beta_{1}, \beta_{2}, \beta_{3}$ and β_{4} be the eigenvalues of Eq.(12). By Vieta Theorem, we have

$$
\begin{aligned}
& \frac{1}{\beta_{1}}+\frac{1}{\beta_{2}}+\frac{1}{\beta_{3}}+\frac{1}{\beta_{4}} \\
& =\frac{\beta_{2} \beta_{3} \beta_{4}+\beta_{1} \beta_{3} \beta_{4}+\beta_{1} \beta_{2} \beta_{4}+\beta_{1} \beta_{2} \beta_{3}}{\beta_{1} \beta_{2} \beta_{3} \beta_{4}} \\
& =\frac{\left(4 r_{1}+r_{2}+r_{1} r_{3}\right)\left(2 n_{2}+n_{3}+2\right)-n_{3}\left(2 r_{1}+r_{2}\right)}{r_{1}\left(1+n_{2}\right) \theta_{i}} \\
& -\frac{\left(2-\theta_{i}\right)\left(\left(1+n_{2}\right)\left(2 r_{1}+r_{1} r_{3}\right)+r_{2}\right)}{r_{1}\left(1+n_{2}\right) \theta_{i}} .
\end{aligned}
$$

Note that $\theta_{n_{1}}=0$. Then Eq.(12) is equal to Eq.(16). Let γ_{1}, γ_{2} and γ_{3} be the non-zero eigenvalues of Eq.(16). Then

$$
\begin{aligned}
& \frac{1}{\gamma_{1}}+\frac{1}{\gamma_{2}}+\frac{1}{\gamma_{3}}=\frac{\gamma_{2} \gamma_{3}+\gamma_{1} \gamma_{3}+\gamma_{1} \gamma_{2}}{\gamma_{1} \gamma_{2} \gamma_{3}} \\
& =\frac{\left(2 n_{2}+n_{3}+2\right)\left(6 r_{1}+3 r_{2}+3 r_{1} r_{3}+r_{2} r_{3}\right)-\boldsymbol{g}_{51}}{\left(4 r_{1}+r_{2}+r_{1} r_{3}\right)\left(2 n_{2}+n_{3}+2\right)-\boldsymbol{g}_{52}}
\end{aligned}
$$

In summary above, the result of (1) follows. Similarly, (2) can be obtained also.
Example IV.3. Let $G=C_{4}^{S} \bowtie\left(K_{2}^{V} \cup K_{2}^{E}\right)$ and $H=C_{4}^{S} \diamond\left(K_{2}^{V} \cup K_{1}^{E}\right)$ (shown in Fig.2). By Theorem IV.3, $K f^{*}(G)=\frac{2123 \times 80}{60}=\frac{8492}{3}$. On the other hand, combining with Example III. 1 and Eq.(18), one can also obtain that $K f^{*}(G)=\frac{8492}{3}$. Similarly, $K f^{*}(H)=\frac{307 \times 64}{12}=\frac{4912}{3}$.

D. Kemeny's constant

For a graph G, Kemeny's constant $K(G)$, also known as average hitting time, is the expected number of steps required for the transition from a starting vertex i to a destination vertex, which is chosen randomly according to a stationary distribution of unbiased random walks on G, see [23] for more details. From literature [24] we know that

$$
K(G)=\sum_{i=1}^{n-1} \frac{1}{\lambda_{i}} .
$$

Note that $K f^{*}(G)=2 m \cdot K(G)$. Thus, the following result follows from Theorem IV. 3 immediately.
Theorem IV.4. Let G_{i} be an r_{i}-regular graph with n_{i} $v e r t i c e s ~ a n d ~ m_{i}$ edges, where $i=1,2,3$. Then

$$
\text { (1) } \begin{aligned}
& K(\mathcal{G})=\sum_{j=1}^{n_{2}-1} \frac{n_{1}\left(r_{1}+r_{2}\right)}{r_{1}+r_{2} \mu_{j}}+\sum_{i=1}^{n_{1}-1} \frac{\left(4 r_{1}+r_{2}+r_{1} r_{3}\right)\left(2 n_{2}+n_{3}+2\right)}{r_{1}\left(1+n_{2}\right) \theta_{i}} \\
& -\frac{n_{3}\left(2 r_{1}+r_{2}\right)+\left(2-\theta_{i}\right)\left(\left(1+n_{2}\right)\left(2 r_{1}+r_{1} r_{3}\right)+r_{2}\right)}{r_{1}\left(1+n_{2}\right) \theta_{i}} \\
& +\frac{\left(m_{1}-n_{1}\right)\left(r_{3}+2\right)\left(2 n_{2}+n_{3}+2\right)}{2 n_{2}+2} \\
& +\frac{\left(2 n_{2}+n_{3}+2\right)\left(6 r_{1}+3 r_{2}+3 r_{1} r_{3}+r_{2} r_{3}\right)-\boldsymbol{g}_{61}}{\left(4 r_{1}+r_{2}+r_{1} r_{3}\right)\left(2 n_{2}+n_{3}+2\right)-\boldsymbol{g}_{62}} \\
& +\sum_{k=1}^{n_{3}-1} \frac{m_{1}\left(r_{3}+1\right)}{1+r_{3} \eta_{k}} .
\end{aligned}
$$

where $\boldsymbol{g}_{61}=n_{3}\left(r_{1}+r_{2}\right)+2\left(r_{3}+1\right)\left(r_{1}+r_{2}+r_{1} n_{2}\right)$ and $\boldsymbol{g}_{62}=\left(2 r_{1} n_{3}+r_{2} n_{3}+2 r_{2}\right)+\left(2+2 n_{2}\right)\left(2 r_{1}+r_{1} r_{3}\right)$.

$$
\text { (2) } \begin{aligned}
& K(\mathcal{H})=\sum_{i=1}^{n_{1}-1} \frac{2\left(r_{1} n_{2}+r_{1}+n_{3}\right)\left(2 r_{3}+r_{2}+8\right)-\left(2 r_{2} n_{3}+8 n_{3}\right)}{r_{1}\left(2+2 n_{2}\right) \theta_{i}} \\
& -\frac{r_{1}\left(2-\theta_{i}\right)\left(\left(2+2 n_{2}\right)\left(2+r_{3}\right)+r_{2}\right)}{r_{1}\left(2+2 n_{2}\right) \theta_{i}} \\
& +\sum_{j=1}^{n_{2}-1} \frac{m_{1}\left(r_{2}+2\right)}{2+r_{2} \mu_{j}}+\frac{\left(r_{2}+4\right)\left(m_{1}-n_{1}\right)}{2} \\
& +\frac{2\left(r_{1} n_{2}+r_{1}+n_{3}\right)\left(r_{2} r_{3}+6 r_{3}+3 r_{2}+12\right)-n_{3}\left(2 r_{2}+4\right)}{2 n_{2} r_{1} r_{2}+8 n_{2} r_{1}+4 n_{3} r_{3}+8 n_{3}+8 r_{1}} \\
& -\frac{2 r_{1}\left(r_{3}+1\right)\left(2 n_{2}+r_{2}+2\right)}{2 n_{2} r_{1} r_{2}+8 n_{2} r_{1}+4 n_{3} r_{3}+8 n_{3}+8 r_{1}}+\sum_{k=1}^{n_{3}-1} \frac{n_{1}\left(r_{3}+1\right)}{1+r_{3} \eta_{k}} .
\end{aligned}
$$

Example IV.4. For the graphs $G=C_{4}^{S} \bowtie\left(K_{2}^{V} \cup K_{2}^{E}\right)$ and $H=C_{4}^{S} \diamond\left(K_{2}^{V} \cup K_{1}^{E}\right)$ (shown in Fig.2), according to Theorem IV.4, one can get $K(G)=\frac{2123}{60}, K(H)=\frac{307}{12}$.

References

[1] F.R.K. Chung, Spectral graph theory. CBMS. Regional conference series in mathematics. Vol.92, Providence (RI): AMS; 1997.
[2] D.M. Cvetković, P. Rowlinson, S.K. Simić, An Introduction to the Theory of Graph Spectra. Cambridge University Press, Cambridge, 2010.
[3] S.Y. Cui, G.X. Tian, The spectrum and the signless Laplacian spectrum of corona. Linear Algabra Appl., vol 437, pp. 1692-2703, 2012.
[4] I. Gopalapillai, The spectrum of neighborhood corona of graphs. Kragujevac J. Math., vol 35, pp. 493-500, 2011.
[5] Y.P. Hou, W.C. Shiu, The spectrum of edge corona two graphs. Electron. J. Linear Algebra., vol 20, pp. 586-594, 2010.
[6] C. McLeman, E. McNicholas, "Spectra of coronae", Linear Algebra Appl., vol 435, pp. 998-1007, 2011.
[7] S.L. Wang, B. ZhouThe signless Laplacian spectra of the corona and edge corona of two graphs. Linear and Multilinear Algeb., vol 61, pp. 197-204, 2013.
[8] Q. Liu, Resistance Distance and Kirchhoff Index of Two Edgesubdivision Corona Graphs. IAENG International Journal of Applied Mathematics., vol. 49, no.1, pp. 127-133, 2019.
[9] Q. Liu, Resistance Distance and Kirchhoff Index of the Diamond Hierarchical Graph and the Generalized Corona Graph. IAENG International Journal of Applied Mathematics., vol. 50, no.4, pp.878-882, 2020.
[10] G. Indulal, Spectrum of two new joins of graphs and infinite families of integral graphs. Kragujevac J. Math., vol 36, pp. 133-139, 2012.
[11] X.G. Liu, Z.H. Zhang, Spectra of subdivision-vertex and subdivisionedge joins of graphs. Mathematics. 2015.
[12] F. Wen, Y. Zhang, M.C. Li, Spectra of Subdivision Vertex-Edge Join of Three Graphs. Mathematics., vol 7, no.171, 2019.
[13] X.G. Liu, P.L. Lu, Spectra of the subdivision-vertex and subdivisionedge neighborhood corona. Linear Algebra and its Applications, 2013.
[14] P.L. Lu, Y.F. Miao, Spectra of the subdivision-vertex and subdivisionedge coronae. Linear Algebra and its Applications, vol 438, pp. 35473559, 2013.
[15] C.X. Song, Q.X. Huang, Spectra of subdivision vertex-edge coronae for graphs. Advances in Mathematics (China)., vol 45, pp. 38-47, 2016.
[16] F.Z. Zhang, The Schur Complement and its Applications. Springer US, 2005.
[17] P. Xie, Z. Zhang, F. Comellas, The normalized Laplacian spectrum of subdivisions of a graph. Appl. Math. Comput., vol 286, pp. 250-256, 2016.
[18] P.K. Yu, G.X. Tian, The normalized Laplacian spectra of the double corona based on R-graph. arxiv.org/ abs/1709.02687v1, 2017.
[19] A. Das, P. Panigrahi, Normalized Laplacian spectrum of some subdivision-coronas of two regular graphs. Linear Multilinear Algebra, vol 65, no.5, pp.962-972, 2017.
[20] M.C. Li, Y. Zhang, F. Wen, The Normalized Laplacian Spectrum of Subdivision Vertex-Edge Corona for Graphs. Journal of Mathematical Research with Applications, vol 39, no.3, pp. 221-232, 2019.
[21] E.R. van Dam and W.H. Haemers, Which graphs are determined by their spectrum? . Linear Algebra Appl., vol 373, pp. 241-272, 2003.
[22] H. Chen, F. Zhang, Resistance distance and the normalized Laplacian spectrum. Disc. Appl. Math., vol 155, pp. 654-661, 2003.
[23] J.J. Hunter, The role of Kemeny's constant in properties of Markov chains. Communication in Statistics, vol 43, no.7, pp. 1309-1321, 2014.
[24] S. Butler, Algebraic aspects of the normalized Laplacian, Recent Trends in Combinatorics. The IMA Volumes in Mathematics and its Applications, 2016.

[^0]: Manuscript received October 30, 2020; revised January 18, 2021. This work was supported by National Natural Science Foundation of China (No.11961041) and the Foundation of China Scholarship Council (No. 201908620009) and YSSF of Lanzhou Jiaotong University (Nos. 2017004, 2017021).
 F. Wen is an Associate Professor of the Institute of Applied Mathematics, Lanzhou Jiaotong University, Lanzhou 730070, P.R.China (Corresponding author, e-mail: wenfei@lzjtu.edu.cn).
 Y. Zhang is a Master of the Institute of the Applied Mathematics, Lanzhou Jiaotong University, Lanzhou 730070, P.R.China (e-mail: zhangyoumath@163.com).
 W. Wang is a Professor of the School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, P.R. China (e-mail: wang_weiw@163.com).

