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Normalized Laplacian Spectra of Two
Subdivision-coronae of Three Regular Graphs

Fei Wen, You Zhang, Wei Wang

Abstract—In this paper, we first introduce two new graph
operations called the subdivision vertex-edge neighbourhood
vertex-corona and the subdivision vertex-edge neighbourhood
edge-corona for three graphs G1, G2 and G3, and the resulting
graphs are respectively denoted by GY > (GY U G¥) and
G7O(GY UGYE), and then, their normalized Laplacian spectra
are determined in terms of the corresponding normalized
Laplacian spectra of the connected regular graphs G, G2 and
(s, which extend the corresponding results of Das and Pani-
grahi [19]. As applications, these results enable us to construct
infinitely many pairs of normalized Laplacian cospectral graphs.
Moreover, we also give the number of the spanning trees, the
multiplicative degree-Kirchhoff index and Kemeny’s constant of
GP > (GY UGY) (resp. GTO(GY U GY)).

Index Terms—subdivision vertex-edge neighbourhood vertex-
corona, subdivision vertex-edge neighbourhood edge-corona,
normalized Laplacian spectrum, cospectral graphs.

I. INTRODUCTION

HROUGHOUT this paper, we are concerned only with

simple connected graphs (loops and multiple edges are
not allowed). Let G be a graph with vertex set V(G) =
{v1,v2,...,v,} and edge set E(G) = {e1,ea,...,em}
where |V (G)| = n and |E(G)| = m. The line graph ¢(Q)
of GG is a graph whose vertices corresponding the edges of
G, and where two vertices are adjacent iff the corresponding
edges of GG are adjacent. We denote the complete graph and
the cycle of order n by K,, and C,(n > 3), respectively.
A graph matrix M = M(G) is defined to be a symmetric
matrix with respect to adjacency matrix A(G) of G. The
M -characteristic polynomial of G is defined as ®ps(x) =
det(xl — M), where I is the identity matrix. The M-
eigenvalues of G are the roots of its M-characteristic poly-
nomial. The M-spectrum, denoted by Specyr(G), of G is a
multiset consisting of the M -eigenvalues. And two graphs G
and H are M-cospectral if ®prqy(7) = @prepy ().

Let D(G) = diag(d(v1),d(v2),...,d(v,)) be the degree
diagonal matrix of G. The graph matrix M = M(G) is re-
spectively called adjacency matrix, signless Laplacian matrix
and normalized Laplacian matrix of G if M equals A(G),
Q(G) = D(G) + A(G) and L(G) = D(G)"Y?*(D(G) —
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A(G))D(G)~1/? I — D(G)"'2A(G)D(G)~/2, re-
spectively. Conventionally, the adjacency eigenvalues and
normalized Laplacian eigenvalues of graph G are ordered
respectively in non-increased sequence as follows: v1 > vy >
v >wvpand Ay > Ay > -2 > A, = 0. In fact, Chung [1]
has proved that \; < 2 for all 4.

As far as we know, many graph operations such as
the disjoint union, the corona, the edge corona and the
neighborhood corona etc. were introduced in [2]-[9] to
determine their spectra. Note that the subdivision graph
S(G) of a graph G is the graph obtained by inserting a
new vertex into every edge of GG. Based on the subdivision,
some new graph operations such as subdivision-vertex join
and subdivision-edge join were defined in [10], and their
A-spectrum were also investigated. Further works on their
L-spectrum were considered in [11]. Recently, Wen et al. in
[12] introduced another operation called subdivision-vertex-
edge join for three regular graphs, and then A, L, Q-spectra
of the graph were calculated. By the way, they constructed
many infinite families of pairs of cospectral graphs, which
generalized those results of [10] and [11].

In addition, Lu and Miao [14] determined the A-spectra of
graphs called subdivision-vertex corona and subdivision-edge
corona, respectively. As a further extension, Liu and Lu [13]
respectively considered the A-spectra of subdivision-vertex
neighborhood corona and subdivision-edge neighborhood
corona. Subsequently, Song and Huang [15] obtained the A-
spectrum and L-spectrum of subdivision vertex-edge corona
G7 o (GY UGYE) (see Py o (PY U PF), shown in Fig.1 for
instance).

In this section, it was motivated by literatures [13] and [14]
that two new graph operations are introduced below: Let G;
be a graph with order n; and size m;, where 7 = 1,2, 3. Let
S(G1) be the subdividing graph of G; whose vertex set has
two parts: one the original vertices V(G1), another, denoted
by I(G1), the inserting vertices corresponding to the edges
of 1. Suppose that G5 and G5 are two disjoint graphs. Then
we have the following definitions.

Definition I.1. Subdivision vertex-edge neighbourhood
vertex-corona (short for SVEV-corona) of G with Gy and
G, denoted by G <1 (GY UGE), is the graph consisting of
S(Gh), |V(G1)| copies of G2 and |I(G1)| copies of G, all
vertex-disjoint, and joining the neighbours of the i-th vertex
of V(G1) to every vertex in the i-th copy of Go and i-th
vertex of I(G1) to each vertex in the i-th copy of Gs.

For simplicity, we depict Py > (Py U PE) in Fig.1. By
the Definition L1, GY < (GY UGE) has n = ny +my +
ning + myng vertices and m = 2mq + nyms + mims +
2ming + ming edges. We see that GY < (GY U GE) will
be a subdivision-vertex neighbourhood corona (see [13]) if
G is null, and will be a subdivision-edge corona (see [14])
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if G5 is null. Thus subdivision vertex-edge neighbourhood
vertex-corona can be viewed as the generalizations of both
subdivision-vertex neighbourhood corona (denoted by G; [J
G>) and subdivision-edge corona (denoted by G1 © G3).

Definition L.2. Subdivision vertex-edge neighbourhood
edge-corona (short for SVEE-corona) of G1 with G2 and
G3, denoted by GYO(GY UGY), is the graph consisting of
S(Gh), |V(G1)| copies of Gs and |I(G1)| copies of G, all
vertex-disjoint, joining the neighbours of the i-th vertex of
I(G1) to every vertex in the i-th copy of Go and i-th vertex
of V(G1) to each vertex in the i-th copy of Gs.

As an illustration, we depict Py (PyY U PF) in Fig.1.
By the Definition 1.2, GY$(GY UGE) has n = ny +my +
mins + ning vertices and m = 2mq + mimo + nymsz +
ninz + 2ming edges. We see that G7 O(GY U GEF) will be
a subdivision-edge neighbourhood corona (see [13]) if G3
is null, and will be a subdivision-vertex corona (see [14])
if G5 is null. Thus subdivision vertex-edge neighbourhood
edge-corona can be viewed as the generalizations of both
subdivision-edge neighbourhood corona (denoted by G H
G>) and subdivision-vertex corona (denoted by G ® G33).

Py Py Py

L]
o« «—s — «—9
7 ... V.25

PyoP, Pyo(P)uPE)
PyEPy P,BPy
PS><1(PVUPE) oPy uPh)
Fig. 1. Some related graphs

The normalized Laplacian matrix of a graph was in-
troduced in [1], it was a rather new but important tool
popularized by Chung in 1990s. The normalized Laplacian
eigenvalues of a graph have a good relationship with other
graph invariants for general graphs in a way that other eigen-
values of matrices (such as adjacency, signless Laplacian
etc.) fail to do. Thus, for a given graph, calculating its
normalized Laplacian spectrum as well as formulating the
normalized Laplacian characteristic polynomial is a funda-
mental and very meaningful work in spectral graph theory.
In recent years, several graph operations (see [12], [17],
[18], [20]) their normalized Laplacian spectra were computed
taking different approaches. In 2017, Das and Panigrahi in
[19] have determined the normalized Laplacian spectra of
subdivision-vertex(edge)coronas [14] and subdivision-vertex
(edge) neighbourhood coronas [13].

In this paper, we focus on determining the normalized
Laplacian spectra of G 1 (GY UGE) and G7 H(GY UGE)
in terms of the corresponding normalized Laplacian spectra
of three connected regular graphs G, G2 and G3, which
extends the corresponding results of [19]. As applications,
these results enable us to construct infinitely many pairs of

L-cospectral graphs. Moreover, we also give the number
of the spanning trees, the multiplicative degree-Kirchhoff
index and Kemeny’s constant of G > (GY U G¥) (resp.

GYO(GY U GE)).

II. PRELIMINARIES

In this section, we first list some known results for latter
use.

Lemma IL.1 ([2]). For a graph G, let R(G) and {(G) be the
incidence matrix of G and the line graph of G, respectively.
Then
R(G)"R(G) = 2L, + A(U(Q)) (1)
where m is the number of edges of G.
Note that
R(G)R(G)" = D(G) + A(G) = Q(G). 2

Since non-zero eigenvalues of both R(G)R(G)T and
R(G)TR(G) are the same, from the relations (1) and (2)
one can obtain

In particular, if G is r-regular graph, then by Lemma II.1,
we immediately have the following corollary.

DAy () =

Corollary IL.1. Let G be an r—regular graph of order n.
Then

s
Il
-

Paey (@) = (x+2)"" - [[(z = (r = 2) —ni(G)),

:]:

Daay(z) = (@+2)""- (x —(2r —2) +rX(G))

-
Il

where v;(G) and \;(G) are the eigenvalues of A(G) and
L(G) fori=1,2,...,n, respectively.

As usual, we denote by 1,, and 0,, the column vector of
size n with all the entries equal one and all the entries equal
0, respectively. For a graph matrix M of order n, M-coronal
T'ar(A) is defined, in [3] and [6], to be the sum of the entries
of the matrix (A — M)~!

TN =150\ — M)~ '1,. )
If M has constant row sum ¢, it is easy to verify that
171, n

= 5
INVIONIES Pt Q)]

It is well-known for invertible matrix M7 and M, that

My M, B

det ]\4-3 M4 = det(M4) . det(M1 — M2M4 Mg) (6)

= det(M;) - det(My — MM * My).

where My — MyM,; ' Mz and My — M3 M; ' M, are called
the Schur complements [16] of M, and M, respectively.
For two matrices A = (a;;) and B = (b;;), of same size
m x n, the Hadamard product Ae B = (c¢;;) of A and B is
a matrix of the same size m x n with entries given by ¢;; =
ai; X bij(entrywise multiplication). The Kronecker product
A ® B of two matrices A = (aij)mxn and B = (bi;)pxq
is the mp X ng matrix obtained from A by replacing each
element a;; by a;; B. This is an associative operation with the
property that (A® B)T = AT @ BT and (A® B)(C® D) =
AC ® BD whenever the products AC and BD exist. The
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latter implies (A ® B)™! = A~! @ B~! for nonsingular
matrices A and B. Moreover, if A and B are n X n and
p X p matrices, then det(4A ® B) = det(A)? det(B)™. The
reader is referred to [7] for other properties of the Kronecker
product not mentioned here.

III. THE L£-SPECTRA OF SVEV-CORONA AND
SVEE-CORONA

In this section, we mainly determine the normalized
Laplacian spectra of SVEV-corona and SVEE-corona, re-
spectively. For the sake of convenience, we write G as
GP > (GY UGE), and H as G{O(GY U GF). And we
respectively denote the eigenvalues of £(G1), £(G2) and
,C(G3) by Hl (Z = 1,2,...,711), Hj (] = 1,2,...,71,2) and
ne (k= 1,2,...,n3). Those symbols will be persisted in
what follows.

Theorem IIL.1. Let G; be an r;-regular graph with n;
vertices and m; edges, where i = 1,2, 3. Then

-[nl _aR(Gl) On1 Xning On1 Xming
—aR(G1)" Inm —Im, ® )
£(G)= (Gh) 1 g1 1 3 7)
Oninyxny 912 913 914
Om1n3><n1 - m1 ® Cng g5 di6

where g, = —R(G1 ) & an! g1z = —R(G1) ® by, g13 =
In, ®(‘C(G2)'B(G2))r 914 = Oninyxmang 915 = Omingxning,

916 = Imy © (‘C(GS).B(GS)L bna = \/(r1+r2)(12n2+n3+2)1n2’
1

B(G2) = r1+72Jn2 + r1+7"2 s Iner Cng = mlng’
B(Gs) = 37 Jns + 3 +1 I.,. Moreover, J,, is a all-1 matrix
of order n, and a= 27 1 s a constant.
\/r1(2n24n3+2)
I, —aR(G1) hu  —I,, ®ch)
C('H): _aR(Gl)T Iy Omixming Omixning )
h12 Om1n2><m1 h13 h14
—In, ® Cng O7L1n3><m1 his his

where hy = —R(G1) ® bnz, hiz = —R(G1)” ® by, hi1z =
['ml ®(L(G2).B(G2)) h14 - 'm1n2 Xning» h15 = 07L1n3><7n1n2;

his = [nl ® (E( ).B(GS))’ b"2 - \/(r2+2)(r11n2+r1+n'3) Lnss
B(Ga) = T2+2J !

B(G3) = JIns

73+1
constant.

1713;

2 _
T2t2 Ing, Cng =
V/(r3+1)(rina+r1+n3)

1

I, and o = ——t—
V2(ring4ri4+n3)

1 .
73+1 s a

Proof: The proof of Eq.(8) is similar to the Eq.(10), so
it’s only necessary to show the result given in Eq.(10) as

follows.

We first label the vertices of G: V(G1) = {v1,va,...,
Unl} I Gl) = {61,627.. €m1}, V(GQ) = {ul,ug,...,
Un, } and V(G3) = {wy,wa, ..., wy,}. Fori =1,2,...,ny,
let U; = {uf,ub,...,u},} denote the vertices of the i-th
copy of Gy in G, and W; = {wl,wz,...,w%3} (j =1,
2,...,my) the j-th copy of G5 in G. Then the vertices of G
are partitioned by

V(G1)UI(G1)U(U1U U2V ..U Up )JUWLU WU .. .UWp,). (9
By Definition I.1 we see that
dg(vi) = dg, (vi) = r1, 1=1,2,...,n1;
dg(e;) = 2na + nz + 2, 1=1,2,...,m1;
dg (uj) = day (u;) + de, (vi)
=r2+7, ]:17 '~7n27i:17-'~,n1;
dg(wj) = de; (w;) +1
=r3z+1, 1=12,...,n3,1=1,2,...,m;.

So one can get

r11n,
(2n2 +n3 + 2)Ipm,
(r1+72)Ininy
(r3 + 1) Imyng

D(G) =

Let R(G1) be the vertex-edge incidence matrix of G1. Then,
according to the ordering of (9), the adjacency matrix of G
can be represented in the form of block-matrix below

Onyxny R(G1) Onyxning Ony xming
A(Q): R(Gl)T Oml Xmy R(Gl)T ® 122 Im; ® 123
Oningxng R(G1)® 1o, In ® A(G2) 914
Om1n3><n1 Im; ® 1713 915 Im, ® A(G3)

where A(G32) and A(G3) represent the adjacency matrices

of G2 and G, respectively.
Since G is an ro-regular graph we have £(Gs2) = I, —
iA(GQ). Thus,

L(G2) e B(Gs) =

(Ing — %A(Gﬂ) ® B(G2) = In, — A(G?2).

ry+r2

By direct computation, one can obtain that

In, ® A(G2) = In; ® (L(G2) @ B(G2)).

ln n
1in2
T1 T2

Furthermore, we can obtain that

1
Imyng — ﬁlml ® A(G3) = Im, ® (L(G3) @ B(G3)).
By L(G) = I — D(G)"Y/2A(G)D(G)~*/?, the required
normalized Laplacian matrix is given in the following:
Inl *GR(Gl) On1 Xning On1Xm1n3
_ T _ T
£(G) = aR(G1) I, 911 Im, ® cpy (10)
Onynyxns 912 913 9ia
Omingxny —Im; ® cny g1 916
The proof is completed. ]

Remark IIL.1. Obviously, using the same partition of (9) to
the graph H, one can obtain

d;{(ei) :2, i:1,2,...,m1;
dy(uy) = da, (u;) + 2
=r9 + 2, 1=L12 ... ,n0,0=1,2,...,mq;
du(w)) = dag(wy) +1
=rsz+1, 7=12,...,n3,1=1,2,...,n1;
du(vi) = (n2+ 1)dg, (vi) + ns
= (n2 + 1)r1 + ns, 1=1,2,...,n1;
and
Onlxnl R(Gl) h21 Inl ®I£3
A(H): RT(GI) Omlxml Iml ®0£2 RT(Gl) ®0£3
h22 Iml ®0n2 Iml ® A(Gz) h23
ny ® 17L3 R(Gl) ® 0n3 hay Inl & A(GB)

where hay = R(G1) ® 1}, has = RT(G1) ® In,, has =
RT(G1) ® OF,xns» h2a = R(G1) ® Ongxn,. By immediate
calculation, the L(H) follows.
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Theorem IIL2. Let G; be an r;-regular graph with n;
vertices and m; edges, where i = 1,2, 3. Then
n3

. @ A —
D Prig)(A) (r3+1)(2n2+n3+2) (A= 17)

n2 _M m,n3 _M mi

X j];[l()\ " + o ) kl;ll()\ rs3 + 1 )
ni 3
A-1)(A-1-

C(2-0)((r +r2 +nor)A — (14 ”2)r1))~

(ry + ra) 2na + ma + 2) (A = |

(A-1—

)ml—n1

r1+r2)
=(A—1)mm. ﬁ (- 2Tl

=1 T‘2+2
i L+ 730k ni
X A—— A—1
kl;ll( rg+1 A zl;[ 7(1( )
X(A=1— 2
( (r3+1)(r1n2+n3+r1)(/\fﬁ)
r1(2—9)((2n2+r2+2)/\—2n2—2))
2(7’2 + 2)(r1n2 +n3 + 7’1)()\ — )

where 0;, p; and ny are the eigenvalues of L(G1
and L(G3), respectively.

(i) @) (N) )™

ro+42

). £(G2)

Proof: According to Theorem III.1, the normalized
Laplacian characteristic polynomial of G is given by

Qrgy(N) = det(A, — L(G)) = det(Bo)
where
(A—1In,  aR(G1) o) o)
B — aR(G))T  (A=1DImy, RG)T®BE, Im, @cl,
0= (0] R(G1) ® bn, g21 o 7
@) Im, ® cng o 922
921 = In, ® ()‘Inz - [/(G2) hd B(G2)) and 922 = Im, ® (>‘ ng
—L(G3) ?B(GB))- .
We write P as the elementary block matrix below
In, O 0 0
pP— O Im, 931 [ED
O 0 In®In o)
o o o) Iy ® Ing
where gy = —R(G1)" ® (bhy (Mny, — L(G2) @ B(G2)) ™)
and g5, = —In, ® (Czs()‘ln:s — L(G3) ¢ B(G3))™).
Let B = PBgy. Then
A= DI, aR(G1) o o
s | ar@DT 9 o o
B o R(G1)®bn, 942 O
O Iml ® Cng o 943
where T2(A) = bl (M, — L(G2) @ B(G2)) by, ['s(\) =

CZS ()‘Ins - ﬁ(GS) L4 B(G’g))_lcn3, 941 = A=1=T3(\)Im, —
T2 (MNR(G1)TR(GL), g4p = In, @ (Mo, — L(G2) @ B(G2)) and
9u3 = Imy ® (Mng— L(G3) @ B(G3)).
Note that det(P) = 1. So we have
P (g)(A) = det(By) = det(P~") det(B) = det(B).

For the matrix B, one can get

det(B) =det (1,,® (A ,,— L(G2) ® B(G2)))
% det (In,® (M~ £(Gs) » B(Gs))) - det(Sy)
SWher{iA — )l aR(Gy)
"GRG (A =1 = Ts(A) I, — F2(>\)R(G1)TR(G1)> '

Let 0;, u; and 7, be the eigenvalues of £(G1), £L(G2) and
L(G3), respectively. By applying Eq.(6), the following result
follows from Corollary II.1 that

A= Dln, aR(G1)
aR(G)T (A—-1- FS(A))Iml I2(A)R(G1)TR(G1)
— det((A = 1)Tn, ) - det((A — 1 — T3(A)) Ty

—(T2(\) + 527) - R(G1)TR(Gh))
= (A= 1) det (A—1—=T35\) o,

—(T2(N) + 357) (A(E(G)) + 2L,

— (A= 1" (A= 1= T5(V)

_(1"‘2()\) + ;7_21) . (_2 + 2))m1—n1
x det (A — 1= T(A)Iny— (T () + 525
X (27'1]n1 — 7”15(G1))
= (A= 1-T5(A\)™ ™ -det (A—1)(A=1-T3(\)) [,
—r1(A=1)I2(A)+ )(2In1—z:(G1)))

(
= (A= 1-Ts())m™ H (A=D(A=1-T5(N)
—1(A=DI2(M)+ 2-0i)).

det(Sl)z

r1(2n2 +n3 +2) )

Since E(GQ)OB(GQ) = In2 r +r2 (GQ) and A(Gg) = TQ(I
—E(Gz)) we get ﬁ(Gg) (Gg) = r1+r2 (rllnz + T2£(G2)).
Similarly, £(G3) @ B(G3) = —5 (Ins + 13L(G3)).

Also since G is r2-reguf ar, the sum of all entries on
every row of its normalized Laplacian matrix is zero. In

other words, £(G2)bn, = (1 — :—;)bnz = 0:bn, = 0.
Then (£(G2) ® B(G2))bn, = (1 — 3 )bn, = mrflmbn?. ?nd
(Alny — (L(G2) ® B(G2)))bny, = (A — -7 )bn,. In addition,
T _ n
brabny = i BTt Thus
T —1 bZQbWQ
L2(A) = bny (An, — L(G2) @ B(G2)) ™ by, = P
N T vt
T (r1+72)(2n2 + 13+ 2)(\ — r1+r2)

We notice that the value of I'3(\) is similar to that of I'2()),
and so,

CE Cn-
B(G)) e, = 22

Is(A\) = chy(Mng — L(G3) @
A\ —
r3+1

n3

N (7“3 + 1)(2712 +n3 + 2)()\ —

1
1)

In summary, the normalized Laplacian characteristic poly-
nomial of G is

no ) ns r
Reio (V=TT O3 IO S ety
=(A—1-— 13 yma—m
(T3 + 1)(277,2 + ns + 2)()\ — 7‘3:51-1)
no . ns r m
< oz o S

ni
Xil;ll ((A—l)()‘_l_ (r3+1)(2n2+n:+2)()\7ﬁ))
7(2792)((7’1 +T’2+TLQ7’1))\ (].+’I7,2)T‘1))

(7“1 + 7“2)(2%2 +ns + 2)()\ — r1+r2)
as required.
The proof of (ii) is similar to (i), and is omitted. [ |

Remark IIL.2. In Theorem IIL.2, if one of graphs G4 and
G is null in G or H, then one can directly deduce the main
results(see Theorems 2.2-2.5) due to A. Das and P. Panigrahi
in [19]. For the simplicity, we here omit these corollaries (see
Theorems 2.2-2.5 in [19]).
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From Theorem III.2, one can easily obtain the following
corollaries.

Corollary IIL.1. Let G; be an r;-regular graph with n;
vertices and m,; edges for i = 1,2,3. Then the normalized
Laplacian spectrum of G consist of:

T1+T2 ; [
(a) ﬁ repeats ny times for each eigenvalue ji; of

‘C(GQ)! ,7 = 1,27...,712 - ]-;
(b) 71;;@;’1” repeats my times for each eigenvalue ny, of
‘C(G?))’ k= 1a2a"'an3 -1
two roots of the equation

()

(21127‘3 + n3grs + 2r3 + 2ns + n3 + 2))\2 — (27L27“3

11
+ns3rs + 2r3 + 4ns + 2ns +4))\+2n2+220 an

where each root repeats mi — ny times;

(d) four roots of the equation
(2n24n3+2)(1+73) A= 1) (r1+r2) A —r1) (A—1)?
—n3()\ — 1)((7‘1 + ’I“Q))\ — 7“1) — (2 — 91)((7'1 =+ 7o
+nori)A — (r1 + 7“1”2)) (14+r)A—-1)=0

12)

where each eigenvalue 0; of L(G1), i =1,2,...,n1.

Corollary IIL2. If G; is an r;-regular graph with n; vertices

and m; edges for v = 1,2,3, the normalized Laplacian
spectrum of H consist of:
(a) 2:_;%’;’ repeats my times for each eigenvalue ji; of

L(G2), j=1,2,...
1+73n

,Ng — 1,

i Tepeats my times for each eigenvalue ny, of
L(Gs3), k=1,2,...,n3—1;
(c) 1 repeats mi —ny times, rz%
(d) four roots of the equation

2(7’1712 + n3 + 7“1)((1 + 7’3))\ — 1)((2 + 7’2))\ — 2)()\ — 1)2

—2n3(A — 1)((24 r2)A — 2)—r1(2 — 6;) ((2n2 + 72 + 2)A
—2ny —2)((L+r3)A —1) =0,

(b)

repeats mi —ny times;

where each eigenvalue 0; of L(G1), i =1,2,...,n;.

Example IIL1. Let G = Cf < (KY UKY) and H =
C{O(KY U KE) (shown in Fig.2). By simple computa-
tion, Specs(Cy) = {0,1,1,2}, Spece(K2) = {0,2} and
Specr (K1) = {0}.

From Corollary I11.1, the normalized Laplacian spectrum
of G consist of: % (multiplicity 4), % (multiplicity 4), four
roots of the equation 24x* — 7623 + T1z? — 20z = 0, four
roots (multiplicity 2) of the equation 48x* — 15223 + 15622 —
592 + 6 = 0, and four roots of the equation 48x* — 152x> +
1702% — 78z + 12 = 0.

From Corollary I11.2, the normalized Laplacian spectrum
of H consist of: % (multiplicity 4), four roots of the equation
4224 — 15423 +17622 — 642 = 0, four roots (multiplicity 2) of
the equation 42x* — 15423 419022 — 90z + 12 = 0, and four
roots of the equation 42x* — 15423 420422 — 1162424 = 0.

€5 4 (KY UKE) CIO(KY UKE)

Fig.2. G=0C§ (K UKF)and H=C{O(KY UKFE)

IV. APPLICATIONS

In this section, we will give four distinct applications, such
as construction for £-cospectral graphs, computation for the
number of spanning trees, the multiplicative degree-Kirchhoff
index and Kemeny’s constant on SVEV-corona and SVEE-
corona respectively.

A. Construct L-cospectral graphs

In [21], Dam and Haemers have proposed ‘which graphs
are determined by their spectra?’. The question for the
normalized Laplacian spectrum is also one of the outstanding
unsolved problems in the theory of graph spectra. Thus, if
one wish to settle the question for graphs in general, it is
natural to look for constructing pairs of L£-cospectral graphs.
In this section, we will respectively construct many infinite
families of pairs of L-cospectral graphs from SVEV-corona
and SVEE-corona, which are generalized Theorem 2.7 due
to Das and Panigrahi in [19].

Theorem IV.l. Let G; and H; (not necessarily distinct
isomorphic) are pairwise L-cospectral regular graphs for
i =1,2,3. Then

() GY = (GY UGE) and HY > (HY U HEF) are L-
cospectral graphs;
Q) GYOGY U GE) and HYO(HY U HEP) are L-

cospectral graphs.

Proof: From Theorem III.2 we know that, the normal-
ized Laplacian spectra of Gf > (GY U GF) and G7<¢
(GY U GY) are completely determined by the degrees of
regularities, the number of vertices, the number of edges
and the normalized Laplacian spectra of regular graphs G,
(1 =1,2,3). So the conclusions follows. [ |

Example IV.1. Let Gy and Hy be two graphs shown in Fig.3.
Then by Matlab 7.0 one can get ® o(G,)(7) = ® g, (7) =
1 —21212 221 +164204-2229 — 59928 — 8827 +104725+
16825 — 800x* — 16023 + 21622 + 402 — 12. It is easy to
see that G1 and Hy are A-cospectral but not isomorphic
with each other. Note that L = I — D~Y/2AD~1/2. And
so, two graphs are A-cospectral implies that they are L-
cospectral. Consequently, it follows from Theorem IV.I that
GY > (KY UKE) and HY 1 (KY UKY) are L-cospectral
graphs, so are GTO(KY UKE) and HY G(KY U KE), see
Fig.4 and Fig.5 for instance.

Gy H,

Fig. 3. Gjp and H;

Volume 51, Issue 3: September 2021



TAENG International Journal of Applied Mathematics, 51:3, [JAM 51 3 17

HY > (KY U K¥)

Fig. 4. G > (KY UKZE) and HY > (KY U KE)

Fig. 5. G{O(KY UKE) and H O(KY U KE)

B. The number of spanning trees

Let G be a connected graph of order n. A spanning tree
is a spanning subgraph of G that is a tree. A known result
from Chung [1] allows the calculation of this number from
the normalized Laplacian spectrum and the degrees of all
the vertices, thus the number of spanning trees 7(G) of
connected graph G is

R KT A DY
Z?:l di .

Theorem IV.2. Let G; be an ri-regular graph with n;
vertices and m; edges for i = 1,2,3. Then

7(G) (13)

mniy— ng—1

1 no—1
(1) 7(G)= 11 6:- [ (r1+ropj)™ [T (L+rsge)™-ri™ "
i=1  j=1

X(l + n2>m1—1 X 2m1—n1—1
narirs + 4n27”1 + 27127’2 + 2'/L37”1 + 47‘1

2my + nimg + mims + 2ming +ming

no—1

[T (2+rap)™

ni—1
(2) T(H) =9Zmi—m—L H (7“1 + r1n2)9i~
i=1 j=1

71,3—1

< [T (Wrame)™
k=1
Nor1ro + 47’LQ7’1 + 277,37’3 —+ 4713 —+ 47‘1

2my + mimsg + nim3 + ning + 2ming

Proof: The proof of (2) is similar to the proof of (1), it
is here need to prove (1). We first consider the normalized
Laplacian eigenvalues of G in the following way:

In Corollary III.1 (c), one can by the well-known Vieta
Theorem obtain the relation of the two roots «; and as of
Eq.(11) such that

2y + 2

(rs +1)(2n2 +n3 +2)°

In Corollary IIL.1 (d), let 51, B2, B3 and 34 be the four roots

of Eq.(12) for each 6;,i =1,2,...,n; — 1. Then
r1(1+ns)b;

(r1 +72)(1+73)(2n2 + ng +2)°

Qo = (14)

B1B20384 = (15)

For ¢ = n;, we notice that 6,,, = 0. By Eq.(12) one can get

(2n2r1rs 4+ 2n2rars + n3riTs + Narars + 2nart + 2nare
+n3r1 + n3ra + 2rirs + 2rars + 2r1 + 27’2)>\4
—(6n2r173 4+ 4noraors + 3ngrirs + 2ngrars + 8nary
+6nars 4+ 4nsri + 3nsre + 6r17r3 + 4rars + 8r1 + 67"2))\3
+(4narirs 4+ 2narers + 3nsrirs + narars + 10ngry
+6n2r2 + Snsry + 2nsre + 4rirs + 10r1 + 4?”2)/\2

—(ngrirs + 4dnari + 2nare + 2ngr1 + 4r1)A = 0.
(16)
Suppose that 1,72 and ~3 are three non-zero roots of
Eq.(16). Then by Vieta Theorem,

n3rirs + 4nory + 2nare 4+ 2n3ry + 4ry
(r1 +72)(1 4+ 73)(2n2 + nz + 2)

In light of Corollary III.1, Eqgs.(14), (15) and (17) we see
that

Y17Y2Y3 = 17)

(@)= Lol x
Zi:l di
_(r)"(2n2 +n3 4+ 2)™ (ry 4 12)" "2 (rz + 1)7173
a 2(2m1 + nima + mims + 2ming + ming)
X"371 1+ rane )ml."ﬁl r1i(1+n2)0;
p=1 T3+ 1 i1 (ri+r2)(1+7rs)(2n2 + ns + 2)
"l T+ rapy 2n2 +2
x TI( )" (
=1 it (rs +1)(2n2 + n3 + 2)

)m17n1

n3rirs + 4nari + 2n2re + 2n3ry + 411
(T‘l + 7’2)(7’3 + 1)(2TL2 +n3 + 2)

nyp—1 ng—1 ng—1
= II 6:- IT (ro 4 ropg)™ - TT (1 +7rane)™
i=1 j=1 k=1

ernlfl . (1 + n2)m171 . 2m17n171
narirs + 4nsri + 2nore + 2nsry + 4r;
2m1 + nime + mims + 2maing +mins’

as required. ]

Example IV.2. Let G = Of = (Ky UKY) and H =
C{OKY U KE) (shown in Fig.2). It is easy to see that
T100 = 2 T102 (o)™ = 4% = 25, T[4
ramp) ™ P2l = 3107 (14 )™t gmimmml — 33 971
n3rirs + 4nori + 2nsrs + 2n3r1 + 4r1 = 40, 2mq1 + nims +
maims + 2minz + mins = 40. Thus, by Theorem IV.2 (1) we
get 7(G) = 25 .37, On the other hand, combining with
the Example III.1 and Eq.(13), one can easily obtain that
7(G) = 215 . 37. Similarly, T(H) = 2'5 . 33.

C. The multiplicative degree-Kirchhoff index

In [22], the multiplicative degree-Kirchhoff index of G is
defined as

Kf(G) = Z didjrij

i<j

by Chen and Zhang, where r;; is the resistance between ¢
and j. This index is distinct the classical Kirchhoff index
Kf(G) = >, miyj since it takes into account the degree
distribution of GG. Meanwhile, they also have been proved
that K f*(G) can be obtained from the non-zero normalized
Laplacian eigenvalues of G, i.e.,

n—1
* 1
i=1 7"
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Theorem IV.3. Let G; be an ri-regular graph with n;
vertices and m; edges for i = 1,2,3. Then

(1) Kf(G )=
Z Yni(rs +1r2)

2(2m1 + nima + mims + 2ming + ming)
><( ~'my (7”3 + 1)
j=1 T1+ T2l =1 1+ ran

(m1—n1)(rs+2)(2n2+ns+2)

2no+2
(2712 —+ns +2)(26T1 +3ro+3rirs +7’2T3) — g5

(47‘1 +ro4r1ir3)(2ne+ns +2)— gs,
"t (4 + ra 4 1rar3)(2n2 + n3 + 2) — n3(2r1 + o)
7‘1(1 -I—?’LQ)GZ
3 (2 —0:)((1 +n2)(2r1 + rirs) + 7’2))
7‘1(1 —‘rng)az ’

+

+

v}

~
-

where g, = nz(ri +72) + 2(rs + 1)(r1 + r2 + 11n2), g5 =
(2rins + rong + 2r2) 4+ (2 + 2n2)(2r1 + r173),
(2) Kf*(H)=2(2m1 + mimz + nims + ninz + 2minz)
X(ngz_lml(Tz—l—Q) "3_1n1(T3+1) (T2+4)(m1—n1)
2+T2p,]' k=1 1 + 3Nk 2

j=1

2(ring + 11 + n3)(rers + 6r3 + 3rz + 12) —ns(2r2 + 4)

+

2n9orire 4+ 8nary + 4nzrs + 8ns + 8r;
2T1(7"3 —|— 1)(277,2 + T2 —|— 23

a 2nor1Te + 8naory + 4nsrs + 8ng + 8r1
st 2(rine + 114 n3)(2rs + 12 + 8) —
SEE X )
7"1(2 +2n2)9,
_r1(2 —0:)((2+2n2)(2 +13) +172) )
7‘1(2 + 2712)&' '

(27‘2713 + 8n3)

Proof: From Eq.(18), K f*(G) can be computed from
the following way:
In Corollary IIL.1 (c), let a; and ap be the two eigenvalues
of equation (11). Then by Vieta Theorem, we have
1 1
_ + _

aq Q2

In Corollary IIL.1 (d), for each 6;(i = 2,3,...,n1), let
b1, B2, B3 and B4 be the eigenvalues of Eq.(12). By Vieta
Theorem, we have

111
Br B2 Pz Ba
_ B283B4 + 18384 + B1P2P4 + B15283
B1B82834

_ (4ri4re+1173)(2n2 + 13 + 2) — n3(2r1 +r2)
o ri(l 4 n2)b;

(2= 0:) (14 n2)(2r1 + rirs) +712)
B ri(l 4 n2)b; ’

(658

(7"3 + 2)(2112 + nsg + 2)
27’L2 —|— 2 ’

Note that 6,,, = 0. Then Eq.(12) is equal to Eq.(16). Let
71, v2 and 73 be the non-zero eigenvalues of Eq.(16). Then
L1 + 1 e+t

Yoo 72 78 717273
_(277,2 + n3 + 2)(67“1 + 3ro + 3rirs + 1a73)

(4rq + 7o+ 1r17r3)(2n2 + N3 + 2)

— 951
— G52

In summary above, the result of (1) follows. Similarly, (2)
can be obtained also. [ |

Example IV3. Let G = Cf > (KY U K¥) and
H = C7O(KY UKFE) (shown in Fig.2). By Theorem IV.3,
K f*(G) = 212580 — 8992 Op the other hand, combining
with Example III.1 and Eq.(18), one can also obtain that

KF*(G) = S42. Sinilarly, K" (H) — 20554 — 122

D. Kemeny’s constant

For a graph G, Kemeny’s constant K(G), also known as
average hitting time, is the expected number of steps required
for the transition from a starting vertex ¢ to a destination
vertex, which is chosen randomly according to a stationary
distribution of unbiased random walks on G, see [23] for
more details. From literature [24] we know that

n—ll

Note that Kf*(G) = 2m - K(G). Thus, the following result
follows from Theorem IV.3 immediately.

Theorem IV4. Let G; be an r;-regular graph with n;
vertices and m; edges, where i = 1,2,3. Then

Yni(ri +1r2) +“1231 (4r1+r2+rir3)(2n2 +ns +2)

r1+ ropy; i=1 r1(1+n2)0;
(2 — 01)((1 + TLQ)(27‘1 + ’I“17"3) + 7“2)
7’1(1 +n2)9
(ml—nl)(r3+2)(2n2+n3+2)
2ns+2
(2n2 + ng + 2)(6r1+ 3r2 + 3r1rs + r2rs)
@ry + r2 + rirs3)(2n2 + n3 + 2)
3t my(rs + 1)

+
/;1 14+ 3Nk

WK(G)=5

Jj=1
n3(2r1 +ra2) +

—961
—9Ye2

where gg; = ns(r1 + r2) + 2(rs + 1)(r1 + r2 + ring) and
oo = (2rins + rans + 2r2) + (2 + 2n2)(2r1 + r173).

" 2(rina+ri+n3)(2rs + 12 + 8) — (2rans + 8ngs)

(2)}((’}1!):;1 r1(2 + 2n2)0;
(2= 0)((2+ 2n2)(2 4 73) +12)
r1(2 + 2n2)0;

ma(rat2) | (T2 +4)(m1 —n1)
+ Z 21+rzu 2

+2(7“1112 + 71 +n3)(rers + 6r3 + 3r2 + 12) — n3(2r2 +4)
2norire + 8nory + 4nsrs + 8nsg + 8r

_ 2r1(rs + 1)(2n2 + 12 + 2) n37lng(rs + 1)

2n9r172 + 8naery + 4nsrs + 8ng + 8rp 1+7rsme

k=1

Example IV4. For the graphs G = > (KY U KP)
and H = C{O(KY U KEP) (shown in Flg 2), according to

Theorem IV4, one can get K(G) = 2222, K(H) = 30L.
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