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Abstract—By using some differential inequalities on time
scales and constructing a suitable Lyapunov function, some
new conditions are obtained for the permanence and uniformly
asymptotical stability of a competition and cooperation model
of two enterprises with feedback controls on time scales. Our
results indicate that feedback controls are irrelevant to the
permanence of this model which improve and complement some
existing ones.
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I. INTRODUCTION

AS an effective tool to depict real ecological system,
mathematical ecological model has become more and

more important in the study of modern applied mathematics.
Differential equations and difference equations are two main
tools for the description of species relationship. However, due
to the different concepts, theoretical knowledge and research
methods, differential equations and difference equations al-
ways appear separately and people need to study twice for
a complete and comprehensive understanding for systems.
Furthermore, only using differential equations or difference
equations is ineffective for describing the law of those species
whose development process are both continuous and discrete
in the real world [1, 2]. In order to unify both differential and
difference analysis, Hilger [12] introduced the theory of time
scales in his Ph.D. thesis. After then, many researchers pay
attentions to the study of dynamic equations on time scales,
such as permanence [5, 14, 15], global attractivity [11, 18],
periodic solution and almost periodic solution [4, 7, 16, 19–
21, 25] and so on. In particular, Zhi, Ding and Li [25]
considered the following competitive and cooperation model
of a satellite enterprises and a dominant enterprise with
feedback controls on time scales T

xM(t) =a1(t)− b1(t)exp{x(t)}
− c1(t)[exp{y(t)} − d2(t)]2 − f1(t)u(t),

yM(t) =a2(t)− b2(t)exp{y(t)}
+ c2(t)[exp{x(t)} − d1(t)]2 − f2(t)v(t),

uM(t) =− γ1(t)u(t) + η1(t)exp{x(t)},
vM(t) =− γ2(t)v(t) + η2(t)exp{y(t)},

(1)
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in which {ai(t)}, {bi(t)}, {ci(t)}, {di(t)}, {fi(t)}, {γi(t)}
and {ηi(t)} are all bounded nonnegative functions on T
satisfying

0 < ali ≤ ai(t) ≤ au, 0 < bli ≤ bi(t) ≤ bui ,
0 < cli ≤ c(t) ≤ cu, 0 < dli ≤ di(t) ≤ dui ,

0 < f li ≤ fi(t) ≤ fui , 0 < γli ≤ γi(t) ≤ βui ,
0 < ηli ≤ ηi(t) ≤ ηui , i = 1, 2,

where we using the following notations:

hl = inf
t∈T

h(t), hu = sup
t∈T

h(t),

for any h(t) which is a continuous bounded function defined
on T. We also suppose that 1−µ(t)γi(t) > 0 (µ(t) is defined
in Section II) and there exists a positive constant L such that
µ(t) ≤ L. Consider system (1) together with the following
initial conditions:

x(0) > 0, y(0) > 0, u(0) > 0, v(0) > 0, (2)

by using the comparison theorem of dynamic equations
on time scales, Zhi, Ding and Li [25] got the following
permanent result for system (1):
Theorem A ([25]). Assume

−bli,−γli ∈ R+ (Q1)

and

al1 − cu1 (ey
∗

+ du2 )2 − fu1 u∗ > 0, al2 − fu2 v∗ > 0 (Q2)

hold, where y∗ =
au2−b

l
2+c

u
2 e

2x∗

bl2
, x∗ =

au1−b
l
1

bl1
,u∗ =

ηu1 e
x∗

γl
1

and v∗ =
ηu2 e

y∗

γl
2

, then system (1) is permanent.
Remark 1.1. There is a mistake in (H2) of Proposition 12
in Zhi, Ding and Li [25]. Although exp{y(t)} − d2(t) ≤
ey

∗−dl2, however we can not obtain [exp{y(t)}−d2(t)]2 ≤
(ey

∗ − dl2)2 but [exp{y(t)} − d2(t)]2 ≤ (ey
∗

+ du2 )2. So
inequation (35) in [25] is invalid and (H2) i.e. al1−cu1 (ey

∗−
dl2)2−fu1 u∗ > 0, al2−fu2 v∗ > 0 should be changed to (Q2).

According to Theorem A, feedback controls can affect
the permanence of system (1) which is also supported by
Lu, Lian and Li [26] who investigated the discrete version
of system (1) with time delays. However, some results (see
such as [8–10, 14, 15] and so on) have shown that feedback
controls have no impact on the permanence of ecological
system. In particular, by using some differential inequalities
on time scales, Wang and Fan [15] showed that feedback term
is irrelevant to the permanence of a Nicholson’s blowflies
model with feedback control on time scales. Their results
motivated us to consider the permanence of system (1) again.
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In fact, in this paper, by utilizing the analytical skills of Wang
and Fan [15] , we ultimately get the following result:
Theorem B. Assume

al1 − cu1 (eW2 + du2 )2 > 0 (A1)

holds, where W1 = au1L+ ln
au1
bl1

and W2 = [au2 + cu2 (eW1 +

du1 )2]L+ ln
au2+c

u
2 (e

W1+du1 )
2

bl2
, then system (1) is permanent.

One can easily find that (A1) in Theorem B is weaker
than (Q1) and (Q2) in Theorem A and feedback terms are
harmless to the permanence of system (1), hence our results
improve those in [25, 26]. For more similar problems, one
could refer to [3, 6, 17, 22–24] and references therein.

The organization of this paper is as follows. In Section II,
we give some foundational definitions and results on time
scales. The permanence and uniform asymptotical stability
of the model are discussed in Section III and IV. Then,
in Section V, our results are verified by one example with
numerical simulations. Finally, we conclude in Section VI.

II. PRELIMINARIES

In this section, we shall present some foundational
definitions and results on time scales and one can refer to
[13] for more detail.

Definition 2.1. ([13]) A time scale is an arbitrary nonempty
closed subset T of the real numbers R. The set T inherits
the standard topology of R.

Definition 2.2. ([13]) For t ∈ T, the forward jump operator,
the backward jump operator σ, ρ : T → T, and the
graininess µ : T→ R+ = [0,+∞) are defined by

σ(t) = inf{s ∈ T : s > t},

ρ(t) = sup{s ∈ T : s < t},

µ(t) = σ(t)− t,

respectively. If t < sup T and σ(t) = t, then t is called
right-dense, and if t > inf T and ρ(t) = t, then t is called
left-dense.

Definition 2.3. ([13]) A function f : T → R is said to be
rd-continuous if it is continuous at right-dense points in
T and its left-sided limits exist (finite) at left-dense points
in T. The set of rd-continuous functions is denoted by
Crd = Crd(T) = Crd(T,R).

Definition 2.4. ([13]) Suppose f : T→ R is a function and
let t ∈ T. Then we define fM(t), the delta-derivative of f
at t, to be the number (provided it exists) with the property
that, given any ε > 0, there is a neighborhood U of t (i.e.,
U = (t− δ, t+ δ) ∩ T) for some δ > 0 such that

|[f(σ(t))−f(s)]−fM(t)[σ(t)−s]| ≤ ε|σ(t)−s|, for all s ∈ U.

Thus, f is said to be delta-differentiable if its delta-derivative
exists. The set of functions f : T → R that are delta-
differentiable and whose delta-derivative are rd-continuous
functions is denoted by C1

rd = C1
rd(T) = C1

rd(T,R).

Definition 2.5. ([13]) A function F : T → R is called a
delta-antiderivative of f : T → R provided F4(t) = f(t),
for all t ∈ T. Then, we write∫ s

r

f(t)∆t = F (s)− F (r), for all s, r ∈ T.

Definition 2.6. ([13]) A function f : T→ R is regressive if
1 + µ(t)f(t) 6= 0 for all t ∈ T and is positively regressive if
1+µ(t)f(t) > 0 for all t ∈ T. Denote by R and R+ the set
of regressive and positively regressive functions from T to R,
respectively. If p ∈ R, we define the exponential function by

ep(a, b) = exp
{∫ a

b

ξµ(t)(p(t))∆t
}
, a, b ∈ T,

where the cylinder transformation ξµ(z) = (1/µ)log(1+zµ),
for µ > 0 and ξ0(z) = z, for µ = 0.
Lemma 2.1. ([13]) Suppose that p, q ∈ R+; then for all
a, b ∈ T,
(i) ep(a, b) > 0;

(ii) if p(a) ≤ q(a) for all a ∈ T, then ep(a, b) ≤ eq(a, b)
for all a ≥ b.

Lemma 2.2. ([13])
(i) (ν1f +ν2g)M = ν1f

M +ν2g
M, for any constants ν1, ν2;

(ii) if fM ≥ 0, then f is nondecreasing.

Lemma 2.3. ([14]) Suppose A,B > 0 and x(0) > 0, further
assume that
(i)

xM(t) ≤ B −Aexp{x(t)}, ∀ t ≥ 0,

then

lim sup
t→+∞

x(t) ≤ BL+ ln
B

A
.

(ii)
xM(t) ≥ B −Aexp{x(t)}, ∀ t ≥ 0,

and there exists a constant M > 0, such that
lim sup
t→+∞

x(t) < M , then

lim inf
t→+∞

x(t) ≥ (B −Aexp{M})L+ ln
B

A
.

Lemma 2.4. ([14]) Assume that C(t), D(t) > 0 are bound-
ed and rd-continuous functions, −C ∈ R+ and Cl > 0.
Further suppose that
(i)

xM(t) ≤ −C(t)x(t) +D(t), ∀ t ≥ T0,

then there exists a constant T1 > T0, such that for t >
T1,

x(t) ≤ x(T1)e(−C)(t, T1) +
D(t)

Cl
.

Especially, if D(t) is bounded above with respect to H1,
then

lim sup
t→+∞

x(t) ≤ H1

Cl
.

(ii)
xM(t) ≥ −C(t)x(t) +D(t), ∀ t ≥ T0,
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then there exists a constant T2 > T0, such that for t >
T2,

x(t) ≥
(
x(T2)− D(T2)

Cu

)
e(−C)(t, T2) +

D(T2)

Cu
.

Especially, if D(t) is bounded below with respect to h1,
then

lim inf
t→+∞

x(t) ≥ h1
Cu

.

Definition 2.7. System (1) is said to be permanent if for
any solution (x(t), y(t), u(t), v(t))T of system (1), there exist
four constants wi, ki, Wi and Ki (i = 1, 2) such that

w1 ≤ lim inf
t→+∞

x(t) ≤ lim sup
t→+∞

x(t) ≤W1,

w2 ≤ lim inf
t→+∞

y(t) ≤ lim sup
t→+∞

y(t) ≤W2,

k1 ≤ lim inf
t→+∞

u(t) ≤ lim sup
t→+∞

u(t) ≤ K1,

k2 ≤ lim inf
t→+∞

v(t) ≤ lim sup
t→+∞

v(t) ≤ K2.

III. PERMANENCE

We shall investigate the permanence of system (1) in this
part. Similarly to the proof of [15, Lemma 18], we can obtain
Lemma 3.1. For any solution (x(t), y(t), u(t), v(t))T of
system (1) with initial condition (2), we have

exp{x(t)} > 0, exp{y(t)} > 0, u(t) > 0, v(t) > 0, ∀ t ∈ T.

Lemma 3.2. For any solution (x(t), y(t), u(t), v(t))T of
system (1) with initial condition (2), we have

lim sup
t→+∞

x(t) ≤W1, lim sup
t→+∞

y(t) ≤W2

lim sup
t→+∞

u(t) ≤ K1, lim sup
t→+∞

v(t) ≤ K2,

where

W1 = au1L+ ln
au1
bl1
, K1 =

ηu1 e
W1

γl1
, K2 =

ηu2 e
W2

γl2

W2 = [au2 + cu2 (eW1 + du1 )2]L+ ln
au2 + cu2 (eW1 + du1 )2

bl2
.

Proof. From the positivity of u(t) and the first equation of
system (1), we get

xM(t) ≤a1(t)− b1(t)exp{x(t)}
≤au1 − bl1exp{x(t)}.

According to Lemma 2.3 (i), we obtain

lim sup
t→+∞

x(t) ≤ au1L+ ln
au1
bl1

4
= W1. (3)

Thus, for any ε0 > 0, there exists a large enough t0 ∈ T+,
such that for all t > t0, we have

x(t) ≤W1 + ε0.

Then, for t > t0, we can get from the second equation and
the third equation of system (1) that

yM(t) ≤au2 − bl2exp{y(t)}+ cu2 (eW1+ε0 + du1 )2,

uM(t) ≤− γ1(t)u(t) + ηu1 e
W1+ε0 .

Using Lemma 2.3 (i) and Lemma 2.4 (i), we further obtain

lim sup
t→+∞

y(t) ≤[au2 + cu2 (eW1+ε0 + du1 )2]L

+ ln
au2 + cu2 (eW1+ε0 + du1 )2

bl2

lim sup
t→+∞

u(t) ≤η
u
1 e
W1+ε0

γl1
.

(4)

Setting ε0 → 0, it follows from (4) that

lim sup
t→+∞

y(t) ≤[au2 + cu2 (eW1 + du1 )2]L

+ ln
au2 + cu2 (eW1 + du1 )2

bl2

4
= W2

lim sup
t→+∞

u(t) ≤η
u
1 e
W1

γl1

4
= K1.

(5)

Similarly, we have

lim sup
t→+∞

v(t) ≤ ηu2 e
W2

γl2

4
= K2.

The proof is completed. �
Lemma 3.3 Assume

al1 − cu1 (eW2 + du2 )2 > 0, (A1)

then there exists two constants w and k such that

lim inf
t→+∞

x(t) ≥ w1, lim inf
t→+∞

u(t) ≥ k1,

where w1 and k1 can be found in the proof.
Proof. It follows from the third equation of system (1) that

uM(t) ≤ −γ1(t)u(t) + ηu1 exp{x(t)}.

By Lemma 2.4 (i), there exists a constant t1 > t0, such that
for t > t1,

u(t) ≤ u(t1)e(−γ1)(t, t1) +
ηu1 exp{x(t)}

γl1
.

Since u(t1)e(−γ1)(t, t1) → 0 as t → +∞, then there exists
a positive integer t2 > t1 such that

fu1 u(t1)e(−γ1)(t2, t1) ≤ 1

2
[al1 − cu1 (eW2 + du2 )2]. (6)

Fix t2, for t > t2, we have

u(t) ≤ u(t1)e(−γ1)(t2, t1) +
ηu1 exp{x(t)}

γl1
. (7)

One can get from (6), (7) and the first equation of system (1)
that

xM(t) ≥al1 − bu1exp{x(t)} − cu1 (eW2 + du2 )2 − fu1 u(t)

≥al1 − bu1exp{x(t)} − cu1 (eW2 + du2 )2

− fu1
[
u(t1)e(−γ1)(t2, t1) +

ηu1 exp{x(t)}
γl1

]
=al1 − cu1 (eW2 + du2 )2 − fu1 u(t1)e(−γ1)(t2, t1)

− (bu1 +
fu1 η

u
1

γl1
)exp{x(t)}

≥1

2
[al1 − cu1 (eW2 + du2 )2]− (bu1 +

fu1 η
u
1

γl1
)exp{x(t)},

(8)
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for t > t2. Using this and Lemma 2.3 (ii), we get

lim inf
t→+∞

x(t) ≥
(1

2
[al1 − cu1 (eW2 + du2 )2]− (bu1 +

fu1 η
u
1

γl1
)eW1

)
L

+ ln
γl1[al1 − cu1 (eW2 + du2 )2]

2(γl1b
u
1 + fu1 η

u
1 )

4
= w1.

(9)
So for any ε1 > 0, there exists enough large t3 > t2, such
that for t > t3,

x(t) ≥ w1 − ε1.

This together with the third equation of system (1) results in

uM(t) ≥ −γ1(t)u(t) + ηl1e
w1−ε1 , for t > t3. (10)

It follows from (10) and Lemma 2.4 (ii) that

lim inf
t→+∞

u(t) ≥ ηl1e
w1−ε1

γu1
. (11)

Setting ε1 → 0, we get from (11) that

lim inf
t→+∞

u(t) ≥ ηl1e
w1

γu1

4
= k1. (12)

The proof is completed. �
Lemma 3.4 Assume (A1) holds, then there exists two
constants w2 and k2 such that

lim inf
t→+∞

y(t) ≥ w2, lim inf
t→+∞

v(t) ≥ k2,

where w2 and k2 can be found in the proof.
Proof. For any ε2 > 0 small enough, by Lemma 3.2 and
Lemma 3.3, there exists a point t4 > 0, such that for t ≥ t4,

y(t) ≤W1 + ε2, x(t) ≥ w1 − ε2, v(t) ≤ K2 + ε2. (13)

One can get from the fourth equation of system (1) that

vM(t) ≤ −γ2(t)v(t) + ηu2 exp{y(t)}.

By Lemma 2.4 (i), there exists a constant t5 > t4, such that
for t > t5,

v(t) ≤ v(t5)e(−γ2)(t, t5) +
ηu2 exp{y(t)}

γl2
.

Since v(t5)e(−γ2)(t, t5) → 0 as t → +∞, then there exists
a positive integer t6 > t5 such that

fu2 v(t5)e(−γ2)(t6, t5) ≤ al2
2
. (14)

Fix t6, for t > t6, we have

v(t) ≤ v(t5)e(−γ2)(t6, t5) +
ηu2 exp{y(t)}

γl2
. (15)

One can get from (14), (15) and the second equation of
system (1) that

yM(t) ≥al2 − bu2exp{y(t)} − fu2 v(t)

≥al2 − bu2exp{y(t)}

− fu2
[
v(t5)e(−γ2)(t6, t5) +

ηu2 exp{y(t)}
γl2

]
=al2 − fu2 v(t5)e(−γ2)(t6, t5)− (bu2 +

fu2 η
u
2

γl2
)exp{y(t)}

≥a
l
2

2
− (bu2 +

fu2 η
u
2

γl2
)exp{y(t)},

(16)

for t > t6. Using this and Lemma 2.3 (ii), we get

lim inf
t→+∞

y(t) ≥
(al2

2
− (bu2 +

fu2 η
u
2

γl2
)eW2

)
L

+ ln
γl2a

l
2

2(γ21b
u
2 + fu2 η

u
2 )

4
= w2.

(17)

So for the above ε2 > 0, there exists enough large t7 > t6,
such that for t > t6,

y(t) ≥ w2 − ε2.

This together with the fourth equation of system (1) results
in

vM(t) ≥ −γ2(t)v(t) + ηl2e
w2−ε2 , for t > t7. (18)

It follows from (18) and Lemma 2.4 (ii) that

lim inf
t→+∞

v(t) ≥ ηl2e
w2−ε2

γu2
. (19)

Setting ε2 → 0, we get from (19) that

lim inf
t→+∞

v(t) ≥ ηl2e
w2

γu2

4
= k2. (20)

The proof is completed. �
Theorem B can be obtained directly from Lemma 3.2-

Lemma 3.4.

IV. UNIFORM ASYMPTOTICAL STABILITY

In this part, we will investigate the uniform asymptotical
stability of system (1) by the method of Lyapunov function.
Theorem 4.1. Assume (A1), further suppose that

γl1 > fu1 , b
l
1 − cu2 (2eW1 + 2du1 ) > ηu1 , (A2)

γl2 > fu2 , b
l
2 − cu1 (2eW2 + 2du2 ) > ηu2 , (A3)

where Wi (i = 1, 2) is defined in Lemma 3.2, then system (1)
with initial conditions (2) is uniformly asymptotically stable.
Proof. It follows from (A2) and (A3) that there exists a
small enough ε > 0 such that

γl1 − fu1 > ε, ew1−ε
[
bl1 − cu2 (2eW1+ε + 2du1 )− ηu1

]
> ε,

γl2 − fu2 > ε, ew2−ε
[
bl2 − cu1 (2eW2+ε + 2du2 )− ηu2

]
> ε.

(21)
Suppose Z1(t) = (x1(t), y1(t), u1(t), v1(t))T , Z2(t) =
(x2(t), y2(t), u2(t), v2(t))T are two solutions of system (1)
with initial conditions (2). For above ε, according to Lemma
3.2-Lemma 3.4, there exist a t8 > 0, when t > t8, for
i = 1, 2, we have

w1 − ε ≤ xi(t) ≤W1 + ε, w2 − ε ≤ yi(t) ≤W2 + ε

k1 − ε ≤ ui(t) ≤ K1 + ε, k2 − ε ≤ vi(t) ≤ K2 + ε.
(22)

Consider the following Lyapunov function

V (t, Z1, Z2) =|x1(t)− x2(t)|+ |y1(t)− y2(t)|
+ |u1(t)− u2(t)|+ |v1(t)− v2(t)|.
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Calculating D+V M(t, Z1, Z2) of V (t, Z1, Z2) along system
(1) leads to

D+V M(t, Z1, Z2)

=sgn(x1(t)− x2(t))
[
− b1(t)[exp{x1(t)} − exp{x2(t)}]

− c1(t)
(

[exp{y1(t)} − d2(t)]2 − [exp{y2(t)} − d2(t)]2
)

− f1(t)(u1(t)− u2(t))
]

+ sgn(y1(t)− y2(t))
[
− b2(t)

[
exp{y1(t)} − exp{y2(t)}

]
+ c2(t)

(
[exp{x1(t)} − d1(t)]2 − [exp{x2(t)} − d1(t)]2

)
− f2(t)(v1(t)− v2(t))

]
+ sgn(u1(t)− u2(t))

[
− γ1(t)(u1(t)− u2(t))

+ η1(t)
[
exp{x1(t)} − exp{x2(t)}

]]
+ sgn(v1(t)− v2(t))

[
− γ2(t)(v1(t)− v2(t))

+ η2(t)
[
exp{y1(t)} − exp{y2(t)}

]]
=sgn(x1(t)− x2(t))

[
− b1(t)

[
exp{x1(t)} − exp{x2(t)}

]
− c1(t)

[
exp{y1(t)} − exp{y2(t)}

][
exp{y1(t)}

+ exp{y2(t)} − 2d2(t)
]
− f1(t)(u1(t)− u2(t))

]
+ sgn(y1(t)− y2(t))

[
− b2(t)

[
exp{y1(t)} − exp{y2(t)}

]
+ c2(t)

[
exp{x1(t)} − exp{x2(t)}

][
exp{x1(t)}

+ exp{x2(t)} − 2d1(t)
]
− f2(t)(v1(t)− v2(t))

]
− γ1(t)|u1(t)− u2(t)| − γ2(t)|v1(t)− v2(t)|
+ sgn(u1(t)− u2(t))η1(t)

[
exp{x1(t)} − exp{x2(t)}

]
+ sgn(v1(t)− v2(t))η2(t)

[
exp{y1(t)} − exp{y2(t)}

]
.
(23)

Using the mean value theorem, we get

exp{x1(t)} − exp{x2(t)} = ξ1(t)(x1(t)− x2(t)),

exp{y1(t)} − exp{y2(t)} = ξ2(t)(y1(t)− y2(t)),
(24)

where ξ1(t) lies between exp{x1(t)} and exp{x2(t)} and
ξ2(t) lies between exp{y1(t)} and exp{y2(t)}. We can
obtain from (21)-(24) that

D+V M(t, Z1, Z2)

≤ξ1(t)|x1(t)− x2(t)|
[
− b1(t) + c2(t)(2eW1+ε + 2d1(t))

+ η1(t)
]

+ (f1(t)− γ1(t))|u1(t)− u2(t)|

+ ξ2(t)|y1(t)− y2(t)|
[
− b2(t) + c1(t)(2eW2+ε + 2d2(t))

+ η2(t)
]

+ (f2(t)− γ2(t))|v1(t)− v2(t)|

≤ − ew1−ε|x1(t)− x2(t)|
[
bl1 − cu2 (2eW1+ε + 2du1 )− ηu1

]
− (γl1 − fu1 )|u1(t)− u2(t)|

− ew2−ε|y1(t)− y2(t)|
[
bl2 − cu1 (2eW2+ε + 2du2 )− ηu2

]
− (γl2 − fu2 )|v1(t)− v2(t)|

≤ − εV (t, Z1, Z2), for t > t8.
(25)

Therefore, V (t, Z1, Z2) is non-increasing. Integrating (25)

from t8 to t (t > t8) leads to

V (t, Z1, Z2)+ε

∫ t

t8

V (s, Z1, Z2)∆s ≤ V (t8, Z1, Z2) < +∞.

Hence, ∫ +∞

t8

V (s, Z1, Z2)∆s < +∞,

which means that
lim

t→+∞
|x1(t)− x2(t)| = lim

t→+∞
|y1(t)− y2(t)| = 0,

lim
t→+∞

|u1(t)− u2(t)| = lim
t→+∞

|v1(t)− v2(t)| = 0.

Therefore, system (1) is uniformly asymptotically stable. �
Remark 4.1. By constructing a different Lyapunov function
with ours, Zhi, Ding and Li [25] established sufficient con-
ditions on the uniformly asymptotical stability of the system
(1) (see Theorem 15 in [25]) which are more complex than
conditions (A2) and (A3) in Theorem 4.1.

V. EXAMPLE AND NUMERIC SIMULATION
In this part, we will give some numerical simulations to

support our results.
Example 5.1. Consider the following system:

xM(t) =0.35 + 0.02 sin(2t)− 0.33exp{x(t)}
− 0.02[exp{y(t)} − 0.06]2 − 0.2u(t),

yM(t) =0.38 + 0.01 cos(3t)− 3exp{y(t)}
+ 0.03[exp{x(t)} − 0.05]2 − 0.55v(t),

uM(t) =− (0.6 + 0.03 sin(
√

7t))u(t) + 0.2exp{x(t)},
vM(t) =− (0.57 + 0.01 cos(

√
5t))v(t) + 1.5exp{y(t)}.

(26)
By simple calculation, we get

al2 − fu2 v∗ ≈ −0.231 < 0,

which implies that we can’t judge the permanence by Theo-
rem A since (Q2) does not hold.

On the other hand, z1(t) = exp{x(t)} and z2(t) =
exp{y(t)}, then system (26) reduces to the following con-
tinuous system:

ż1(t) =z1(t)
(

0.35 + 0.02 sin(2t)− 0.33z1(t)

− 0.02(z2(t)− 0.06)2 − 0.2u(t)
)
,

ż2(t) =z2(t)
(

0.38 + 0.01 cos(3t)− 3z2(t)

+ 0.03(z1(t)− 0.05)2 − 0.55v(t)
)
,

u̇(t) =− (0.6 + 0.03 sin(
√

7t))u(t) + 0.2z1(t),

v̇(t) =− (0.57 + 0.01 cos(
√

5t))v(t) + 1.5z2(t).

(27)

Since µ(t) ≡ 0, we can choose L = 0 for convenience. Thus,
for system (27), we have

al1 − cu1 (eW2 + du2 )2 ≈ 0.3292 > 0,

so (A1) holds and system (26) is permanent according to
Theorem B.

Moreover, since

γl1 − fu1 = 0.37 > 0, γl2 − fu2 = 0.01 > 0,

bl1 − cu2 (2eW1 + 2du1 )− ηu1 ≈ 0.0597 > 0,

bl2 − cu1 (2eW2 + 2du2 ) > ηu2 ≈ 1.4921 > 0,
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Fig. 1. Numeric simulations of system (27) with the initial condition
(z1(0), z2(0), u(0), v(0))T = (0.2, 0.4, 0.1, 0.2)T , (1, 0.5, 0.7, 0.3)T ,
(0.8, 0.8, 0.1, 0.5)T and (0.6, 0.2, 0.3, 0.8)T , respectively.

so all conditions in Theorem 4.1 are satisfied and system (27)
is permanent and uniformly asymptotically stable which is
supported by Fig. 1.

When T = Z, if we also set z1(t) = exp{x(t)} and
z2(t) = exp{y(t)}, then system (26) reduces to the following
discrete system:

z1(t+ 1) =z1(t)exp
[
0.35 + 0.02 sin(2t)− 0.33z1(t)

− 0.02(z2(t)− 0.06)2 − 0.2u(t)
]
,

z2(t+ 1) =z2(t)exp
[
0.38 + 0.01 cos(3t)− 3z2(t)

+ 0.03(z1(t)− 0.05)2 − 0.55v(t)
]
,

∆u(t) =− (0.6 + 0.03 sin(
√

7t))u(t) + 0.2z1(t),

∆u(t) =− (0.57 + 0.01 cos(
√

5t))v(t) + 1.5z2(t),
(28)

Since µ(t) ≡ 1, we choose L = 1 for convenience. Thus,
we have

al1 − cu1 (eW2 + du2 )2 ≈ 0.3292 > 0,

γl1 − fu1 = 0.37 > 0, γl2 − fu2 = 0.01 > 0,

bl1 − cu2 (2eW1 + 2du1 )− ηu1 ≈ 0.0296 > 0,

bl2 − cu1 (2eW2 + 2du2 ) > ηu2 ≈ 1.4881 > 0,

so all conditions in Theorem B and Theorem 4.1 are satis-
fied, system (28) is permanent and uniformly asymptotically
stable. Our numerical simulation also supports this result (see
Fig. 2).

VI. CONCLUSION

In this paper, we consider a competition and cooperation
model of two enterprises with feedback controls on time
scales which was investigated by Zhi, Ding and Li [25]. By
using some differential inequalities on time scales, we obtain
a new condition on the permanence of system (1) which
is weaker than those in [25] and [26]. This result shows
that feedback terms are irrelevant to the permanence of this
model. By constructing a different Lyapunov function with
Zhi, Ding and Li [25], we established some new sufficient
conditions on the uniformly asymptotical stability of the
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Fig. 2. Numeric simulations of system (28) with the initial condition
(z1(0), z2(0), u(0), v(0))T = (0.2, 0.4, 0.1, 0.2)T , (1, 0.5, 0.7, 0.3)T ,
(0.8, 0.8, 0.1, 0.5)T and (0.6, 0.2, 0.3, 0.8)T , respectively.

considered system which are more simpler and easier to
verify then those in [25]. Therefore, our results improve and
complement those in [25, 26].
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Boston, 2001.

[14] Y. Fan, Y. Yu and L. Wang, “Some differential inequal-
ities on time scales and their applications to feedback
control systems,” Discrete Dynamics in Nature and So-
ciety, vol. 2017, Article ID 9195613, 11 pages, 2017.

[15] L. Wang and Y. Fan, “Permanence and existence of
periodic solutions for Nicholson’s blowflies model with
feedback control and delay on time scales,” Discrete
Dynamics in Nature and Society, vol. 2018, Article ID
3403127, 7 pages, 2018.

[16] Y. Li, L. Yang and H. Zhang, “Permanence and uni-
formly asymptotical stability of almost periodic solutions
for a single-species model with feedback control on time
scales,” Asian-European Journal of Mathematics, vol. 7,
no. 1, Article ID 1450004, 15 pages, 2014.

[17] Q. Yue, “The influence of positive feedback control
to a single species stage structure system,” Engineering
Letters, vol. 28, no. 2, pp. 322-330, 2020.

[18] Z. Li, J. Zhou and T. Zhang, “Permanence and uniform
asymptotical stability of a ratio-dependent Leslie system
with feedback controls on time scales,” ScienceAsia, vol.
46, no. 4, pp. 494-502, 2020.

[19] S. Yu, H. Wu and J. Chen, “Multiple periodic solutions
of delayed predator-prey systems with type IV functional
responses on time scales,” Discrete Dynamics in Nature
and Society, vol. 2012, Article ID 271672, 12 pages,
2012.

[20] L. Wang, “Dynamics of an almost periodic single-
species system with harvesting rate and feedback control
on time scales,” IAENG International Journal of Com-
puter Science, vol. 46, no. 2, pp. 237-242, 2019.

[21] X. Chen, C. Shi and D. Wang, “Dynamic behaviors for
a delay Lasota-Wazewska model with feedback control
on time scales,” Advances in Difference Equations, vol.
2020, Article ID 17, pp. 1-13, 2020.

[22] S. Yu, “Effect of predator mutual interference on an
autonomous Leslie-Gower predator-prey model,” IAENG
International Journal of Applied Mathematics, vol. 49,
no. 2, pp. 229-233, 2019.

[23] J. Zhang, S. Yu, Q. Wang, “Extinction and stability of a
discrete competitive system with Beddington-DeAngelis
functional,” Engineering Letters, vol. 28, no. 2, pp. 406-
411, 2020.

[24] Y. Liu, Y. Liao, Y. Yang, S. Han and T. Zhang, “Mul-
tiplicity of positive almost periodic solutions and local
asymptotical stability for a kind of time-varying fishing
model with harvesting term,” Engineering Letters, vol.

28, no. 4, pp. 1232-1237, 2020.
[25] Y. Zhi, Z. Ding and Y. Li, “ Permanence and almost

periodic solution for an enterprise cluster model based on
ecology theory with feedback controls on time scales,”
Discrete Dynamics in Nature and Society, vol. 2013,
Article ID 639138, 14 pages, 2013.

[26] L. Lu, Y. Lian and C. Li, “Dynamics for a discrete
competition and cooperation model of two enterprises
with multiple delays and feedback controls,” Open Math-
ematics, vol. 15, no. 1, pp. 218-232, 2017.

IAENG International Journal of Applied Mathematics, 51:3, IJAM_51_3_21

Volume 51, Issue 3: September 2021

 
______________________________________________________________________________________ 




