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Abstract— The two-echelon single vendor−multi-buyer
inventory model is an interesting topic and is suitable to
many real conditions in the supply chain system. The existence
of imperfect quality items and controllable lead time is one
of the important assumptions in modern inventory analysis.
This study analyzes the two-echelon single-vendor–multi-buyer
inventory model with imperfect quality items presented as
random variables, which follow the Binomial distribution. We
use boundedness service level constraint to replace shortage
cost term in the objective function. We also use the integrated
scheme to formulate optimization problems. We prove a theo-
rem about the nonconvexity properties of the objective function
and then apply this result with the Karush–Kuhn–Tucker
(KKT) conditions and the Lagrange multiplier method to obtain
an optimum solution. Using numerical examples, we show that
our model can help a vendor minimize the total cost of the
inventory system and the number of lots in which a product
is delivered from the vendor to all buyers under an uncertain
lead time by reducing the number of imperfect items.

Index Terms—Multi-buyer, Controllable lead time, Imperfect
quality, Service level.

I. INTRODUCTION

IMPERFECT quality items are products in many
shipments with defective quality, that is, products in

several shipments with imperfect quality. According to Lin
[1], imperfect quality items affect the inventory level, service
level constraint (SLC) for a customer, and order quantity in
the supply chain. The traditional assumption, which argues
that products are 100% perfect, is no longer suitable to the
real condition. The first analysis of the inventory model
for imperfect quality has been proposed by Porteus [2] and
Rosenblatt and Lee [3]. Another research is encouraged to
study these topics further. Paknejad et al. [4] proposed an
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inventory model for imperfect quality under some conditions,
such as constant lead time demand, stochastic demand, and
allowed shortage. Wu and Ouyang [5] simplified Paknejad’s
model by adding an analysis on the opportunity of the
back-ordering process, which can be delivered by mixture
backorder (full and partial back ordering), and a lost sale
analysis. Lin [1] analyzed the inventory model for imperfect
quality in which the random variable of a defective item
follows a Binomial distribution under some conditions, such
as allowed shortage and partial back-ordering process. Ko et
al. [6] discussed about preventive maintenance programs in
the imperfect production process. Other results of imperfect
quality item analysis in inventory can be found in several
studies, such as [7], [8], [9], [10], [11], [12], [13], [14],
[15], [16], [17], [18], and [19].

A study in a two-echelon inventory model has been
extended to the multi-player approach. The coordination
policy and synchronization in production flow are essential
in the analysis of inventory with multiple buyers. Several
papers have discussed coordination and synchronization
assumptions in the inventory model for a single vendor and
multiple buyers. For example, Banerjee and Banerjee [21]
worked with a single-vendor–multi-buyer model by using
electronic data interchange under the assumption of the
coordination policy between a vendor and multiple buyers.
A similar result is proposed by Chu and Leon [26] with
their analysis of the inventory model for a single vendor
and multiple buyers under private information. Banerjee and
Burton [22] focused on the replenishment policy under the
coordination policy. This coordination can reduce inventory
cost, rather than the traditional approach of each vendor
and buyer implementing their own optimal policy. This
coordination policy can be implemented into synchronization
assumption in the production flow between a vendor and all
buyers. Hoque [23] provided the application of this type of
synchronization on the inventory model with a single vendor
and multiple buyers under the coordination policy. Jha and
Shanker [20] also shared an analysis of the inventory with
a single vendor and multiple buyers under coordination and
synchronization, but in uncertain lead time conditions. This
uncertainty lead time is handled by a common method to
control lead time cost, that is, controllable lead time. The
vendor and all buyers still agree to take the coordination
policy and synchronization in the production flow. In this
model, they included SLC but did not consider stockout
cost in the objective function. Moreover, this model excluded
imperfect quality items. Another result of inventory analysis
involving a single vendor and multiple buyers for imperfect
quality is given by Mandal and Giri [27]. In their analysis,
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they assumed that all buyers follow a partial backorder and
the defective item is regarded as a percentage from all
products.

In this research, we are interested in analyzing a single-
vendor–multi-buyer inventory model, which extends and
modifies the model proposed by Jha and Shanker [20] into an
inventory model for imperfect quality items. We still adopt
the coordination policy and synchronization in the production
flow, including controllable lead time. We add assumptions
about the existence of imperfect quality, transportation cost,
and boundedness SLC into the model. Because the product
quality from the production process is not always 100%
perfect, then the assumption of imperfect quality items is
essential to obtain a realistic inventory model. Considering
the existence of imperfect quality, all buyers must take
different holding costs for non-defective and defective items.
So, there is modification in holding cost term which from
single holding cost into two different holding cost. Then, we
also give modification with add fixed transportation cost to
the objective function of the model. We use the boundedness
SLC to replace the shortage cost term in the objective
function and then take this service level as a constraint
of the optimization problem. Therefore, we work with a
constrained optimization problem in which total cost is the
objective function and service level is a constraint. In this
research, we assume that all buyers follow full-ordering. We
assume that imperfect quality items are random variables
and follow the Binomial distribution. We use the expectation
value concept of Binomial distribution to find the joint total
cost. Those assumptions is different with other work like
by Mandal and Giri [27] which assume buyers follow a
partial backorder and the defective item is regarded as a
percentage from all products. Furthermore, we consider the
synchronization of the production flow between a vendor and
all buyers. This type of synchronization can minimize the
total average cost. The synchronization of production flow is
yet to be discussed in a single-vendor–multi-buyer setting
under the combination of assumption imperfect quality
items and service level as a constraint. We pay further
attention to the mathematical analysis of the non-convexity
of the objective function of the optimization problem. Non-
convexity properties are a common problem in the objective
function of an inventory model with a complex form.
However, according to the best of author information on
inventory research, the analysis of non-convexity properties
has never been discussed before. Therefore, we prove a
theorem about such properties. Subsequently, we apply this
result with Karush–Kuhn–Tucker (KKT) conditions and the
Lagrange multiplier method to obtain an optimum solution
of constrained optimization problems. We also provide an
algorithm procedure for the optimal solution and numerical
examples by using appropriate simulation data. From these
numerical results, controlling the number of imperfect quality
items can reduce the total cost for the system.

II. MODEL FORMULATION

We determine the analytical and numerical results of the
inventory model, which involves a single vendor and multiple
buyers, for an imperfect quality product. Assumptions about
the controllable lead time and the synchronization of the
production flow between all buyers and the vendor are

referred to the assumptions by Jha and Shanker [20]. We con-
sider imperfect quality items as a random variables, which
follow the Binomial distribution. An integrated scheme and
some mathematical optimization techniques are applied to
determine the optimal value. We describe the difference
between our result and that obtained by Jha and Shanker [20].
Jha and Shanker [20] excluded the existence of imperfect
quality in their model. By contrast, we define the existence
of imperfect quality items in the products. Such an existence
implies two different types of holding cost: holding cost for
defective items and holding cost for non-defective items.
We add fixed transportation costs to the objective function
of the model. For the optimization process, we work with
constrained optimization problems where expected cost is
an objective function and boundedness service level is a
constraint. We also provide a theorem with its proof to
explain the non-convexity condition of the objective function.
Optimization methods using KKT conditions and the La-
grange multiplier are applied for non-convexity conditions.
Before going into any details about the mathematical model,
some notations, including decision variables and parameters,
are provided in Table I.

TABLE I
NOTATIONS

Notation Explanation
qi Order quantity for each buyer, a decision variable.
ki Safety factor, a decision variable.
Li Lead time, a decision variable
m Number of lots in which a product is delivered from

from the vendor to each buyer-i.
Di Average demand per unit time.
Oi Ordering cost.
Bi Unit purchase cost.
ri Reorder point.
σi Standard deviation of demand per unit time.
Xi Lead time demand which has a finite mean DiLi and

standard deviation σi.
√
Li.

Ki Fixed freight cost.
γi Defective rate in the order lot.
Yi Random variable for a defective items.
hgi Holding cost for a non-defective items per unit time.
hbi Holding cost for a defective items per unit time.
x Buyers’ inspection time.
E [.] Expectation.
q Order quantity of a buyer, including defective items,

a decision variable.
P Production rate.
T Length of the cycle.
S Fixed setup cost.
hv Vendor’s holding cost per unit time.
ω Treatment cost for imperfect quality.

ETCU Expected average total cost per unit time.
W Set of buyers with an active SLC.
V Set of buyers with an inactive SLC.

A. Assumptions

In this section, we provide the details and explanations
about the assumptions used to construct the proposed model.
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1) The supply chain system consists of one vendor
producing a single item and delivering it to several
numbers of i buyers in m shipments.

2) Average demand from each buyer-i is Di and with a
standard deviation σi.

3) The inventory is continuously reviewed. Each buyer-i
places an order immediately when the inventory level
falls into a reorder point.

4) The lead time related to each buyer-i has several
ni mutually independent components. The rth
component, which is r ≤ ni, has a minimum duration
ai,r and normal duration bi,r and a crushing cost per
unit time ci,r. Index i and r refer to each buyer-
i and each component, respectively. Without loss of
generality, we assume that ci,1 ≤ ci,2 ≤ ... ≤ ci,ni

,∀i.
The components of lead time can be crashed one at
a time starting with the component of least ci,r,∀i,
and so on. Crashing costs are fully transferred to each
buyer-i if any. Let, Li,r =

∑ni

r+1 bi,r +
∑r
j=1 ai,j ,

r = 1, 2, 3, . . . , ni,∀i, denote the length of lead time
for buyer-i whose components 1, 2, 3, ..., r are crashed
to their minimum duration. The maximum duration
of lead time for the buyers is denoted by Li,0, with
Li,0 =

∑ni

r=1 bi,r,∀i. Then, the lead time crashing cost
Ci(Li) per-cycle of the ith buyer is given by

Ci(Li) = ci,r (Li,r−1 − Li,r) +
∑r−1
j=1 ci,j (bi,j − ai,j) , (1)

where Li,r ∈ [Li,r, Li,r−1] ,∀i ∈ N.
5) A fixed cost is applied for transporting products from

the vendor to each buyer-i per cycle, and the cost is
assumed to be the same for all buyer-i.

6) Some defective items with probability γi (0 ≤ γi < 1)
exist in a lot that arrives on each buyer-i’s side. For
simplification, this probability is assumed to have the
same value for each buyer-i, that is, γi = γ,∀i. These
defective items are discovered after the inspection
process with screening rate x and are returned to
the vendor in the next lot of shipments. The number
of defective items denoted by Yi has a binomial
distribution with parameters q and γ.

B. Buyers’ Expected Average Total Cost

Given that γi = γ, then Yi = Y . We denote Y as a random
variable, which represents the number of the defective items
with a defective rate of γ (0 ≤ γ < 1) within a lot of qi and
follow the Binomial distribution

Pr(Y ) = CqiY γ
Y (1− γ)qi−Y ), Y = 0, 1, 2, . . . , qi, (2)

where E [Y ] = qiγ, E
[
Y 2
]
= q2i γ

2 + qiγ(1 − γ). The
expected length of the cycle time and expected total cost
under a lot of qi are formulated by

E [T ] = E

[
qi − Y
D

]
=
qi(1− γ)

D
. (3)

EJTC =
E [JTC]

E [T ]
. (4)

The total cost for each buyer is the sum of several compo-
nents of cost, such as fixed ordering cost, fixed transportation
cost, holding cost for both non-defective items and defective
items, and crashing lead time cost. SLC replaces stockout

cost because shortage cost is a constraint in the inventory
model. All of the buyers run the inspection process after
a lot of qi arrives at their’s side. The inspection process
is delivered with the rate of inspection x and inspection
period qi

x . The main purpose of this process is to detect
non-defective items in a lot of qi. These defective items are
discovered after the inspection process with screening rate x
and are returned to the vendor in the next lot of shipments.
To illustrate the dynamic in the buyers’ side and the vendor’s
side, we give the inventory level for the buyers and the
vendor in Figure 1. The inventory level per-cycle for each
buyer-i for non-defective items is evaluated on the basis of
the number of defective items in order lot, which arrives in
each buyer-i and is reduced by the number of defective items
that are not detected when inspection period qi

x is launched
by each buyer.

Fig. 1. Inventory Level for the Vendor and Buyers

We note that all the arrival items are accounted for the
non-defective items until they are gradually found in an
inspection process. Therefore, we can calculate the inventory
level for defective items (Îbi) by subtracting the accumulated
defective items found during inspection time from defective
items throughout the cycle time. Therefore, we have

Îbi =

(
(qi − y)y

Di
− qiy

2x

)
. (5)

Thus, the holding cost term for defective items is obtained
when Equation (5) is multiplied by holding cost for defective
items and unit purchase cost, that satisfy

hbiBiÎbi = hbiBi

(
(qi − y)y

Di
− qiy

2x

)
. (6)

The average inventory level per cycle for non-defective items
is obtained from the sum of average inventory level for non-
defective items, which come to buyers’ side and average
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inventory level for buffer stock for each buyer-i. This formula
is given by

Îgi =
qi − y
D

(
qiyDi

2x(qi − y)
+
qi − y

2
+ kiσi

√
Li

)
. (7)

Holding cost term for non-defective items per cycle is
obtained when Equation (7) is multiplied by holding cost
for defective items and unit purchase cost, that satisfy

hgiBiÎgi = hgiBi
qi−y
D

(
qiyDi

2x(qi−y) +
qi−y
2 + kiσi

√
Li

)
. (8)

Furthermore, we arrange a total cost per cycle for the buyers
as a sum of a fixed ordering cost, a fixed transportation cost,
holding cost term for defective items (Equation (6)), and
holding cost term for non-defective items (Equation (8)) as

TCbi(qi, ki, Li; y) = Oi +Ki

+ hgiBi
(qi−y)
D

(
qiyDi

2x(qi−y) +
qi−y
2 + kiσi

√
Li

)

+ hbiBi

(
(qi − y)y

Di
− qiy

2x

)
+ Ci(Li). (9)

We consider the synchronization assumption, that is,
qi = Di

q
D , then Equation (9) can be written in a new form.

In this form, qi is replaced by q, therefore

TCbi(q, ki, Li; y) = Oi +Ki

+ hgiBi
Diq

D −y
Di

(
DiqyDi

D

2x(
Diq

D −y)
+

Diq

D −y
2 + kiσi

√
Li

)

+ hbiBi

(
(
qDi
D −y)y
Di

−
qDiy

D

2x

)
+ Ci(Li). (10)

From Equation (10) the expected total cost for buyers per
cycle is given by

ETCbi(q, ki, Li) ≡ E [TCi (q, ki, Li;Y )] = Oi +Ki

+ hgiBi
q(1−γ)
D

(
qDiγ

2x(1−γ) +
qDi(1−γ)

2D + kiσi
√
Li

)

+ hbiBi
q2γ

D

(
(1− γ)− Di

2x

)
+C (Li) . (11)

Based on Equation (4), we obtain the formulation of the
expected average total cost per unit time for each buyer as

ETCUbi(q, ki, Li) =
ETCi (q, ki, Li)

E [T ]
=
ETCi (q, ki, Li)D

q(1− γ)
,

Hence,

ETCUbi(q, ki, Li) =
D

q(1−γ) (Oi +Ki + Ci (Li))

+ hgiBi

(
qDiγ

2x(1−γ) +
qDi(1−γ)

2D + kiσi
√
Li

)

+ hbiBiqγ

(
1− Di

2x(1− γ)

)
. (12)

C. Vendor’s Expected Average Total Cost
Cost for the vendor has three components, such as setup

cost, cost of treatment for defective items, and holding
costs. Considering that the rate production of the vendor
is higher than the demand rate from all of the buyers, the
vendor inventory level increases gradually. After the first
lot of production finishes in the vendor, it is delivered to
each buyer-i. The production process continues until the
quantity of mq is reached in one production cycle, and
the process is stopped immediately. Each buyer-i receives
each of size qi’s in m lots of shipments until the level
inventory in vendor reaches to zero. As illustrated in Figure
1, the level inventory of the vendor (Îv) can be obtained by
subtracting the accumulated all buyer-i inventory level from
the accumulated vendor inventory level as

Îv = m

(
q.
q

P
+ q

q(m− 1)q

D

)
−
∫ mq

P

0

Ptdt

−
N∑
i=1

(
1 + 2 + ...+ (m− 1)qi

qi
Di

)
.

⇔

Îv = m
q2

P
+m(m−1)q

2

D
− 1

2

Pm2q2

P 2
− q

2(m− 1)m

2D2

N∑
i=1

Di.

Îv =

(
mq
( q
P

+ (m− 1)
q

D

)
− m2q2

2P

)
− q

2(m− 1)mD

2D2
.

⇔

Îv = mq
( q
P

+ (m− 1)
q

D
− mq

2P

)
− (m− 1)mq2

2D
.

⇔

Îv =
mq2

2

(
m− 1

D
− m− 2

P

)
.

(13)
Based on Equation (13), we obtain the holding cost term

for the vendor is

hv
mq2

2

(
m− 1

D
− m− 2

P

)
. (14)

The cost of treatment for defective items is mY ω. Therefore,
the random variable of the vendor’s total cost is sum of the
fixed setup cost, cost of treatment for defective items, and
holding cost term. This give

Cv(q,m) = S +mY ω + hv
mq2

2

(
(
m− 1

D
− m− 2

P

)
.

(15)
We apply the expectation formula in (4) to Equation (15),
for obtaining the expected average total cost per unit time as
follows:

ETCUv (q,m) =
D

(
S+mqγω+hv

mq2

2 (m−1
D −m−2

P )
)
.

mq(1−γ) (16)

Given that integrated scheme exists between the vendor
and all buyers, then the expected average total cost per unit
time is the sum of the vendor’s expected average total cost
per unit time and buyers’ expected average total cost per unit
time, as given by

JETCU (q, k1, k2, ..., kN , L1, L2, ..., LN ,m) =

N∑
i=1

ETCUbi(q, ki, Li) + ETCUv (q,m). (17)
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D. SLC and Optimization Problem

Obtaining quantification about penalty costs associated
with shortage conditions is difficult. SLC can be used to
replace the stock-out cost term. SLC formula for each buyer-i
is given by

E
[
(Xi − ri)+

]
qi

≤ ηi, (18)

where ηi is a real constant value. We consider that the lead
time demand analysis is following distribution-free method
and satisfies the suitable theorem proposed by Mandal and
Giri [27].

E
[
(Xi − ri)+

]
≤ σi

√
Li

2

(√
1 + k2i − ki

)
, (19)

Inequality (19) is equivalent with

σi

√
Li

2

(√
1 + k2i − ki

)
qi

≤ ηi,∀i. (20)

Given that all buyers and the vendor agree to the
synchronization process, then Equation (20) can be
transformed into

Dσi
√
Li

(√
1 + k2i − ki

)
2Diq

≤ ηi,∀i. (21)

Inequality (21) is set to be a constraint in our optimization
problem. Therefore, constrained optimization problem by
using (17) and (21) is

min JETCU , (22)

s.t.

Dσi
√
Li

(√
1 + k2i − ki

)
2Diq

≤ ηi,∀i. (23)

III. SOLUTION PROPERTIES

Before going into any details about optimal analysis,
the convexity analysis of the objective function of the
optimization problem (22)−(23) is provided through the
following theorem.

Theorem 3.1: The joint expected average total cost
function JETCU = F (q, ki, Li,m) of (22)−(23) is not
convex in (q, k1, k2, . . . , kN , L1, L2, . . . , LN ,m).

Proof: The Hessian matrix of the objective function
JETCU is given by

H =


c1 0 0 c2
0 0 c3 0
0 c3 −c4 0
c5 0 0 c6

 ,

where
c1 =

D( S
m+(Oi+Ki+Ci(Li)))

q3(1−γ) , c2 = 2SD
m2q(1−γ) +

Dhv( 1
D−

1
P )

2(1−γ) ,

c3 =
hgiBiσi

2
√
Li

, c4 =
hgiBikiσi

4
√
L3

i

,

c5 =
D
(

S
q2m2 +hv

2 ( 1
D−

1
P )
)

1−γ , and c6 = 2SD
m3q(1−γ) .

Using the counter-example process, for i = 1, F is proven
not convex in (q, k1, L1,m). For i = 1, the eigenvalue of H
is given by |λI −H| = 0. Therefore, we obtain∣∣∣∣∣∣∣∣

λ− c11 0 0 −c2
0 λ −c31 0
0 −c31 λ+ c41 0
c5 0 0 λ− c6

∣∣∣∣∣∣∣∣ = 0,

where c11 =
D( S

m+(Oi+Ki+Ci(Li)))
q3(1−γ) , c31 =

hg1B1σ1

2
√
L1

, and

c41 =
hg1B1k1σ1

4
√
L3

1

. If we compute those determinant equation,

then we obtain the following polynomial.

a0x
4 + a1x

3 + a2x
2 + a3x+ a4 = 0, (24)

where

a0 = 1,

a1 = −
(
D
(

2S
m2 +

(S+(O1+K1+C1(L1))m

q2

)
q(1−γ)m − c41

)
,

a2 =
(
c41c6 + (c31)

2
+ c11 (c41 − c6)

)
,

a3 = c11 + c41
(
c6 + c41c6L1

2 + c41L1
2
)
,

a4 = −c11c412c6L1
2.

If we apply Routh−Hurwitz’s criteria, then we know that
not all of roots of (24) are negative. If we apply Descartes’s
rule of signs and Vieta’s formula, then we conclude that
obtaining all positive roots is impossible. Hence, for i = 1,
H is an indefinite matrix, and F is not a convex function in
(q, k1, L1,m). Function F is also not a convex function in
(q, ki, Li,m), i ∈ N .

Because Function F is also not a convex function in
(q, ki, Li,m), i ∈ N and also the complexity of the form
of function F , then it is very difficult to find the optimal
solution for all variables simultaneously. However, for
practical purposes and decision-making in the inventory
problem, we can obtain the optimum value when at least
another decision variable is given in a specific value. The
analytical result of the optimum value is delivered in two
different approaches. First, we temporarily ignore the SLC,
resulting in an unconstrained optimization. Second, we
consider buyers with active (at least one) SLC. We begin
with the first case. For the fixed valued of m and Li, we
take the first partial derivative of the joint total for q and Li
and obtain

∂JETCU

∂q = − D
q2(1−γ)

(
S
m +

∑N
1=1 (Oi +Ki + Ci(Li))

)
+
∑N

1=1
DiBi

(1−γ)

(
hgiγ
2x +

hgi(1−γ)2
2D +

hbiγ
(
1−γ−Di

2x

)
Di

)
+

Dhv
2(1− γ)

(
m− 1

D
− m− 2

P

)
, (25)

and
∂JETCU

∂Li
=
hgiBikiσi

2
√
Li

. (26)

Considering that the value of the second partial derivative
of JETCU with respect to q is always positive
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(
∂2JETCU

∂q2 > 0
)

, then JETCU is a convex function in q for
any given fixed m and Li. For the specific value of (q,m),
the following equation is satisfied.

∂2JETCU

∂L2
i

= −hbiBikiσi
4
√
L3

< 0, (27)

Hence, JETCU is a concave function in Li, implying that
the minimum values of JETCU occur at the endpoints of
the interval Li ∈ [Li,r, Li,r−1] ,∀i, for a given fixed value
of (q,m). If we take (25) equal to zero, then we obtain:

q∗ =

√√√√D
(
S
m +

∑N
i=1 (Oi +Ki + Ci(Li))

)
c7 +

Dhv

2

(
m−1
D + m−2

P

) , (28)

where c7 =
∑N
i=1DiBi

(
hgiγ
2x +

hgi(1−γ)2
2D +

hbiγ
(
1−γ−Di

2x

)
Di

)
.

If the joint total cost is obtained based on the value of q
in (28) and the safety factor for all buyers is set equal to
zero, then SLC is not linearly related to the joint total cost
and it can be ignored. If value of q in (28) does not meet at
least one buyer from all of the buyers which have zero safety
factor, then value of q in (28) is not the optimum solution. It
implies that one or more than one buyer has an active SLC.
In this condition, q also depends on the safety factor from
buyer-i who takes an active SLC. To determine the optimum
solution whether some buyers with an active SLC exist, we
use the Lagrange function method. The Lagrange function
of (22)−(23) is given by

F (q, ki, Li,m, λw) =
N∑
i=1

ETCUbi(q, ki, Li) + ETCUv (q,m)

+
∑
w∈W λw

(
Dσw

√
LW

(√
1 + k2w − kw

)
− ηw2Dwq

)
. (29)

If we take ηw = Dσw

√
LwDw

w , and then substitutes this value
into (29), then we have

F (q, ki, Li,m, λw) =

N∑
i=1

ETCUbi(q, ki, Li) + ETCUv (q,m)

+
∑
w∈W

λwDσw
√
Lw

((√
1 + k2w − kw

)
− 2q

)
. (30)

where λw is the Lagrange multiplier related to the buyer
which sets an active SLC. The set of buyers can be divided
into two groups. Let w ∈ W and v ∈ V denote the set of
buyers with an active SLC and an inactive SLC, respectively,
which can be identified by checking the SLC of each buyer
with their safety factor and whether q satisfies (28). If we
set i ∈ {1, 2, . . . , N} and

Dσi
√
Li

(√
1 + k2i − ki

)
2Diq

> ηi, ki = 0,

then i ∈ W ; otherwise i ∈ V . For a fixed given value of
m and L ∈ [Li,r, Li,r−1] ,∀i, the optimum solution can be
found from solving set of partial differential equations

∂F

∂q
= 0,

∂F

∂kw
= 0,

∂F

∂λw
= 0,

where

∂F
∂q = − D

q2(1−γ)

(
S
m +

∑N
i=1 (Oi +Ki + Ci(Li))

)
+ c7

+ Dhv

2

(
m−1
D + m−2

P

)
−
∑
w∈W 2λwDσw

√
Lw = 0, (31)

∂F
∂kw

=
√
Lwσw

(
hbwBw + λwD

(
kw√
1+k2w

− 1

))
= 0, (32)

and

∂F

∂λw
= Dσw

√
Lw

((√
1 + k2w − kw

)
− 2q

)
= 0. (33)

By solving (31), (32), and (33) simultaneously, we have the
optimum value when the SLC is active as

q∗ =

√√√√√√√
D
(
S
m +

∑N
i=1 (Oi +Ki + Ci(Li))

)
c8 + 2(1− γ)

∑
w∈W

hbwcw

D

(
1− kw∗√

1+(k∗
w)2

) , (34)

where c8 = c7 +
Dhv

2

(
m−1
D + m−2

P

)
and

λ∗w =
hbwcw

D

(
1− kw∗√

1+(k∗w)2

) , (35)

√
1 + (k∗w)

2 − kw∗ = 2q∗. (36)

Equations (34), (35), and (36) are found in implicit
mathematical form. Information about the values of the
others are needed to process such equations. However, we
can present it in parametric form. Suppose for some value
of kw = µ, µ ∈ N , which satisfies (36), then we can find
the values of q∗ in (34). In this research, we use a numerical
process to get a representation about the optimum value of
our problem. Procedure algorithm is proposed to find an
optimum solution based. By taking several values of kw
and q through an iterative numerical process, we obtain the
approximation value of the optimal solution of this process.
We provide this result through numerical examples in the
next section.

IV. NUMERICAL PROCESS AND EXAMPLE

We provide some numerical examples and sensitivity
analysis parameters of our analytical result. For the numerical
process of q∗ and k∗, we consider the algorithms presented
in Table II. We can process these algorithms with a common
spreadsheet computation software. Then, we give a numerical
example for the case when SCL is inactive. We consider the
system consisting of one vendor and three different buyers
with the following data: P = 3,000 units per year, S = IDR
5600000, hv = IDR 2400 per unit per year, and ω =IDR
1400 per unit per year. Parameters Oi and Ki are calculated
per order; hgi, hbi, x, and σ are calculated per unit per year;
B is calculated per unit.
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TABLE II
ALGORITHM TO FIND AN OPTIMUM SOLUTION

Algorithm

Begin
For each i ∈ N do
Begin
Step 1. Set m=1.
Step 2. For each Li,j , j = 1, 2, 3, ..., r do Steps (i)−Step (iv), do

Begin
set kij1 = 0, do
(i). Subtitute kij1 = 0 into (36) to obtain qj1.
(ii). Use qj1 from Step (i) to find k1j2 by solving (35).

Any simple root finding methods can be applied.
(iii). Set kij1 = k1j2.

Repeat Steps (i) and (ii).
Until
|qjn − qjn−1| ≤ εq and |kjn − kjn−1| ≤ εk , εq , εk ∈ R.

(iv). Compute JETCU (qj , kij , Lij ,m).

End
Step 3. Determine min(j=1,2,3,...,r) JETC

U (qj , kij , Lij ,m).
If JETCU (q∗m, k

∗
im, L

∗
im,m)

= min(j=1,2,3,...,r) JETC
U (qj , kij , Lij ,m),

Then
(q∗m, k

∗
im, L

∗
im,m) is optimum value for m = 1.

Else go to Step.4.
Step 4. For m = m+ 1, do

Repeat Steps 2 and 3.
Until optimum solution JETCU (q∗m, k

∗
im, L

∗
im,m) is obtained.

End
Step 5. If JETCU (q∗m, k

∗
im, L

∗
im,m) ≤

JETCU (q∗m−1, k
∗
im−1, L

∗
im−1,m− 1).

Then go back to Step 4.
Else go to Step 6.

Step 6. Choose JETCU (q∗m, k
∗
im, L

∗
im,m) =

JETCU (q∗m−1, k
∗
im−1, L

∗
im−1,m− 1),

and (q∗m, k
∗
im, L

∗
im,m) as an optimum solution.

End

The complete data for each buyer-i are given in Table
III. Such data includes demand from each buyer, setup cost,
transportation cost, screening cost, buyers’ holding cost for
non-defective items, buyers’ holding cost for defective items,
unit purchasing cost, and standard deviation of demand per
unit time. Lead time for every buyer has three components,
such as lead ordering time and order transit time, set-up
time, and delivery time. Buyers’ component lead-time data
are given in Table IV. In this simulation, we only consider
the case in which all SLCs on the buyer side are inactive.
That is, ki = 0, i = 1, 2, 3 and q follows Equation (28).

TABLE III
PARAMETER VALUE FOR EACH BUYER-i (IN IDR1000)

i Di Oi Ki x hgi hbi Bi σi

1 720 98 50 1000 3.1 1.6 90 360
2 800 140 50 1000 3.1 1.6 90 400
3 900 195 50 1000 3.2 1.7 90 450

TABLE IV
BUYERS’ COMPONENT LEAD-TIME DATA

Buyer-i r bi,r ai,r Unit crashing cost
(days) (days) (in IDR1000/days)

1 1 20 6 1.4
2 20 6 16.8
3 16 9 70

2 1 20 6 7
2 16 9 18.2
3 13 6 71.4

3 1 25 11 5.6
2 20 6 35
3 18 11 70

For the numerical simulation, we attempt several values of
defective rate γ. We explore the effect of the variation of
the defective rate on the expected joint total cost of the
inventory system. We apply γ = 0.01; 0.02; 0.03; 0.04; 0.05;
0.06; 0.07; 0.08; 0.09; 0.10; 0.11; 0.12; 0.13; 0.14; 0.15; 0.16;
0.17; 0.18; 0.19; 0.20; 0.21; 0.22; 0.23; 0.24; 0.25; 0.26; 0.27;
0.28; 0.29; 0.30; 0.31. If we process these data into the
procedure algorithm, then we obtain the following result in
Table V.

TABLE V
OPTIMUM VALUE (SLC IS INACTIVE) IN DAYS AND IN IDR

γ L∗
1 L∗

2 L∗
3 q∗ m∗ ETC∗

b ETC∗
v JETC∗

0.01 56 49 63 109 25 26861 5777 32638
0.02 56 49 63 107 26 27415 5774 33189
0.03 56 49 63 106 26 27997 5912 33909
0.04 56 49 63 105 26 28579 6052 34631
0.05 56 49 63 104 26 29162 6193 35355
0.06 56 49 63 103 26 29744 6335 36079
0.07 56 49 63 102 26 30328 6479 36807
0.08 56 49 63 101 26 30193 6624 36817
0.09 56 49 63 100 26 31500 6771 38271
0.10 56 49 63 100 26 32088 6920 39008
0.11 56 49 63 99 26 32679 7070 39749
0.12 56 49 63 98 26 33273 7222 40495
0.13 56 49 63 98 26 33869 7377 41246
0.14 56 49 63 97 26 34469 7533 42002
0.15 56 49 63 97 26 35072 7691 42763
0.16 56 49 63 96 26 35678 7852 43530
0.17 56 49 63 96 26 36289 8015 44304
0.18 56 49 63 95 26 36904 8180 45084
0.19 56 49 63 95 26 37524 8348 45872
0.20 56 49 63 94 27 38113 8327 46440
0.21 56 49 63 94 27 38742 8497 47239
0.22 56 49 63 94 27 39378 8670 48048
0.23 56 49 63 93 27 40472 8971 49443
0.24 56 49 63 93 27 40667 9025 49692
0.25 56 49 63 93 27 41321 9027 50348
0.26 56 49 63 93 28 41946 9195 51141
0.27 56 49 63 92 28 42614 9381 51995
0.28 56 49 63 92 28 43291 9570 52861
0.29 56 49 63 92 28 43975 9763 53738
0.30 56 49 63 91 28 44668 9961 54629
0.31 56 49 63 91 28 45370 10162 55532
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From Table V, we resume the relation between variation
of the joint expected total cost with the defective rate and
different value of a number of lots m∗ (from m∗ = 25 to
m∗ = 28) in the following figure.

Fig. 2. Variation of the joint expected total cost with the defective rate

The optimum lead-time length option for buyer-1 is L1 = 56
days, optimum lead time for buyer-2 is L2 = 49 days, and for
buyer-3 is L3 = 63 days. According to Table V and Figure 2,
if the value of the defective rate is increasing, then all buyers’
expected average total cost and the vendor’s average total
cost gradually rise. The number of the lots also rises steadily
when the defective rate increases. Although in our numerical
example, we only present this pattern from γ = 0.01 to
γ = 0.31, this increasing pattern also continues for a high
defective rate. However, economic order quantity slightly
decreases. On the range of the variation of the defective rate
( from γ = 0.01 to γ = 0.01), we observe the number
of lot changes three times in four different values of the
number of the lots, namely, m∗ = 25,m∗ = 26,m∗ = 27,
and m∗ = 28. According to these simulations, if we
can reach a low but reasonable defective rate value, for
example, γ = 0.01 or less, then we can obtain the maximum
number of the lots at m∗ = 25 with q∗ = 109. To reach
a low joint expected cost, the vendor can handle some
parameters properly, for example, by reducing the number
of defective rates. Such reduction must be considered with
another parameter. Therefore, no new parameter appears
when we reduce the number of defective rates.

Next, we observe the effect of another parameter on
(joint) expected total cost for our model. Let γ = 0.02,
then we attempt to take a different value of P , that is,
P = 3000, 3500, 4000, 4500, 5000, 5500, 6000, 6500, 7000,
and 7500. If the vendor raises P (per year), then it can
benefit all buyers because the expected total cost for them
decreases. However, it still increasing for the vendor (and the
joint total cost). The number of lots m∗ also increases ( in our
simulation from m∗ = 27 to m∗ = 30). We illustrate these
results in the following Table VI and Figure 3 as follows.

TABLE VI
CHANGE IN THE OPTIMUM RESULT DUE TO THE CHANGE IN P

FOR γ = 0.02

P m∗ q∗ ETCb ETCv JETC

3000 26 107 27415 5774 33189
3500 26 105 27371 6179 33550
4000 26 105 27341 6478 33819
4500 27 103 27293 6602 33895
5000 27 103 27277 6788 34065
5500 28 102 27242 6853 34095
6000 29 101 27213 6907 34120
6500 29 101 27205 7019 34224
7000 30 100 27182 7051 34233
7500 30 100 27194 7195 34389

Fig. 3. Change in the Expected Total cost with the change in P

Because of the existence of imperfect quality, then the
vendor have to prepare treatment cost for the existence of
imperfect quality item per unit time to handle those kinds
of product. Those become as a warranty cost for the buyers.
If the imperfect quality product can be detected earlier in a
vendor’s side, then it can be reference as a cost of repairs.
The numerical result which presented on the Table VI is
computed using the same value of ω = 1400 per unit per
year. We will observe for two different value of ω, that is,
ω = 700 per unit per year and ω = 2800 per unit per year.
However, we do not do this for all value of P in Table VI.
We attempt to take a simulation for P = 3000, 3500, 6500,
and 7000. The higher value of a treatment cost per unit time
will increase the expected total cost for the vendor for each
value of P . However, it does not that big a difference with
previous one. Based on our simulation, the changes of ω
does not effect to the optimum quantity q∗ for each different
value of P . We present those numerical result in the Table
VII.
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TABLE VII
CHANGE IN THE OPTIMUM RESULT DUE TO THE CHANGE IN P AND ω

FOR γ = 0.02

P ω m∗ q∗ ETCb ETCv JETC

3000 700 26 107 27415 5739 33154
3000 1400 26 107 27415 5774 33189
3000 2800 26 107 27415 5843 33258
3500 700 26 105 27371 6144 33515
3500 1400 26 105 27371 6179 33550
3500 2800 26 105 27371 6248 33619
6500 700 29 101 27205 6984 34189
6500 1400 29 101 27205 7019 34224
6500 2800 29 101 27205 7088 34293
7000 700 30 100 27182 7017 34199
7000 1400 30 100 27182 7051 34233
7000 2800 30 100 27182 7120 34302

According to the numerical result, the vendor must be careful
about the defective rate, ω and P . If defective items and ω
can be reduced, then it can be a long-term benefit for all the
buyers and the vendor. They can reach a low joint expected
total cost by reducing the defective rate.

V. CONCLUSION

By extending the results in a two-echelon single-
vendor−multi-buyer model, we have obtained an integrated
scheme to find an optimum solution to the system with some
exact boundaries. Given the non-convexity properties of the
objective function in all decision variables, we obtained the
optimum value by using the Lagrange function methods for
order quantity of a buyer and safety factor, if number of
lots and lead time are known. Our algorithm can be applied
to find an optimal solution based on a numerical process.
Based on numerical examples, the expected total cost and
the number of lots are affected by the defective item rate
and production rate. Our model can help a vendor minimize
the total cost of the inventory system and the number of lots
under an uncertain lead time by reducing the defective rate.
There are some open problems for future research related
to this topic. For example, by adding stochastic demand for
this model and applying a decentralized approach to find the
optimum solution for this kind of inventory model.
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