
 

  

Abstract—Ranking the fuzzy numbers plays an important 

role in fuzzy decision-making, but it is challenging to rank 

multiple fuzzy numbers comprehensively and effectively. In 

previous studies, various properties and factors of fuzzy 

numbers are considered to construct the ranking scoring 

formula. Therefore, in theory, the uncertainty of fuzzy numbers 

can be better defuzzified, and the formula can measure the 

characteristics of fuzzy numbers. In application, it is 

meaningful and valuable to investigate the use of fuzzy 

number’s ranking score in fuzzy portfolio to measure 

characteristics of the asset. Based on the classical 

mean-variance (M-V) model and four kinds of ranking score 

formulas, this paper constructs the score-variance (S-V) models. 

Finally, a numerical experiment is presented to illustrate the 

feasibility and validity of our proposed S-V model. Compared 

with the M-V model, on one hand the results of our proposed 

models are generally consistent with the classic M-V model; on 

the other hand, the return of our proposed model is slightly 

smaller in some part, but it performs better in skewness and 

Sharpe Ratio. 

 

Index Terms—portfolio, ranking fuzzy numbers, ranking 

score, skewness 

 

I. INTRODUCTION 

HE modern portfolio theory constructed by Markowitz 

[1] in 1950s is regarded as the beginning of modern 

investment quantification. The proposed M-V model is based 

on probability theory. It describes the return rate of securities 

as a random variable and obtains the distribution of the 

random variable based on historical data. However, as a 

complex system, financial market exists a lot of non-random 

factors. Fuzzy set theory [2] can not only describe 

non-probabilistic factors of the financial market, but also 

express the vagueness and uncertainties. Therefore, the 

portfolio selection models in a fuzzy environment have good 

theoretical and practical value. In addition to classical 

objectives of mean and variance, the application of 

 
Manuscript received January 17, 2021; revised July 15, 2021. This 

research was supported by the “Humanities and Social Sciences Research 

and Planning Fund of the Ministry of Education of China, No. 

18YJAZH014-x2lxY9180090”, “Natural Science Foundation of Guangdong 

Province, No. 2019A1515011038”, “Guangdong Province Characteristic 

Innovation Project of Colleges and Universities, No. 2019GKTSCX023”, 

“Soft Science of Guangdong Province, No. 2018A070712006, 

2019A101002118”. 

Xue Deng is a Professor of School of Mathematics, South China 

University of Technology, Guangzhou 510640, China. (e-mail: 

dxue@scut.edu.cn). 

Jiaxing Chen is a Postgraduate Student of School of Mathematics, South 

China University of Technology, Guangzhou 510640, China. 

(Corresponding author, e-mail: 953404093@qq.com). 

higher-order moments was increasingly taken into account. 

Markowitz’s M-V efficient frontier was extended to mean–

variance–skewness (M-V-S) efficient hyper-surface by 

Adcock [3]. Deng and Pan [4] presented a mean-variance 

-skewness-entropy (M-S-E) portfolio model and solved the 

intuitionistic fuzzy (IF) multi-objective model into a 

single-objective model by three methods. Considered that the 

calculation method and reliability of risk measures and return 

are questionable, Alali and Tolga [5] analyzed the correlation 

between them based on historical data. Nazir [6] first 

proposed the multi-core and GP-GPU accelerated 

implementations of Anticor algorithm, which can accelerate 

the highly intensive computations. Complex practical factors 

and subjective attitude of investors are also worth 

considering in the portfolio selection. By combining Data 

Envelopment Analysis (DEA) prospect cross-efficiency 

approach and the maverick index, a novel mean-variance 

-maverick was designed by Deng and Fang [7] for fuzzy 

portfolio selection. Li and Yi [8] proposed a new trapezoidal 

fuzzy number with an adaptive index to measure the 

coherence of investor’s expectation, and constructed fuzzy 

M-V model and M-V-S model to analyze its feasibility and 

effectiveness. To explore the impact of background risks and 

mental accounts on investment decisions, Deng and Liu [9] 

constructed portfolio models with and without background 

risk for comparative study. The Ensemble Empirical Mode 

Decomposition (EEMD) was applied by Zheng and Yao [10] 

to de-noise the data, and the impact on the portfolio 

optimization was investigated. Based on the improved 

entropy-weighted method, Deng and Chen [11] proposed a 

new portfolio model with prospect value constraint and risk 

preference to adjust investment plan. In order to deal with 

fuzzy multi-objective and multi-period portfolio models, a 

hybrid genetic algorithm with wavelet neural network was 

applied [12]. 

   Ranking the fuzzy numbers plays an important role in fuzzy 

decision-making. Since fuzzy numbers contain a lot of 

uncertain information, it is necessary to comprehensively 

consider various factors about fuzzy numbers when ranking 

fuzzy numbers. Modarres and Sadi-Nezhad [13] defined the 

preference ratio of fuzzy numbers to rank them. Chen et al. 

[14] presented a method for ranking generalized fuzzy 

numbers with different left heights and right heights, and 

developed a new method for fuzzy risk analysis. In order to 

overcome the shortcomings of Ezzati et al.’s [15] model, a 

new method for ranking fuzzy numbers based on the 

magnitude concepts was developed by Yu et al. [16]. 

Consider the optimistic and pessimistic attitudes of decision 

makers, Thanh-Lam [17] proposed a unified index with 
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subjective attitude parameters. By weighting defuzzified 

value, height and spread according to their importance, the 

ordered weighted averaging (OWA) operator was designed 

by Wu et al. [18] to rank generalized fuzzy numbers.  

In this paper, a novel portfolio model based on methods for 

ranking fuzzy numbers is proposed. The ranking score can 

comprehensively measure the characteristics of fuzzy 

numbers, furthermore it can also be used as an important 

factor to measure the characteristics of stocks. Therefore, the 

objective of maximizing the mean is replaced by the 

objective of maximizing the ranking score to construct the 

S-V models. By comparing with the classical M-V model, we 

testify the feasibility and effectiveness of our developed S-V 

models.  

The rest of this paper is unfolded as follows. In Section II, 

we review the preliminaries about some definitions and 

properties of generalized fuzzy numbers. In Section III, we 

review several existing methods for ranking fuzzy numbers. 

Based on the four fuzzy number ranking formulas, RS-V and 

M-V models are constructed in Section IV. In Section V, a 

numerical experiment is given to demonstrate the feasibility 

and validity of the proposed S-V models. Conclusions are 

summarized in Section VI. 

II. PRELIMINARIES  

In this section, we first review some definitions and 

properties of generalized fuzzy numbers. 

A. Definitions of Generalized Fuzzy Numbers 

Definition 1[2]: If A  has a membership function 

( )  : 0,1A x R → , called A  is a fuzzy number on the 

universe U , then A  must satisfy the following conditions: 

(1) A  is normal, that is, there exists 0x  belonging to U  

such that 0( ) 1A x = ; 

(2) A  is convex, that is, if all 1x  and 2x  belong to U , then: 

1 2 1 2( (1 ) ) min  ( ( ), ( ));A A Ax x x x    + −                       (1) 

(3) ( )A x  is bounded and upper semicontinuous, and 

{ | ( ) }Ax R x    is a closed set; 

(4) { | ( ) 0}Ax R x   is a compact set. 

Chen [19] developed the concept of generalized fuzzy 

numbers. And the membership function [20] ( )A x  of a 

generalized trapezoidal fuzzy number ( ), , , ; AA a b c d =  is 

defined as follows: 

( ), ;

, ;
( )

( ), ;

0, otherwise.

L

A

A

A R

A

x a x b

b x c
x

x c x d








  


 
= 

 



                                            (2) 

Where ( )L

A x  and ( )R

A x  are continuous mapping functions 

and  0,1A  . 

According to Chen et al. [14], the membership function 

( )A x  of a generalized trapezoidal fuzzy number 

( ), , , ; ,L RA a b c d  =  with the different left height L  and 

right height R  is defined as follows: 

( ), ;

( ), ;
( )

( ), ;

0, otherwise.
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

  

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


                                             (3) 

Where  ( )L

A x  and  ( )R

A x  are continuous mapping 

functions. Similarly, Chen et al. [14] extended the definition 

of arithmetic operations between the generalized fuzzy 

numbers [21] to the generalized fuzzy numbers with different 

left heights and right heights. 

Definition 2: Let ( )1 1 1 1, , , ; ,LA RAA a b c d  =  and B =  

( )2 2 2 2, , , ; ,LB RBa b c d    be two generalized fuzzy numbers 

with different left heights and right heights, then the 

arithmetic operations between the generalized fuzzy numbers 

A  and B  are defined as follows: 

(1) Generalized fuzzy numbers addition  : 

( ) ( )

(

)

1 1 1 1 2 2 2 2

1 2 1 2 1 2 1 2

, , , ; , , , , ; ,

, , , ;

min( , ),min( , ) ,

LA RA LB RB

LA LB RA RB

A B a b c d a b c d

a a b b c c d d

   

   

 = 

= + + + +             

                    

  (4) 

where 
1 1 1 10 1a b c d      and 

2 2 2 20 1a b c d     . 

(2) Generalized fuzzy numbers addition  : 

( ) ( )

(

)

1 1 1 1 2 2 2 2

1 2 1 2 1 2 1 2

, , , ; , , , , ; ,

, , , ;

min( , ),min( , ) ,

LA RA LB RB

LA LB RA RB

A B a b c d a b c d

a a b b c c d d

   

   

 = 

=                 

                    

  (5) 

where 
1 1 1 10 1a b c d      and 

2 2 2 20 1a b c d     . 

When 1L R = =  or 1A = , A  turns into a normal 

trapezoidal fuzzy number, denoted as ( , , , )A a b c d= , and its 

membership function is as follows: 

( )

, ;

1, ;

, ;

0, otherwise.

A

x a
a x b

b a

b x c
x

d x
c x d

d c



−
  −


 

= 
−  

 −



                                  (6) 

B. Numerical Characteristics of Fuzzy Numbers 

In previous studies, there are many methods to define the 

numerical characteristics of fuzzy numbers. Li et al. [22] 

defined the possibility density function formula of fuzzy 

number A  according to its membership function. 

Definition 3[22]: Let A  be a fuzzy number with piecewise 

differentiable membership function ( )A x , then the 

possibility density function of fuzzy number A  can be 

defined as ( ) ( ) ( )f x x x =   and has the properties: 

( ) 0f x   and ( ) 1f x dx
+

−
= . 

By defining the possibility density function of fuzzy 

numbers, the numerical characteristics such as possibilistic 

mean, variance and skewness can be calculated in the same 

way as the numerical characteristic formula of random 

numbers. 

Definition 4[22]: Let A  be a fuzzy number with 

differentiable membership function ( )A x , then the 

possibilistic mean, variance and skewness can be defined as:  
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( ) ( ) ,E A xf x dx
+

−
=                                                           (7) 

( ) ( ) ( )
2

.V A x E A f x dx
+

−
= −                                          (8) 

( ) ( ) ( )
3

.S A x E A f x dx
+

−
= −                                           (9) 

Then, we can obtain the possibility density function of 

trapezoidal fuzzy number  ( , , , )A a b c d=  by Definition 3 as 

follows: 

( ) ( ) ( )

( )

( )

2

2

, ;

, ;

0, otherwise.

A A

x a
a x b

b a

d x
f x x x c x d

d c
 

−
 

−
 −

=  =  
−





             (10) 

Furthermore, according to (7)-(10), the possibilistic mean, 

variance and skewness of trapezoidal fuzzy number

( , , , )A a b c d=  can be calculated easily, shown as follows: 

( )
( ) ( )

2 2

1 1 1 1
        ,

6 3 3 6

b d

a c

x a d x
E A x dx x dx

b a d c

a b c d

− −
=  + 

− −

= + + +

 
                       (11) 

( ) ( )
( )

( )
( )

( ) ( )

( ) ( )( )

( )( ) ( )( )

2

2

2

2

2 2

2

           

1 1
        

18 4

1 1
           

18 6

1 1
           ,

18 6

b

a

b

a

x a
V A x E A dx

b a

d x
x E A dx

d c

b a c b

d c b a c b

b a d c c b d c

−
= −   

−

−
+ −   

−

= − + −

+ − + − −

+ − − + − −





                  (12) 

( ) ( )
( )

( )
( )

3

2

3

2

3 2

2 2

2 3

          

1
         = 19( ) 45( ) ( )

1080

           15( ) ( ) 15( )( )

           45( )( ) 19( ) .

b

a

b

a

x a
S A x E A dx

b a

d x
x E A dx

d c

b a b a c b

b a d c b a d c

c b d c d c

−
= −   

−

−
+ −   

−

− − − − −

− − − + − −

+ − − + − 





                   (13) 

III. SEVERAL EXISTING METHODS FOR RANKING FUZZY 

NUMBERS 

In this section, we review several methods for ranking 

fuzzy numbers in previous studies [14, 16-18]. 

A. Ranking Generalized Fuzzy Numbers by Ranking Score 

Chen et al. [14] presented a method for ranking 

generalized fuzzy numbers with different left heights and 

right heights. In this method, both the areas of the positive 

side and negative side were taken into consideration as 

factors for calculating the ranking score, and the centroid 

values of generalized fuzzy numbers were also applied.  

Suppose there are N  generalized fuzzy numbers 

 | 1, ,iA i N=  to be ranked, where iA =  

( ), , , ; ,i i i i iL iRa b c d   , iL  and iR  denote the left and right 

height of the fuzzy number iA . The specific steps of this 

method are as follows: 

Step 1: Transform each generalized fuzzy number iA  into a 

standardized generalized fuzzy number *

iA , that is, 

* ( , , , ; , ),i i i i

i iL iR

a b c d
A

k k k k
 =                                           (14) 

where max ( , , , ,1), 1, , .i i i i ik a b c d i N= =  

Step 2: Divide the area of standardized generalized fuzzy 

number *

iA  into the left negative area iLN , the right 

negative area iRN , the left positive area iLP , and the 

right positive area iRP , where 1, ,i N= , as shown 

in (15)-(18). 
2 2

*

1

3 3

*

1

1

1

( ) ( ) ,  or ;

( ) ( ) , .

i

i

x x

L R L RAx

i x x

L RAx

f x dx x dx

LN

f x dx x dx

    

  

−

−

 −  


= 
 − 


 

 
         (15) 

3 4

*

3

2 4

*

2

1

1

( ) ( ) ,  or ;

( ) ( ) , .

i

i

x x

L R L RAx

i x x

L RAx

f x dx x dx

RN

f x dx x dx

    

  

−

−

 +  


= 
 + 


 

 
        (16) 

2

*

2 1

3

*

2 1

1

1

( ) ( ) ,  or ;

( ) ( ) , .

i

i

x

L R L RAx x

i x

L RAx x

f x dx x dx

LP

f x dx x dx

    

  

 +  


= 
 + 


 

 
         (17) 

4

*

3 3

4

*

3 2

1

1

( ) ( ) ,  or ;

( ) ( ) , .

i

i

x

L R L RAx x

i x

L RAx x

f x dx x dx

RP

f x dx x dx

    

  

 −  


= 
 − 


 

 
         (18) 

Where ( )f x  is the membership function of 

( )1, 1,1,1;1,1− −  and * ( )
iA

x  is the membership 

function of standardized generalized fuzzy number 
*

iA . 

Step 3: Calculate the sum iM  and iN  of the negative areas 

and positive areas of each standardized generalized 

fuzzy number *

iA , respectively. 

,i i iM LN RN= +                                                            (19) 

.i i iN LP RP= +                                                               (20) 

Step 4: Calculate the centroid *( )ic A  of each generalized 

fuzzy number *

iA  according to (21). 

* * * *

* * * *

*

( ) ( ) ( ) ( )

( ) .

( ) ( ) ( ) ( )

i i i i

i i i i

i i i i i i i
iA A A A

i
i i i i

A A A A

a a b b c c d
d

k k k k k k kc A
a b c d

k k k k

   

   

+ + +

=

+ + +

          (21) 

Step 5: Calculate the ranking score 
*( )iS A  of each 

generalized fuzzy number 
*

iA  according to (22). 

 
*

*
( ) .

(1 ( ))

i i

i

i i i

M N
S A

M N c A

−
=

+ + −
                                         (22) 

B. Ranking Fuzzy Numbers Based on The Magnitude 

Concepts 

Yu et al. [16] developed a method for ranking fuzzy 

numbers based on the magnitude concepts. In this method, 
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the attitude of decision makers towards fuzzy numbers was 

also taking into account. 

Suppose there are N  arbitrary fuzzy numbers 

 | 1, ,iA i N=  to be ranked, where ( ), , , ;i i i i i iA a b c d =  

and the membership function ( )
iA x  is shown as follows: 

( ), ;

, ;
( )

( ),

0, otherwise.

i

i

i

L

A i i

i i i

A R

A i i

x a x b

b x c
x

x c x d








  


 
= 

 



                                         (23) 

Then the magnitude of arbitrary fuzzy number iA  with the 

index of optimism  0, ih   was defined as: 

( )

( ) ( )

min0

min0

( )1
Mag( ) ,

2 1 ( )

i

i

i i i

i

i i i

r a dr
A

r a dr







 

 

  −  
=  

  + − −  




            (24) 

where ( )
min

infia S= , 1

N

i iS S== ,  | ( ) 0
ii i AS a x=  . 

The degree of optimism of a decision maker is measured by 

the index  . A larger   represents a higher degree of 

optimism. When | 1, ,=iA i N  are trapezoidal fuzzy 

numbers, i.e., 1i = , (24) degradation to: 

( )

( ) ( )

min

min

21
Mag( ) .

2
1

2

i i

i

i

i i

i

c d
a

A
a b

a







 +  
−  

   
=  

+  + − −    

                    (25) 

C. Ranking Fuzzy Numbers by A Unified Index 

Thanh-Lam [17] proposed a method for ranking 

generalized fuzzy numbers based on a unified index. In this 

method, centroid value (weighted mean) and 

attitude-incorporated left-and-right area (weighted area) was 

combined to construct the index. 

Suppose there are N  fuzzy numbers  | 1, ,iA i N=  to 

be ranked, where ( ), , , ;i i i i i iA a b c d =  and the membership 

function ( )
iA x  is shown as follows: 

( ), ;

, ;
( )

( ), ;

0, otherwise.

i

i

i

L

A i i

i i i

A R

A i i

x a x b

b x c
x

x c x d








  


 
= 

 



                                         (26) 

The specific steps: 

Step 1: Calculate the centroid value iCV  of each fuzzy 

number iA  according to (27). 

( )

( )

i

i
i

i

i
i

d

A
a

i d

A
a

x x dx
CV

x dx




=




                                                          (27) 

Step 2: The left area 
L

iS  and right area 
R

iS  of each fuzzy 

number iA  are given by 

0
( ) ,

i

i

L L

i AS g y dy


=                                                             (28) 

0
( ) .

i

i

R R

i AS g y dy


=                                                             (29) 

Where ( )
i

L

Ag y  and ( )
i

R

Ag y  are inverse functions of 

( )
i

L

A x  and ( )
i

R

A x ,respectively. Then calculate the 

attitude-incorporated left area and right area iAA  of 

each fuzzy number iA  according to (30). 

(1 ) ,R L

i i iAA S S = + −                                                       (30) 

where  0,1   is a level of optimism reflecting a 

data revelation optimism degree of the decision 

maker. The larger the   set by the decision maker is, 

the more optimistic attitude the decision maker has on 

the data revelation. 

Step 3: Calculate the unified index iUI  of each fuzzy 

number iA  according to (31). 

( ) (1 ) ,R L

i i i i iUI CV S S   = + + −                                    (31) 

where i  is a very small real number which is 

quantifiable and rational for comparing the targeted 

fuzzy numbers whose centroid values take a value of 

0. 

D. Ranking Fuzzy Numbers by Improved Ranking Score  

Wu et al. [18] presented a method for ranking generalized 

fuzzy numbers based on OWA operator. In this method, the 

priority of three ranking factors defuzzified value, height and 

spread were taking into consideration. 

Suppose there are N  generalized fuzzy numbers 

 | 1, ,iA i N=  to be ranked, where iA =  

( ), , , ; ,i i i i iL iRa b c d    and the membership function ( )
iA x  

is defined as Eq. (32). 

( ), ;

( ), ;
( )

( ), ;

0, otherwise.

i

i

i

i

L

A i i

T

A i i

A R

A i i

x a x b

x b x c
x

x c x d








  


 
= 

 



                                         (32) 

iL  and iR  denote the left and right height of the fuzzy 

number iA . The specific steps of this method are as follows: 

Step 1: Calculate the defuzzified value 
iAx  and the height 

iAh  of each generalized fuzzy number iA  according 

to (33). 

( )
,

( )

i

i
i

i i

i
i

d

A
a

A d

A
a

x x dx
x

x dx




=




                                                          (33) 

, ;

( ) ( )
, .

( ) ( )

iR iR

i i
iL iLi

iR iR

i i
iL iL

iL iL iR

R T

A A
A

iL iR
R T

A A

yg y dy yg y dyh

g y dy g y dy

 

 

 

 

  

 

=

 −= 


−



 

 

          (34) 

Where ( )
i

R

Ag y  and ( )
i

T

Ag y  are inverse functions of 

( )
i

L

A x  and ( )
i

R

A x , respectively. 
iAx is the value of 

the centroid point on the horizontal axis of 

generalized fuzzy number iA  and 
iAh is the value of 

the centroid point on the vertical axis. 

Step 2: Calculate the spread 
iASTD of each generalized fuzzy 

number iA  according to Eq. (35). 
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( ) ( ) ( ) ( )
2 2 2 2

,
4 1i

i i i i

A

a x b x c x d x
STD

− + − + − + −
=

−
     (35) 

where 
4

i i i ia b c d
x

+ + +
= . 

Step 3: Construct the vector V  with regard to the ordered 

parameters. Since the value of 
iAx  is the most 

important factor that influences the ranking priority of 

a generalized fuzzy number, the value of 
iAh  is the 

second important and 
iASTD  is the least important. 

Then, the ranking order of importance is: 

i i iA A Ax h STD  ,
1i i

i

A A

A

x h
STD


 

+
, which is 

consistent with the analytical geometry. Therefore, 

the vector V is defined as follows: 

, , ,
1i i

i

T

A A

A

V x h
STD




 
=  

 + 

                                             (36) 

 )

( )

1, 0 ;

1 0 .

i

i

A

A

x

x


  + 
= 

−  −

，

，
                                                  (37) 

Step 4: Calculate the transpose of weighting vector 

( )1 2 3, ,T   =  of the three elements 
iAx ,

iAh  

and 
1

iASTD



+
 of vector V based on (38). 

3

1

1

3

1

max    ( ) ln

1
s.t.      ( ) ( ) ,

1

          1,0 1,0 1.

i i

i

n

i

i

i i

i

Disp

orness n i
n

  

  

  

=

=

=


= −




= = −
−


=    









                       (38) 

Cause the priority of these three factors is: 

1i i

i

A A

A

x h
STD


 

+
. Therefore, we need to give 

iAx  the maximal weight 1 , 
iAh the slightly larger 

weight 2  and 
1

iASTD



+
 the minimum weight 3 . 

In this situation, 1 2 3    , then 

0.5 1  .Generally, the value of   takes the mean 

value of the interval ( 0.5,0.9 , that is 0.7 = . 

Step 5: Calculate the ranking score ( )iS A  of each 

generalized fuzzy number iA  according to (39). 

1 2 3( ) .
1i i

i

T

i A A

A

S A V x h
STD


   =  = + +

+
                (39) 

E. Ranking Trapezoidal Fuzzy Numbers by Above Four 

Methods  

Based on the above four methods of ranking fuzzy 

numbers, we can effectively obtain four kinds of ranking 

scores of each fuzzy number iA  in a set of fuzzy numbers, 

and rank them according to their scoring size. Suppose there 

are N  trapezoidal fuzzy numbers  | 1, ,iA i N=  to be 

ranked, where ( ), , ,i i i i iA a b c d=   

(1) Ranking trapezoidal fuzzy numbers by ranking score 

According to Subsection 3.1, we can obtain the ranking 

score ( )iRS A  of trapezoidal fuzzy numbers iA  as follows: 

2( )

( ) ,

10

i i i i

i

i i

a b c d

k k k kRS A
b c

k k

+ + +

=

− +
                                          (40) 

where max ( , , , ,1), 1, , .i i i i ik a b c d i N= =  

(2) Ranking trapezoidal fuzzy numbers based on the 

magnitude concepts 

According to Subsection 3.2, we can obtain the magnitude 

( )iMag A  of trapezoidal fuzzy numbers iA  as follows: 

( )

( ) ( )

min

min

21
Mag( ) ,

2
1

2

i i

i

i

i i

i

c d
a

A
a b

a





 +  
−  

   
=  

+  + − −    

                     (41) 

where ( )
min

infia S= , 1

N

i iS S== ,  | ( ) 0
ii i AS a x=  . 

(3) Ranking trapezoidal fuzzy numbers by a unified index 

According to Subsection 3.3, we can obtain the unified 

index ( )iUI A  of trapezoidal fuzzy numbers iA  as follows: 

( )( ) (1 ) ,R L

i i i i iUI A CV S S   = + + −                               (42) 

where 
2 2 2 2

3( )

i i i i i i i i

i

i i i i

a a b b c c d d
CV

a b c d

− − − + + +
=

− + − +
, 

2

L i i

i

a b
S

+
= , 

2

R i i

i

c d
S

+
=  and 91 10i −=  . 

(4) Ranking trapezoidal fuzzy numbers by improved 

ranking score 

According to Subsection 3.4, we can obtain the improved 

ranking score ( )iIRS A  of trapezoidal fuzzy numbers iA  as 

follows: 

1 2 3( ) ,
1i i

i

T

i A A

A

IRS A V x h
STD


   =  = + +

+
            (43) 

 )

( )

1, 0 ;

1 0 .

i

i

A

A

x

x


  + 
= 

−  −

，

，
                                                  (44) 

where 
2 2 2 2

3( )i

i i i i i i i i

A

i i i i

a a b b c c d d
x

a b c d

− − − + + +
=

− + − +
 and 1

iAh = . 

IV. FUZZY S-V PORTFOLIO MODELS BASED ON METHODS 

FOR RANKING FUZZY NUMBERS 

In Markowitz’s classical M-V model, investors trade-off 

between maximizing investment income and minimizing 

variance risk. When the stock’s return rate is regarded as a 

fuzzy number, the possibilistic means and variances are 

considered as important factors to measure the quality of the 

stock. In Section III, we review four methods for ranking 

fuzzy number. Among these methods, many characteristics 

or factors about fuzzy numbers are considered, which 

contains a lot of information about fuzzy numbers. Therefore, 

it is meaningful and valuable to consider the portfolio model 

based on methods for ranking fuzzy numbers. Next, we will 

construct concrete models to investigate and demonstrate this 

problem. 

IAENG International Journal of Applied Mathematics, 51:3, IJAM_51_3_25

Volume 51, Issue 3: September 2021

 
______________________________________________________________________________________ 



 

A. The Novel S-V Portfolio Models  

Suppose that there are N  optional risky securities. The 

return rate of each security is regarded as a trapezoidal fuzzy 

number. Let ( , , , )i i i i ir a b c d=  be the return rate of -thi  asset, 

and ( )1 2, , ,T

nX x x x=  be investment proportion vector. 

Furthermore, the total return of the portfolio can be expressed 

as 
1

( )
N

i i

i

R x x r
=

=  . According to (40)-(43), for each return rate 

ir , we can obtain the four kinds of ranking scores ( )iRS A , 

( )iMag r , ( )iUI r  and ( )iIRS A . Then, we obtain the ranking 

scores of trapezoidal fuzzy numbers for each asset. Next, the 

objective of maximizing expected return is replaced by 

maximizing ranking score of the portfolio to construct the 

score-variance (S-V) model. The four S-V models are 

constructed as follows: 

1

1

max   ( )

: min   ( ( ))

s.t.     1; , 1,2, , .   

=

=





− 
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
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n

i i

i

n

i i i i

i
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RS V V R x
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(45) 
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(46) 

1
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max   ( )
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i i i i
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 (47) 
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i
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  (48) 

According to (12), the risk of portfolio 
1

( )
N

i i

i

R x x r
=

=   can 

be derived as follows: 
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        (49) 

Moreover, the upper limit 
iub  and lower limit 

ilb  of 

investment proportion 
ix  are set to prevent investment from 

being too concentrated. 

B. Classical M-V Portfolio Models 

In order to investigate the feasibility and validity of models 

(45)-(48), we use the M-V model for comparison at the same 

time. According to (11), (12) and (49), the M-V model is 

shown in Eq (50): 

1 1

1 1

1

1 1
max   ( ( ))

6 3

1 1
                        

M-V: 3 6

min   ( ( ))

s.t.     1; , 1, 2, , .   

= =

= =
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
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


+ +


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=   = 


 

 



n n

i i i i

i i

n n

i i i i

i i

n

i i i i

i

E R x x a x b

x c x d

V R x

x lb x ub i N

         (50) 

In this paper, the upper limit of investment proportion 
iub  

and the lower limit of investment proportion 
ilb  are set as 0.5 

and 0.05 respectively. 

V. NUMERICAL EXAMPLE 

A. Data Process  

In this section, we will demonstrate our proposed S-V 

models by applying a real-world portfolio selection based on 

global stock market index. We consider a sample of 10 

investment assets in the market, including NDX, S&P 500 

Index, FTSE 100 Index, GDAXI, S&P/ASX 200 Index, CAC 

40 Index, SSEC Index, SZI, Nikkei 225 Index and KOSPI. 

We collected the data set of weekly historical return rates for 

the 10 securities from Jan. 6th 2010 to Jan. 5th 2020. 

According to the estimation method of Vercher and 

Bermudez [23], the trapezoidal fuzzy number of the weekly 

return of each asset can be expressed as ( )0.1 0.4 0.6 0.9, , ,q q q q , 

where q  represents the sample quantile of weekly 

historical return data. Therefore, the return rates of securities 

can be expressed by trapezoidal fuzzy numbers, as shown in 

Table I. 

B. Models Solving  

Since the S-V and M-V models constructed in Section IV 

are both bi-objective models with linear constraints. The 

constraint method is applied to solve the models (45)-(48) 

and (50), and a set of non-inferior solutions of each model 

can be obtained. By taking the risk objective of minimizing 

variance as a constraint condition, the bi-objective models 

(45)-(48) can be converted into single objective models 

TABLE I 

THE RETURNS OF SECURITIES BY THE TRAPEZOIDAL FUZZY 

NUMBERS 

Securities Weekly return 

NDX (-2.60, -0.02, 0.97, 2.95) 

S&P 500 Index (-2.11, -0.01, 0.72, 2.37) 

FTSE 100 Index (-2.39, -0.27, 0.64, 2.22) 

GDAXI (-3.15, -0.09, 0.99, 3.16) 

S&P/ASX 200 Index (-2.16, -0.17, 0.61, 2.09) 

CAC 40 Index (-3.19, -0.22, 0.84, 3.04) 

SSEC Index (-3.21, -0.45, 0.78, 3.32) 

SZI (-4.05, -0.43, 0.97, 4.07) 

Nikkei 225 (-3.10, -0.38, 0.94, 3.30) 

KOSPI (-2.44, -0.25, 0.69, 2.19) 
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(51)-(56). To be concrete: 

Step 1: Decompose the initial models. 

In order to determine the value range of each objective 

function in the feasible region, we first solve the single 

-objective model (solving the maximum and minimum values 

of each objective function in the feasible region). 

Split four S-V models (45)-(48) into sub-models (51)-(54) 

and (55) that only consider maximizing ranking score or 

minimizing variance as an objective. 

1

1

max   ( )
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=

=
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                     (51) 
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                     (52) 
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                     (53) 
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                     (54) 
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=   = 
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n
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i

V R x

x lb x ub i N
                     (55) 

Split model (50) into two sub-models (55) and (56) that 

only consider minimizing variance or maximizing expected 

return as an objective. 

1 1

1 1

1

1 1
max   ( ( ))

6 3

1 1
                        

3 6
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= =

= =

=
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 
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i i

n n
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n
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i

E R x x a x b

x c x d

x lb x ub i n

                      (56) 

Step 2: Solve the sub-models. 

By solving sub-models (51)-(56), we can obtain the 

corresponding optimal solutions ( 1, ,6)=iX i  of each 

single-objective model, as shown in Table II. 

Then, calculate the objective values of ranking score, 

expected return and variance corresponding to each optimal 

solution, as shown in Table III. 

Step 3: Determine the risk range. 

From Table III we can get the range of each objective by 

selecting the corresponding maximum and minimum values. 

Since this paper converts the risk objective function into the 

risk constraint condition, we only need to consider the value 

range of variance risk. The risk range for each model is 

shown in Table IV. 

Step 4: Models transformation. 

Through the constraint method, we transform the 

bi-objective models (45)-(48) and (50) into (57)-(61) by 

converting the risk objective into a constraint condition. 

1

1

1
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=
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V R x
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i N k K


                                  (57) 

TABLE II 

THE OPTIMAL SOLUTIONS OF SUB-MODELS (51-56) 

Model 1x  2x  3x  4x  5x  6x  7x  8x  9x  10x  

1X  for model (51) 0.50 0.10 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

2X  for model (52) 0.50 0.10 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

3X  for model (53) 0.50 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.10 0.05 

4X  for model (54) 0.50 0.10 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

5X  for model (55) 0.05 0.10 0.05 0.05 0.50 0.05 0.05 0.05 0.05 0.05 

6X  for model (56) 0.50 0.05 0.05 0.10 0.05 0.05 0.05 0.05 0.05 0.05 

 

TABLE III 

THE OBJECTIVE VALUE OF EACH OPTIMAL SOLUTION 

optimal 

solution 
ranking score 

expected 

return 
variance 

1X  0.0778 0.2830 1.8931 

2X  1.1302 0.2830 1.8931 

3X  0.4828 0.2800 1.9675 

4X  0.4996 0.2830 1.8931 

5X  (0.0766,1.1299,0.4807,0.4976) 0.2841 1.9567 

6X  (0.0516,1.0779,0.2230,0.4228) 0.1750 1.5240 

 

TABLE IV 

THE RISK RANGE FOR EACH MODEL 

model risk range 

RS V−  model (45) [1.5240,1.8931] 

Mag V−  model (46) [1.5240,1.8931] 

UI V−  model (47) [1.5240,1.9675] 

IRS V−  model (48) [1.5240,1.8931] 

M-V model (50) [1.5240,1.9567] 

 

IAENG International Journal of Applied Mathematics, 51:3, IJAM_51_3_25

Volume 51, Issue 3: September 2021

 
______________________________________________________________________________________ 



 

1

2

1

max   ( )

s.t.     ( ( ))

          1; ,

          1,2, , , 0, , .   

=

=




 

 =  



=  =





n

i i

i

k

n

i i i i

i

x Mag r

V R x

x lb x ub

i N k K


                                  (58) 

1

3

1

max   ( )

s.t.     ( ( ))

          1; ,

          1,2, , , 0, , .   

=

=




 

 =  



=  =





n

i i

i

k

n

i i i i

i

xUI r

V R x

x lb x ub

i N k K


                                  (59) 

1

4

1

max   ( )

s.t.     ( ( ))

          1; ,

          1,2, , , 0, , .   

=

=




 

 =  



=  =





n

i i

i

k

n

i i i i

i

x IRS A

V R x

x lb x ub

i N k K


                                 (60) 

1 1

1 1

5

1

1 1
max   ( ( ))

6 3

1 1
                       

3 6

s.t.    ( ( ))

         1; ,

         1,2, , , 0, , .   

= =

= =

=


= +




+ +





 =  



=  =



 

 



n n

i i i i

i i

n n

i i i i

i i

k

n

i i i i

i

E R x x a x b

x c x d

V R x

x lb x ub

i N k K

                              (61) 

Where j

k  is the upper bound of the risk, and different values 

of j  correspond to different models. Whenever a risk upper 

bound j

k  is selected, we can obtain a non-inferior solution 

of the corresponding model. 1K +  represents the number of 

selected upper bounds of risk.  

Step 5: Divide the risk value ranges. 

In order to obtain a set of non-inferior solutions 

corresponding to each model, we need to select multiple risk 

upper bounds. That is, by selecting 1K +  risk upper bounds 

for each model, we can obtain 1K +  non-inferior solutions 

for each model, which constitutes the model’s non-inferior 

solution set. In this paper, we take 10K = . In other words, 

we divide the risk interval of each model into ten equal parts, 

and then take the interval endpoint of each sub-interval as the 

upper bounds of the risk. For example, we divide the risk 

interval [1.5240,1.9567] of M-V model (61) into ten equal 

parts, and then take 11 endpoints 5 5

0 11.5240  = 

5

10 1.9567  =  of the ten sub-intervals as the upper 

bounds of risk.  

Step 6: Solve models with different upper bounds of risk. 

By selecting different upper bound , 0,1, ,10=j

k k , we can 

obtain sets of non-inferior solutions of model (57)-(61). In 

order to demonstrate the feasibility and validity of the 

proposed S-V model, we calculate the expected return, risk 

and skewness corresponding to the non-inferior solutions of 

each model. The results are shown as follows in Table V and 

VI. 

C. Analysis of Models Results  

It can be seen from Table V that the results of RS V− , 

Mag V−  and IRS V−  models are the same, which indicates 

that the three ranking score formulas have similar forms 

when the return rate is a trapezoidal fuzzy number. Therefore, 

we only consider one of them ( RS V− ) when comparing 

models results. 

Remark 1: It should be pointed out that the same results of 

models (57), (58) and (59) seem to be unreasonable, but there 

TABLE V 

THE PORTFOLIO RETURNS OF MODELS (57), (58) AND (60) UNDER DIFFERENT RISK UPPER BOUNDS 

RS V−  model (57) Mag V−  model (58) IRS V−   model (60) 

return risk skewness return risk skewness return risk skewness 

0.1750 1.5240 0.1297 0.1750 1.5240 0.1297 0.1750 1.5240 0.1297 

0.2344 1.5609 0.1522 0.2344 1.5609 0.1522 0.2344 1.5609 0.1522 

0.2453 1.5978 0.1586 0.2453 1.5978 0.1586 0.2453 1.5978 0.1586 

0.2502 1.6347 0.1631 0.2502 1.6347 0.1631 0.2502 1.6347 0.1631 

0.2550 1.6716 0.1675 0.2550 1.6716 0.1675 0.2550 1.6716 0.1675 

0.2598 1.7085 0.1720 0.2598 1.7085 0.1720 0.2598 1.7085 0.1720 

0.2645 1.7455 0.1766 0.2645 1.7455 0.1766 0.2645 1.7455 0.1766 

0.2692 1.7823 0.1811 0.2692 1.7823 0.1811 0.2692 1.7823 0.1811 

0.2739 1.8193 0.1857 0.2739 1.8193 0.1857 0.2739 1.8193 0.1857 

0.2785 1.8562 0.1903 0.2785 1.8562 0.1903 0.2785 1.8562 0.1903 

0.2830 1.8930 0.1949 0.2830 1.8930 0.1949 0.2830 1.8930 0.1949 

 TABLE VI 

THE PORTFOLIO RETURNS OF MODELS (57), (59) AND (61) UNDER DIFFERENT RISK UPPER BOUNDS 

RS V−  model (57) UI V−  model (59) M-V model (61) 

return risk skewness return risk skewness return risk skewness 

0.1750 1.5240 0.1297 0.1750 1.5240 0.1297 0.1750 1.5240 0.1297 

0.2344 1.5609 0.1522 0.2367 1.5683 0.1535 0.2364 1.5673 0.1533 

0.2453 1.5978 0.1586 0.2473 1.6127 0.1604 0.2470 1.6105 0.1601 

0.2502 1.6347 0.1631 0.2531 1.6570 0.1658 0.2527 1.6538 0.1654 

0.2550 1.6716 0.1675 0.2589 1.7014 0.1712 0.2583 1.6971 0.1706 

0.2598 1.7085 0.1720 0.2646 1.7457 0.1766 0.2639 1.7403 0.1759 

0.2645 1.7455 0.1766 0.2702 1.7901 0.1821 0.2694 1.7836 0.1813 

0.2692 1.7823 0.1811 0.2758 1.8344 0.1876 0.2748 1.8269 0.1866 

0.2739 1.8193 0.1857 0.2812 1.8788 0.1931 0.2802 1.8702 0.1920 

0.2785 1.8562 0.1903 0.2818 1.9231 0.2049 0.2833 1.9134 0.1948 

0.2830 1.8930 0.1949 0.2800 1.9675 0.2200 0.2841 1.9567 0.1945 
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is a mathematical basis for it. This is mainly because under 

the three ranking score formulas (40), (41) and (43), although 

the scores of ten assets are not the same, their ranking is 

consistent. This allows investors to choose higher-ranking 

assets with a higher investment ratio. 

 
Fig. 1. The efficient frontiers of RS V− , UI V−  and M-V models 

 
Fig. 2. The skewness of RS V− , UI V−  and M-V models 
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The data of RS V− , UI V−  and M-V models in Tables 

VI are visualized to the efficient frontier in Fig. 1. Moreover, 

the skewness of assets returns plays significant roles in 

choosing an optimal portfolio. Considering the skewness of 

the models’ results is also an important factor in 

demonstrating the performance of the portfolios. The data of 

RS V− , UI V−  and M-V models in Tables VI is visualized 

to Fig. 2. In addition, we adopt another widely used measure 

of portfolio performance, the Sharpe ratio [24], to validate 

our model. Its formula is shown as follows: 

( ( ))
,

( ( ))

fE R x r
SR

V R x

−
=                                                            (62) 

where fr  represents the risk-free interest rate, and fr  is 

taken to be 0 in this paper. According to Table VI and (62), 

we calculate the Sharpe Ratio of each model and visualize the 

results to Fig. 3. 

From above Tables and Figs. 1-3, we can get several 

points: 

 From Fig. 1, the efficient frontier derived from the 

results of our proposed S-V model is basically 

consistent with that of the classic M-V model. The 

maximum returns of both   and   models are slightly 

lower than that of M-V model. 

 It can be seen from Figs. 1, 2 and 3 that the results of 

RS V−  and UI V−  models constructed in this paper 

are generally consistent with those of the classical M-V 

model. 

 When the risk tolerance is low, the return and skewness 

of RS V−  model are slightly better than models 

UI V−  and M-V models. When the risk tolerance is 

large, compared with RS V−  and UI V−  models, M-V 

model can get a better return, but with a smaller 

skewness. 

 The results of RS V−  model are better than those of 

UI V−  and the classical M-V models in Sharpe Ratio. 

VI. CONCLUSION  

In this paper, a novel portfolio model based on methods for 

ranking fuzzy numbers is developed. Firstly, we review four 

ranking methods of fuzzy numbers. Then, considering that 

the ranking score can measure the characteristics of fuzzy 

numbers, we adopt the objective of maximizing the ranking 

score instead of the objective of maximizing the mean value 

to construct the score-variance (S-V) models. Moreover, the 

M-V model is also constructed and compared with the model 

proposed in this paper. Finally, a numerical experiment is 

presented to illustrate the feasibility and validity of our 

proposed S-V models. Compared with the M-V model, the 

return of our proposed model is slightly smaller, but it 

performs better in terms of skewness and Sharpe Ratio. 
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