
 

  

Abstract—In previous research about multi-response 

nonparametric regression models, each predictor variable is 

considered to have the same pattern concerning each response 

variable. In contrast, multi-response cases are often 

encountered with different patterns among the predictor 

variables. Therefore, a mixture estimator in multi-response 

nonparametric regression needs to be developed. This study 

proposes an additive mixture of Spline Smoothing and Kernel 

estimator in multi-response nonparametric regression. Our 

approach can handle the previously mentioned issue in a multi-

response nonparametric regression problem, i.e., some 

predictors showing changing patterns in certain sub-intervals, 

such as Spline Smoothing patterns, and other predictors 

exhibiting random patterns, commonly modeled using Kernel 

regression. A two-stage estimation procedure, i.e., Penalized 

Weighted Least Square followed by Weighted Least Square, 

was used to obtain this mixture estimator. Furthermore, a 

simulation study and real data analysis were conducted to 

illustrate the performance of the proposed multi-response 

mixture estimator. The results indicate that the proposed 

multi-response mixture estimator can be applied appropriately 

and gives satisfactory results with a coefficient of 

determination (R2) close to 1 and a Mean Absolute Percentage 

Error (MAPE) of less than 5%. 

 
Index Terms—kernel, mixture estimator, multi-response, 

nonparametric regression, spline smoothing  

 

I. INTRODUCTION 

EGRESSION analysis is a popular statistical method 

for predicting. Regression analysis is often used in 

many fields to determine the functional relationship between 

the predictor variables and the response variables [1]. 

Nonparametric regression is one type of regression analysis 

that is suitable for cases in which the shape of the regression 

curve is unknown or when there is no information about the 
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shape of the curve between the response variable and the 

predictor variable. This regression has high flexibility where 

the data can drive to estimate of the regression curve 

without subjectivity from the researcher. Among several 

nonparametric regression estimators, Spline Smoothing is an 

estimator that has an excellent statistical and visual 

interpretation. It has a remarkable ability to handle data with 

patterns that change at certain sub-intervals using smooth 

functions [2]. There are several studies on the Spline 

Smoothing estimator in nonparametric regression, including 

Eubank [2] , Wang et al. [3], Lestari et al. [4], Aydin et al. 

[5], Fernandes et al. [6], and Diana [7]. In addition, the 

Kernel estimator in nonparametric regression has been 

extensively developed by many researchers, including 

Gasser and Muller [8], Hall and Huang [9], Okumura and 

Naito [10], Dharmasena et al. [11], Du et al. [12], Chamidah 

and Saifudin [13], and Erçelik and Nadar [14]. Data with 

random patterns are commonly modeled using Kernel 

regression [15]. 

In the development of nonparametric regression research, 

modeling using multiple response variables (multi-response) 

has been proposed by several researchers, including Wang et 

al. [3], who proposed bi-response Spline Smoothing; Lestari 

et al. [4], who developed a multi-response Spline Smoothing 

estimator on cross-section data; and Fernandes et al. [6], 

who proposed bi-response Spline Smoothing estimator on 

longitudinal data. All of these use the Penalized Weighted 

Least Square (PWLS) estimation method. Chamidah and 

Saifudin [13] developed a multi-response Kernel estimator 

using the Weighted Least Square (WLS) estimation method. 

However, these studies only proposed one type of 

nonparametric regression estimator. In several multi-

response cases, there are often different patterns among the 

predictor variables. Thus, modeling with a mixture estimator 

in multi-response nonparametric regression is needed to 

handle these issues.  

Until now, modeling with mixture estimators has only 

been proposed for models with one response (see [15]–[19]). 

One of them is mixture Spline Smoothing and Kernel 

estimators by Hidayat et al. [17]. Therefore, in this study, 

we proposed a new theory about the mixture of Spline 

Smoothing and Kernel estimator for multi-response 

nonparametric regression. This proposed multi-response 

mixture estimator is the development of a mixture estimator 

by Hidayat et al. [17]. In addition to developing into the 

multi-response model, our mixture estimator also estimates 

the Kernel component, whereas the mixture estimator by 

Hidayat et al. [17] still considers Kernel components to be 

fixed. This mixture estimator is obtained through two stages 

of estimation, i.e., the first stage using the PWLS estimation 

method and the second stage employing the WLS estimation 

Mixture Spline Smoothing and Kernel Estimator 

in Multi-Response Nonparametric Regression 

Dyah Putri Rahmawati, I Nyoman Budiantara, Dedy Dwi Prastyo, and Made Ayu Dwi Octavanny 

R 

IAENG International Journal of Applied Mathematics, 51:3, IJAM_51_3_28

Volume 51, Issue 3: September 2021

 
______________________________________________________________________________________ 



 

method. 

Furthermore, a simulation study and real data analysis are 

conducted to illustrate the performance of the proposed 

multi-response mixture estimator. The simulation data were 

generated from a formula that contains two different 

functions (polynomial and exponential) to represent two 

different patterns between the predictors and responses. This 

mixture estimator is also applied to the three dimensions of 

the Human Development Index (HDI), namely Life 

Expectancy Index (LEI), Education Index (EI), and Gross 

National Income Index (GNII) in the Papua Province. The 

predictor variables are population growth rate, dependency 

ratio, percentage of the population working in agriculture, 

and economic growth rate. This multi-response case has 

several predictor patterns that tend to change in certain sub-

intervals and other predictor patterns tend to be random. 

The rest of this paper is organized as follows. In Section 

II.A, we review the spline estimator and the Kernel 

estimator in nonparametric regression. In Section II.B, we 

introduced the two-stage estimation method, i.e., the PWLS 

and followed by the WLS. In Section III.A, we present our 

proposed mixture Spline Smoothing and Kernel estimator in 

multi-response nonparametric regression. Section III.B 

describes the selection of Smoothing and Bandwidth 

Parameters to obtain the best model from this proposed 

multi-response mixture estimator. In Section III.C and III.D, 

we conduct a simulation study and real data analysis to 

illustrate the performance of the proposed multi-response 

mixture estimator. The last section presents conclusion and 

further research.  

II. MATERIALS AND METHODS 

A. Spline Smoothing and Kernel Estimator in 

Nonparametric Regression 

A regression model that states the relationship between 

one predictor and one response is as follows: 

( ) ,   1, 2, ...,i i iy x i n = + = , (1) 

where
iy  is the response variable, ( )ix is the regression 

curve, and 
i  is the random error that is assumed to be 

normally distributed, identical, and independent with mean 0 

and variance 2 . If the form of the regression function 

( )ix  in (1) is unknown, the appropriate type of regression 

approach is nonparametric regression [15]. Several 

nonparametric regression models can be used to estimate the 

regression function, including Spline Smoothing and Kernel.  

The Spline estimator is applied appropriately if the 

pattern of the data tends to change at certain sub-intervals. 

In addition, the spline estimator can produce flexible and 

smooth curves. The smoothness of the spline curve is 

determined by its smoothing parameter [20]. The Spline 

Smoothing regression function is assumed to be smooth and 

contained in the Sobolev space or stated as 

 2 [ , ]mW a b   with 
2

( )

2 [ , ] : ( )

j

j

b

m m

a

W a b x dx 
  

 =    
  

 , 

where m is the order of the polynomial Spline. The Spline 

Smoothing is obtained from minimizing the Penalized Least 

Square (PLS). The PLS formula is an estimation criterion 

that combines the goodness-of-fit and penalty functions [2]: 

( )
( ) ( )

2

2
2

1 ( )

,
1

( ) ( ) .
m

bn
m

i i i
W a b

i a

Min n y x x dx


  −


=

  
− + 

  
    (2) 

 The first component in (2) is the function that measures 

data suitability (goodness of fit) like the Ordinary Least 

Square, and the second component is the penalty component 

for a function ( ).ix  The penalty component is the 

determination of the roughness of the curve with   as the 

smoothing parameter. The smoothing parameter has a vital 

role in determining the smoothness of the function. 

Accordingly, this approach is known as PLS. 

Unlike the Spline Smoothing estimator, the Kernel 

estimator is commonly used to model data with a seemingly 

random pattern. The Kernel approach depends on the 

bandwidth value, which functions to control the smoothness 

of the estimated function. The selection of the optimal 

bandwidth is crucial for the Kernel estimator [21]. If the 

regression function ( )ix  in (1) is unknown and is 

approached by the Kernel estimator, then the function 

( )ix  can be approximated by the Taylor series with order 

m as follows [13], [22]: 

( ) ( )
( ) ( )

1 1

0 0

0
1!

x x x
x x


 

−
 + +  

( ) ( ) ( ) ( )
2 2

0 0 0 0
           ... .

2! !

m m
x x x x x x

m

 − −
+ +  (3) 

If ( )
( )0

0 , 1, 2, ...,
!

v

v

x
x v m

v


 = = , then (3) can be stated 

as  

( ) ( ) ( ) ( )
1

0 0 0 1 0x x x x x   + − +  

( ) ( ) ( ) ( )
2

0 2 0 0 0            ... .
m

mx x x x x x − + + −  (4) 

The Kernel estimator is obtained when polynomial order 

0m = [22]; then, (4) with 0m =  and involving all 

observations can be expressed as  

( ) ( )0 0x x  . (5) 

The Kernel estimator can be obtained through the WLS 

estimation method as follows: 

( ) ( ) 0( )
T

Min x


− −Κ y y , (6) 

where 0( )xΚ is the weighted matrix from the Kernel 

function, with   is the bandwidth parameter. 

B. The Two-Stage Estimation Method 

This study proposes a new theory about the mixture of 

Spline Smoothing and Kernel estimator for multi-response 

nonparametric regression. This mixture estimator is obtained 

through two stages of estimation, with the first stage using 

the PWLS estimation method and the second stage 

employing the WLS estimation method. The two-stage 

estimation method to obtain our proposed mixture estimator 

is described as follows. 

If given the data pairs 1 2 1 2( , , ..., , , , ...,i i ri i iy y y x x  

1 2, , , ..., )pi i i qix t t t , which, following additive multi-response 

nonparametric regression, model as follows:  

( , ) ,   1, 2;  1, 2, ..., ;hi hi ji ki hiy x t h i n = + = =  

         1, 2, ..., ; 1, 2, ..., ,j p k q= =  (7) 
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where ( , )hi ji kix t is a regression curve in which the function 

form is assumed to be unknown, with some predictor 

variables having patterns that change at certain sub-intervals 

and the remaining predictors typically having random 

patterns. This regression curve is an additive function, so it 

can be written as follows [23]: 

1 1

( ) ( ),  1, 2, ..., ,  1, 2, ...,
p q

hi hj ji hk ki

j k

g x f t h r i n
= =

= + = =  , (8) 

where 
1

( )
p

hj ji

j

g x
=

  is a regression curve component with p 

predictor variables and 
1

( )
q

hk ki

k

f t
=

  is the regression curve 

component with q predictor variables. The 
hi  in (7) is a 

random error that is assumed to be a normal distribution of 

N-variate (N = nr) with zero mean and variance–covariance 

matrix Σ . In the multi-response cases where
hiy  and 

'h iy  

are paired, the h-response and the h’-response error ( )'h h  

correlate. The error correlation between responses can be 

stated as follows [3]:  

'

'

cov( , )
corr( , ) ;  ; 1, 2, ..., ;  hi h'i

hi h i

h h

i n
 

   
 

= = =

1, 2,..., ; '.h r h h=   

In vector notation, (8) can be expressed as  

+ω= g f . (9) 

Therefore, (7) can be written in vector form as follows: 

= + +y g f ε . (10) 

The regression curve g  is approximated by the Spline 

Smoothing function. This regression curve is assumed to be 

smooth and contained in the Sobolev space 

 2 ,mW a bg [24]. Meanwhile, the regression curve f  is 

approximated by the Kernel function. This multi-response 

mixture Spline Smoothing and Kernel estimator can be 

obtained by a two-stage estimation method. The Spline 

Smoothing component ( )g  is estimated by PWLS in the 

first stage of estimation, and the Kernel component ( )f  is 

estimated by the WLS method in the second stage of the 

estimation procedure. Before estimating the Spline 

Smoothing component, we need to modify (10) into the 

following form: 

= +h g , (11) 

with = −h y f .  

The estimation of Spline Smoothing components ĝ  can 

be obtained using the PWLS optimization formula of (11) as 

follows:  

( )
( ) ( )

2

1 1

,m
h h h

T

g W a b

Min N − −



− − +Σh g h g  

2
( )

1

                ( ) 0 ,
h

h

br
m

h h h

h a

g x dx 
=


     


   (12) 

where h  is the smoothing parameter of the Spline 

Smoothing estimator for each response. The estimation 

results from the first stage are substituted into (10).  

In the second stage of estimation, the estimation for the 

Kernel component f̂  can be obtained using the WLS 

optimization as follows:  

( ) ( ) 1

0
ˆ ˆ( )

h

T
Min t



−− − − −
α

Σ Κy g f y g f , (13) 

where 
h  is the bandwidth parameter of the Kernel 

estimator for each response and 
0( )t

α
Κ  is the weighted 

matrix for the Kernel estimator, whereas 1−
Σ  in (12) and 

(13) is the weighted matrix in multi-response nonparametric 

regression formed from the variance–covariance matrix of 

error [3]. By substituting the results from the two-stage 

estimation into (9), the mixture of Spline Smoothing and 

Kernel estimator in multi-response nonparametric regression 

can be obtained. 

III. RESULTS AND DISCUSSION 

A. Estimation of Mixture Spline Smoothing and Kernel 

Estimator in Multi-Response Nonparametric Regression 

The function form of the regression curves g  and f  in 

(9) is unknown. Therefore, before making the two-stage 

estimation, we must obtain the function form of these 

regression curves. The function form of the regression curve 

g  is presented in Lemma 1, whereas the function form of 

the regression curve f  is shown in Lemma 2.  

Lemma 1: Suppose a given function 
1

( )
p

hj ji

j

g x
=

  is 

expressed in vector notation g . This function is assumed to 

be smooth and contained in the Sobolev space 

 2 ,mW a bg ; then, this function form is as follows: 

,= +Ud Tcg  (14) 

where 

1

2
,

r

 
 
 =
 
 
 

U 0 0

0 U 0
U

0 0 U

1

2 ,

r

 
 
 =
 
  
 

d

d
d

d

1

2
,

r

 
 
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 
 
 

T 0 0

0 T 0
T

0 0 T

1

2 ,

r

 
 
 =
 
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 

c

c
c

c

 

with
* * *

1 2 ... ,h h h hp= + + +U U U U  

* * *

1 2 ... ; 1, 2, ..., .h h h hp h r= + + + =T T T T  

Proof: Suppose 
* ; 1, 2, ...,hg h r=  is a function with one 

predictor variable. This function is contained in the Hilbert 

space W . The Hilbert space can be decomposed into a 

direct sum of two spaces 0W  and 1W as 0 1W W W=  , with 

0 1W W⊥ . If  1 2, , ...,h h hm    is the basis in 0W  and 

 1 2, , ...,h h hn    is the basis in 1W , then for each function 

*

hg W , 0hu W  and 1hv W  can be described as follows: 

*

1 1

    

h h h

m n

hl hl hi hi

l i

g u v
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= =

= +
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    T T

h h hh
= +d cθ ψ .  (15) 

where 

1 1 1

2 2 2
, , ,

h h h

h h h

hh h

hm hm hn

d

d

d

 

 

 

     
     
     = = =
     
     
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θ d ψ

1

2

h

h

h

hn

c

c

c

 
 
 =
 
 
 

c  

with 
hld  and 

hic  are any constants. 

The equation (15) is a limited linear function in W ; 

therefore, it can be stated in the inner product as follows: 
* *,h hx hiL g g=  

 * *       ( ),h i hg x g W=  . (16) 

Based on (15), (16) can be written as 

( )

( )

* *

1

2

1 2

1

2

1 2

( ) ,

          ,

          , ,

         ,

             ,

h i hi h

T T
hi h h hh

T T
hi hih h hh

h

h

hi h h hm

hm

h

h

hi h h hn

hn

g x g

d

d

d

c

c

c





 
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=

= +

= +

 
 
 = +
 
 
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 
 
 
 
 
 

d cθ ψ
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  1 1         , ... ,h hi h hm hi hmd d   = + + +  

1 1              , ... , ,h hi h hn hi hnc c   + +  (17) 

for each response ( )1, 2, ...,h r= with all observations 

( )1, 2, ...,i n=  (17) can be stated as follows: 

1 1 1 1

1 2 1 2*

1 1

1 1 1 1

1 2 1 2
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, ... ,
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          ,
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The components of matrix *

hU  can be described as 
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1

, ,  1, 2, ..., ;
1 !
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i

hi hs

x
i n

s
 

−

= =
−

1, 2,..., ;  1, 2,..., ,h r s m= =  

whereas ,hi hi  as components of the matrix *

hT  are equal 

to *,hi hi  , where  

( ) ( )

( )( )

1 1

*

* 2
,  ,

1 !

m m
b

i i

hi hi

a

x u x u
du

m
 

− −

+ +
− −

=
−

  1, 2,..., ;i n=

* 1, 2,..., ;i n=  1, 2, ...,h r= .  

If the regression curve g  in (9) is a function with r 

responses and p predictors, then it can be stated as follows: 

1

2

r

 
 
 =
 
 
 

g

g
g

g

. (19) 

The function for each response with p predictors 

( ); 1, 2, ...,h h r=g  is the modification from (18) as follows: 

( )

*

1

* *

1

    

p

h hj

j

p

hj h hj h

j

=

=

=

+=


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* * * *

1 2 1    ...h h h h hp h h h+ + + + += U d U d U d T c  

* *

2         ... .h h hp h+ +T c T c        (20) 

For all responses ( )1, 2, ...,h r= , we obtain the form of the 

regression curve g  as follows: 

* * * * * *

11 1 12 1 1 1 11 1 12 1 1 1

* * * * * *
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2 2

r r

  
  
   +=
  
    

   

U 0 0 d

0 U 0 d

0 0 U d

g  

1 1

2 2      .

r r

  
  
  
  
    

   

T 0 0 c

0 T 0 c

0 0 T c

 (21) 

In matrix notation, (21) can be expressed as  

= +Ud Tcg , ◼ (22) 

where 
* * *

1 2 ...h h h hp= + + +U U U U  and *

1h h= +T T  

* *

2 ...h hp+ +T T , the components of matrix 
*

hjU  can be 

described as 
( )

1

, ,
1 !

s

ji

hji hjs

x

s
 

−

=
−

 1, 2,..., ;i n=  

 1, 2,..., ;h r=   1, 2,..., ;j p=   1, 2,...,s m= , whereas the 

components of the matrix 
*

hjT  can be described as 

( ) ( )

( )( )

1 1

*

* 2
, ,  ,

1 !

m m
b

ji ji

hji hji hji hji

a

x u x u
du

m
   

− −

+ +
− −

= =
−


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 1, 2,..., ;i n= * 1, 2,..., ;i n=  1, 2,..., ;j p=  1, 2, ..., .h r=   

Lemma 2: Suppose the given function 
1

( )
q

hk ki

k

f t
=

  is 

expressed in vector notation f . The function f  is 

approached by the Kernel estimator, then the form function 

of f  can be expressed as 

0 0( )t= τf , (23) 

where  

0 0 1 ,0 0 2 ,0 0

1 1

,0 0

1

( ) ( ) ( )

               ( ) .

T T
q q

k k k k

k k

T
T

q

rk k

k

t t t

t

= =

=

   
=    

   

 
 
  

 



τ τ τ

τ

 

Proof: The function ( )hk kif t  is part of the function 

1

( )
q

hk ki

k

f t
=

  for 1, 2,..., .h r=  This function can be 

approached by the Taylor series with 
kt  around 

0kt  as 

follows [13], [22]: 
1 1

0 0

0

( ) ( )
( ) ( )

1!

k k hk k

hk k hk k

t t f t
f t f t

−
 + +  

2 2

0 0 0 0( ) ( ) ( ) ( )
             ... .

2! !

h hm m

k k hk k k k hk k

h

t t f t t t f t

m

− −
+ +  (24) 

If 0

, 0

( )
) 0,( ,  1, . .,

!
. h

v

hk k

hk v k

f
m

t
t v

v
 = = , then (24) can be 

stated as follows: 
1

,0 0 0 ,1 0( ) ( ) ( ) ( )hk k hk k k k hk kf t t t t t  + − +  

2

0 ,2 0 0 , 0              ( ) ( ) ... ( ) ( ),h

h

m

k k hk k k k hk m kt t t t t t − + + −  (25) 

with ( )0 0,k k h k ht t t  − + , where 0kt  is the value of 

predictor variable for prediction and h  is bandwidth 

parameter for each response. 

The Kernel estimator is obtained when polynomial order 

0hm = ; then, (25) with 0hm =  can be stated as  

,0 0( ) ( )hk k hk kf t t . (26) 

By involving all observations, the function form for each 

response can be stated as 

( ) ( ) ( )( )

( ) ( ) ( )( )

(1) (2) ( )

,0 0(1) ,0 0(2) ,0 0( )

( )

           

T

hk k hk k hk k hk k n

T

hk k hk k hk k n

f t f t f t

t t t  

=

=

tf
 

  ( ),0 0      hk kt= τ . 

Therefore, by involving all responses, we can obtain 

,0 0( ) ( )k k k kt=t τf , (27) 

where  

( ) ( ) ( )( )1 2( ) ( ) ( ) ( ) ,
T

T T T

k k k k k k rk k=t t t tf f f f

( ),0 0 1 ,0 0 2 ,0 0 ,0 0( ) ( ) ( ) ( )
T

k k k k k k rk kt t t t=τ τ τ τ . 

Therefore, the function form of the regression function 

1

( )
q

hk ki

k

f t
=

 can be stated in vector notation as 

,0 0 0 0

1

( ) ( )
q

k k

k

t t
=

= = τ τf ,  ◼ (28) 

where  

0 0 1 ,0 0 2 ,0 0

1 1

,0 0

1

( ) ( ) ( )

               ( ) .

T T
q q

k k k k

k k

T
T

q

rk k

k

t t t

t

= =

=

   
=    

   

 
 
  

 



τ τ τ

τ

 

Theorem 1: The model of multi-response nonparametric 

regression is given in (7), and each component of the 

regression curve is additive. The form of the function g is 

presented in Lemma 1, and the form of the function f is 

presented in Lemma 2. Using the Penalized Weighted Least 

Square estimation method in the first stage of estimation and 

Weighted Least Square estimation method in the second 

stage of estimation, the mixture of Spline Smoothing and 

Kernel estimator in multi-response nonparametric regression 

is obtained as follows: 

( )ˆ = Cω λ,α y , (29) 

where  

( ) ( ) ( ) ( ) ( )( )

( ) ( )

( )( )( )
( ) ( ) ( )( )( )

( )( ) ( )( )

1
1 1 1 1

1
1 1 1 1 1 1

1

,

+

                 ,

2

               .

T

T

−
− − − −

−
− − − − − −

−

= − +

=

−

= − +

− −

C A A B B

U R Σ U R ΣA

TR Σ I U R Σ U R Σ

A DA D DB

I A D I A

λ,α λ,α λ,α λ,α λ,α

λ,α

λ,α λ,α λ,α

λ,α λ,α

 

Proof: To obtain the mixture of Spline Smoothing and 

Kernel estimator in multi-response nonparametric 

regression, a two-stage estimation is needed. The first stage 

of estimation is carried out to estimate the Spline Smoothing 

estimator component ( )ĝ  using the PLWS method. By 

substituting the function form of g  in (22) into (12), the 

PWLS formula can be stated as follows: 

( )
( ) ( )

2

1 1

,m
h h h

T

g W a b

Min N − −



− − − − +Ud Tc Σ Ud Tch h  

2
( )

1

                 ( ) , 0 .
h

h

br
m

h h h

h a

g x dx 
=


     


   (30) 

The penalty component 
2

( )

1

( )
h

h

br
m

h h

h a

g x dx
=

     in (30) 

needs to be elaborated. This penalty component can be 

obtained through the decomposition as follows: 

( ) ( )

( )

2 2( )

1

1 1

1 1

( )

                     ,

                     ,

                     ,

                     

h

h

b

m

h h

a

h h

T TT T

h h h h h hh h

T T
h hh h

T T
h hh h

g x dx P g

P g P g

P P

  = 

=

= + +

=

=



θ θd c d cψ ψ

c cψ ψ

c cψ ψ

                     T

h h h= c T c .  (31) 
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1P  is the orthogonal projection of 
hg  to 

1W  in W space. 

By substituting (31) into the penalty component, we obtain 

2
( )

1 1

1 1 1 1 2 2 2 2

( )        

...

h

h

br r
m T

h h h h h h

h ha

T T T

r r r r

g x dx 

  

= =

  = 

= + + +

  c T c

c T c c T c c T c

  

( )

1

2

1 2

1 1

2 2     

n

n

r

r n

r r







 
 
 =
 
 
 

  
  
  
  
    

   

I 0 0

0 I 0
c c c

0 0 I

T 0 0 c

0 T 0 c

0 0 T c

 

 = T
c ΛTc .  [6] (32) 

By substituting (32) into (30), the PWLS optimization 

formula can be written in matrix notation as follows: 

( )
( ) ( ) 

2

1 1

,m
h h h

T T

g W a b

Min N − −



− − − − + =Ud Tc Σ Ud Tc c ΛTch h

 
( )

( ) 
2 ,

,
m

h h hg W a b

Min Q


c d . (33) 

Using partial derivative ( ),Q c d  by c  and d , the 

solution for the PWLS optimization is obtained. The partial 

derivative of ( ),Q c d  by c  is as follows: 

( ) 1 1
,

2 2T T
Q

− −


= − + +


c d
T Σ T Σ Ud

c
h  

1 ˆ ˆ                     2 2T N− + =T Σ Tc ΛTc 0 .  (34) 

Suppose 1 N−= +R Σ T Λ ; we obtain 

( )1 1 1ˆ − − −= −c R Σ Σ Udh . (35) 

The partial derivative of ( ),Q c d  by d  is as follows: 

1 1 1( , ) ˆ ˆ2 2 2T T TQ − − −
= − + + =



c d
U Σ U Σ Ud U Σ Tc 0

d
h .  (36) 

By substituting (35) into (36), we obtain  
1 1 ˆ2 2T T− −− + +U Σ U Σ Udh  

( )1 1 1 1 ˆ2 .T − − − −− =U Σ TR Σ Σ Ud 0h  (37) 

Recalling that 1 N−= +R Σ T Λ , we obtain 

( )N−T = Σ R Λ . Next, we can modify the following part of 

(37): 

( )1 1 1 1( )N− − − −= −Σ TR Σ Σ R Λ R , 

1              N −=  − ΛR . (38) 

By substituting (38) into (37) and solving it, we obtain 

( )
1

1 1 1 1ˆ
−

− − − −=d R Σ U R Σ h . (39) 

Then, (39) is substituted into (35), and we get 

( )( )1
1 1 1 1 1 1 1ˆ

−
− − − − − − −= −c R Σ Σ U R Σ U R Σh h , (40) 

( )( )( )1
1 1 1 1 1 1ˆ

−
− − − − − −= −c R Σ I U R Σ U R Σ h . (41) 

The results of d̂  and ĉ  are substituted into the form of 

function g  in (22). The Spline Smoothing estimator 

component in the multi-response nonparametric regression 

model can be obtained as follows:       

( )

( )( )( )

1
1 1 1 1 1 1

1
1 1 1 1

ˆˆ ˆ

   +

           

−
− − − − − −

−
− − − −

= +

=



−



Ud Tc

U R Σ U R Σ TR Σ

I U R Σ U R Σ

g

h

      

( )  ,= A λ α h . (42) 

 Recalling that = −h y f , the result of the estimation of 

Spline Smoothing estimator component from the first stage 

estimation can be stated as follows:  

( ) ( ) ( ) ( )ˆ , , ,= − = −A λ α A λ α A λ αg y f y f . (43) 

Therefore, we obtain the estimation results of the 

modified model in (11) as follows: 

ˆ ˆ=h g , 

( ) ( )ˆ , ,= −A λ α A λ αh y f . (44) 

 However, this result still contains function f  that 

needs to be estimated in the second stage of estimation. 

 After obtaining the estimated Spline Smoothing 

component, we carry out the second stage of estimation. In 

the second stage of estimation, the function f  as the Kernel 

estimator component is estimated using the WLS method. 

By substituting the results of the first stage of estimation 

(44) and the result of Lemma 2 (28) into the WLS 

optimization formula (13), we can obtain 

( ) ( )( ) 0 0 0 0, , ( ) ( )
h

T

Min t t


− + −A λ α A λ α τ τy y  

( ) ( )( )1

0 0 0 0 0( ) , , ( ) ( ) ,t t t− − + −
α

Σ Κ A λ α A λ α τ τy y  (45) 

where 0( )t
α

Κ  is the weighted matrix for the Kernel 

estimator with the following structure: 

10 0

1

( ) ( ),
q

k k ki k

k

t diag t t
=


= −


αΚ K  

2 0 0

1 1

                 ( ), ..., ( ) ,
r

q q

k ki k k ki k

k k

t t t t 
= =


− − 


 K K  (46) 

where (0 1 0 2 0( ) ( ) ( )
h h hk ki k k k k k k kt t K t t K t t  − = − −K  

)0( )
h

T

k kn kK t t − ; 1, 2,..., ;h r= 1, 2, ...,k q=  and (.)
hkK   is 

the Kernel function. 

Supposing 1

0( )t−=
α

D Σ Κ , (45) can be written as 

( ) ( )( )
( ) ( )( )

0 0 0 0

0 0 0 0

, , ( ) ( )

        , , ( ) ( )

h

T

Min t t

t t


− + −

− + −

A λ α A λ α τ τ D

A λ α A λ α τ τ

y y

y y

 

( ) 0 .
h

Min Q t


=              (47) 

The optimization solution above is obtained by 

performing the partial derivative 0( )Q t  by 0 0( )tτ , and the 

result is equal to zero. The result is obtained as follows: 

( ) ( )( )( )
1

0 0
ˆ ( ) 2

T
t

−

= − +τ A DA D Dλ,α λ,α  

( )( ) ( )( )             
T

− −I A D I Aλ,α λ,α y.  (48) 

Therefore, the estimation result for the Kernel estimator 

component f̂  can be written as follows: 

0 0
ˆ ˆ ( )t= τf  
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( ) ( )( )( ) ( )( )
( )( )

1

   2

        

T T
−

= − + −

−

A DA D D I A

D I A

λ,α λ,α λ,α

λ,α y

    

( )   ,= B λ α y .    (49) 

By substituting the first-stage estimation results in (41) 

and the second-stage estimation results in (49) into (9), we 

can obtain the following mixture Spline Smoothing and 

Kernel estimator in multi-response nonparametric 

regression:  

( ) ( ) ( )

( ) ( ) ( ) ( )( )

ˆˆ ˆ

ˆ  

  

= +

−= +

= − +

A A B

A A B B

ω g f

λ,α y λ,α f λ,α y

λ,α λ,α λ,α λ,α y

 

( )  = C λ,α y . ◼ (50) 

B. Selection of Smoothing and Bandwidth Parameters  

In nonparametric regression with the Spline Smoothing 

estimator and the Kernel estimator, there are smoothing 

parameters that play a role in regulating the smoothness of 

the estimated regression function. In the mixture of Spline 

Smoothing and Kernel estimator in multi-response 

nonparametric regression, there are two types of smoothing 

parameters: the smoothing parameters 

( )1 2

T

r  =λ  as smoothing parameters for the 

Spline Smoothing component and bandwidth parameters 

( )1 2

T

r  =α as a smoothing parameter for the 

estimator Kernel component. The Smoothing parameters 

( )λ  and bandwidth ( )α  are tuning parameters. 

One of the methods to determine the optimal smoothing 

and bandwidth parameters in nonparametric regression is 

Generalized Cross Validation (GCV) [25]. The advantage of 

the GCV method compared to other methods is that the 

GCV method has optimal asymptotic properties [24]. In the 

multi-response mixture Spline Smoothing and Kernel 

estimator, the smallest GCV value is used to determine the 

best model with the optimal smoothing parameters ( )optλ  

and bandwidth parameters ( )optα . Based on the mixture 

Spline Smoothing and Kernel estimator in multi-response 

nonparametric regression in (29), we can obtain the 

following GCV formula: 

( )
( )( )

( )( )( )
2

1

MSE
GCV

N trace−

=

−

C

I C

λ,α
λ,α

λ,α

, (51) 

where  

( )( ) ( ) ( )

( )( )

1

2
1

ˆ ˆ

                        .

T
MSE N

N

−

−

= − −

= −

C

I C

 λ,α y y

λ,α y
 

C. Simulation Study 

In this study, a simulation study was conducted to show 

the performance of the proposed mixture of Spline 

Smoothing and Kernel estimator in multi-response 

nonparametric regression (29). The simulation data were 

generated from a formula that contains two different 

nonlinear functions. One function is a polynomial function 

( )( )hi ig x  and the other is an exponential function 

( )( )hi if t . The polynomial function is used to generate data 

that match the Smoothing Spline pattern, and the 

exponential function is used to generate data that were 

suitable for the Kernel estimator. The formula for generating 

simulation data with three response variables and two 

predictor variables is as follows: 

( ) ( ) ,  1, 2, 3;  1, 2, ...,hi hi i hi i hiy g x f t h i n= + + = = , (52) 

where 

( ) ( ) ( )
1

2

. 1 14 73 ,
i i ii

x xxg = − −

( ) ( )4.03 7.13 9.76

1
4 32.34 i i i

i i

t t t
et e ef

− − −
− += ,  

( ) ( ) ( )
2

2
6.89 1 1

ii ii
x xg x − −= , 

( ) ( )2.36 5.7 .

2

4 4 23
0 23 4 3. i i i

t

i

t

i

t
e et ef

− − −
− += − ,  

( ) ( ) ( )
2

3
7.53 1 1

i ii i
x xxg − −= − ,  

( ) ( )2.94 4.82 8.34

3
4 30.79 i i i

i i

t t t
e e ef t

− − −
= − + , 

the predictors are generated from ( )~ 0, 2ix U  and 

( )~ 0, 2it U  with a sample size 100,n =  and the random 

errors 
hi  are generated from bivariate normal distributions 

with 2 2 2

1 2 3 1 2 3,0,  0 0,  0.2,  0.25, 0.3    = = = = = = , 

and 0.5 = . Gaussian Kernel is employed in this 

simulation. Fig. 1 shows the scatter plots from the 

simulation data. The plots between 
1 2 3, ,y y y  and x  tend to 

change at certain subintervals like the Spline Smoothing 

pattern, whereas the plots between 
1 2 3, ,y y y  and t  are like 

random patterns that are commonly modeled with Kernel 

regression. In this simulation, we use the Gaussian Kernel.  

The selection of the best model for the proposed estimator 

was carried out using minimum GCV criteria. The higher 

smoothing parameters and bandwidth parameters do not 

necessarily result in high GCV and vice versa. Therefore, 

we need to try several combinations of smoothing 

parameters and bandwidth parameter values to choose the 

best model. Using two-stage estimation and tuning 

parameters, we can obtain a set of optimal smoothing and 

bandwidth parameters for the simulation data. Table 1 

shows some combinations of smoothing and bandwidth 

parameters around their optimal values. Due to limited 

space, we only show a few of all parameter combinations. 

From the combinations of smoothing and bandwidth 

parameters in Table 1 and the plot of GCV value in Fig. 2, 

the smallest GCV value is 0.2395237. The model with the 

smallest GCV value is chosen as the best model for these 

simulation data. This model is obtained from optimal 

smoothing parameters )1( 0.000725,opt = )2( 0.000395,opt =  

3( ) 0.000751opt =  and optimal bandwidth parameters 

1 2 2( ) ( ) ( )0.0001937, 0.0003563, 0.0001875opt opt opt  = = = .

This model produces 2 95.83%R = , and 0.2066491.MSE =   

Fig. 3 presents the 3D scatterplots between the estimation 

results and the original simulation data for each response, 

where the estimated values (gray dots) are very close to the 

original simulation data (black dots). These show that the 

proposed model and estimation procedure can be used to 

make a prediction correctly. 
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Fig. 1. Scatterplot of the simulation data. 

 
TABLE I 

COMBINATIONS OF SMOOTHING AND BANDWIDTH PARAMETERS AROUND THEIR OPTIMAL VALUES  

1  
2  

3  
1  

2  
3  GCV 

0.0000193 0.0000356 0.0000187 0.0000725 0.0000395 0.0000751 0.24747 

0.0000193 0.0000356 0.0000187 0.000725 0.000395 0.000751 0.24513 

0.000193 0.000356 0.000187 0.0000725 0.0000395 0.0000751 0.24103 

0.000193 0.000356 0.000187 0.000725 0.000395 0.000751 0.23952 

0.000193 0.000356 0.000187 0.00725 0.00395 0.00751 0.2498 

0.00193 0.00356 0.00187 0.000725 0.000395 0.000751 0.32076 

0.00193 0.00356 0.00187 0.00725 0.00395 0.00751 0.35638 

 

 
Fig. 2. Plot of Generalized Cross Validation (GCV) value. 
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Fig. 3. 3D scatterplots between the estimation results and the actual simulation data. 

 

 
Fig. 4. 3D surface plots of the function for simulation (a,b,c) and its estimator (d,e,f). 

 
TABLE II 

COMPARISON OF THREE KINDS OF ESTIMATORS  

Estimator Minimum GCV 

Mixture Spline Smoothing and Kernel 0.2395 

Spline Smoothing 0.3237 

Kernel 1.1493 

 

Furthermore, Fig. 4 (a, b, c) shows the surface plots from 

the functions for generating simulation data (52). In 

comparison, Fig. 4 (d, e, f) is formed from (29), which is 

obtained from two-stage estimation, i.e., PWLS and WLS. 

The two sides of Fig. 4 display plots that appear to have 

similar surface shape. This evidence shows that the 

estimation procedure proposed in (29) can be used 

appropriately to estimate the function generated from the 

simulation. 

We also compare the modeling on simulation data with 

our proposed multi-response mixture estimator against the 

multi-response Spline Smoothing estimator only and the 
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multi-response Kernel estimator only. The minimum GCV 

values of these models are presented in Table 2. The model 

using our proposed estimator produces the smallest 

minimum GCV values. This empirical finding suggests that 

modeling for data with different patterns gives better results 

when using a mixture estimator. 

D. Application Study 

In this section, we discuss the results of applying the 

proposed multi-response mixture estimator in real cases. 

The data used are secondary data obtained from the 

Statistics Indonesia of Papua Province. They consist of 
1Y : 

Life Expectancy Index (LEI), 
2Y : Education Index (EI), and 

3Y : Gross National Income Index (GNII) as three response 

variables that represent the three dimensions of the Human 

Development Index (HDI) with four predictor variables that 

influence it, namely 
1 :X  the population growth rate, 

2X : 

dependency ratio, 
3X : percentage of population working in 

agriculture, and 
4 :X  economic growth rate in the Papua 

Province. The observation units used were 29 districts/cities 

in the Papua Province in 2018. 

In the case of multi-response, there is an assumption that 

there must be a correlation between the response variables. 

According to Rahayu et al. [26], the three response variables 

that represent the three dimensions of the Human 

Development Index are correlated so that the data are 

feasible to be modeled with multi-response regression. To 

ensure that the three response variables satisfy the 

correlation assumptions for multi-response modeling, we 

perform a correlation test with the Bartlett sphericity test. 

The test gives the chi-square value 2 41.7576X =  with 
95 10p value −− =  . The p value−  of the Bartlett 

Sphericity test is smaller than 5% = , so it can be 

concluded that the correlation matrix between response 

variables is different from the identity matrix. Because the 

correlation matrix is not an identity matrix, multi-response 

regression modeling is feasible. 

 

 
Fig. 5. Plot of Life Expectancy Index (LEI) vs. Prediction of LEI in 2019. 

 
Fig. 6. Plot of Education Index (EI) vs. Prediction of EI in 2019. 

 
Fig. 7. Plot of Gross National Income Index (GNII) vs. Prediction of GNII 

in 2019. 

 

Meanwhile, the application of our proposed mixture 

estimator model is appropriate for the data of three indexes 

from the three HDI dimensions in Papua province because 

there are different patterns between the predictor variables 

and the three response variables. These relationship patterns 

are partly under the characteristics of the Spline pattern, 

which changes at certain sub-intervals and other parts 

following the Kernel pattern, which does not have a specific 

pattern or seems random. In this case, the variable 

dependency ratio and percentage of the population working 

in agriculture are used as predictor variables for the Spline 

Smoothing component because the pattern tends to change 

at certain subintervals, whereas the variable population 

growth rate and economic growth rate are used as Kernel 

component variables because the pattern looks random. 

By applying the multi-response mixture Spline 
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Smoothing and Kernel estimator (29) on the data of three 

indexes from the three HDI dimensions in Papua province in 

2018 and trying several combinations of smoothing and 

bandwidth parameters, we obtained a minimum GCV value 

of 0.00066 with optimal smoothing parameters 

1( ) 1.64,opt =  2( ) 7.319,opt =  3( ) 1.1opt =  and optimal 

bandwidth parameters 1( ) =4.059,opt  2( ) =3.001,opt  

3( ) =1.001opt . This model produces 2 99.09%R =  and 

0.000201MSE = . Based on the 2R  value, this model can 

describe the relationship between the predictor variables and 

the response variables up to 99.09%. These findings indicate 

that our proposed multi-response mixture estimator is 

suitable for modeling the data of three indexes from the 

three HDI dimensions in Papua Province.  

Once the modeling process is complete, the next step is to 

validate the model to see its prediction ability. In this 

validation stage, the prediction model that has been obtained 

from the data of three indexes from the three HDI 

dimensions in 2018 is used to predict the three indexes from 

the three HDI dimensions in 2019. By applying the values of 

the predictor variables (population growth rate, the 

dependency ratio, the percentage of the population working 

in agriculture, and economic growth rate of the Papua 

Province) in 2019 to the obtained model, we can obtain 

predicted values of the three indexes from the three HDI 

dimensions in 2019. Once the prediction is made, we 

calculate the Mean Absolute Percentage Error (MAPE) 

value, which can be used as the model's eligibility criteria. 

The MAPE value for the ability of the model to predict the 

three indexes from the three HDI dimensions in 2019 is 

2.5798% or the level of accuracy is 97.4202%. This MAPE 

value is less than 5%, which means that the multi-response 

mixture Spline Smoothing and Kernel model has an 

excellent ability to predict the three indexes from the three 

HDI dimensions in Papua Province. This good predictive 

ability is also shown in Fig. 5 until Fig. 7, where the 

predicted values of the three indexes from the three HDI 

dimensions in 2019 are very close to the actual values. 

IV. CONCLUSION 

This paper proposes the multi-response nonparametric 

regression model with a mixture of Spline Smoothing and 

Kernel estimator (29). This proposed multi-response mixture 

estimator is developed to handle the issue of how to model 

data with different patterns between each predictor in the 

multi-response case. Our proposed estimator is obtained 

through the two-stage estimation i.e., the first stage using 

PWLS to obtain the Spline Smoothing component, followed 

by the second stage using WLS to obtain the Kernel 

component. The selection of the best model for the proposed 

estimator was carried out using minimum GCV criteria. Our 

simulation study shows that the data with different patterns 

between each predictor are better modeled using our 

proposed mixture estimator rather than using only one kind 

of estimator. The proposed estimator can also be well 

implemented to model the three indexes from the three HDI 

dimensions of Papua Province in 2018 and provides 

satisfactory results. The predictive ability of the proposed 

model to predict the three indexes from the three HDI 

dimensions of Papua province in 2019 is very good, with the 

MAPE value less than 5%. 

A limitation of this study is that we only use smoothing 

and bandwidth parameters according to the response 

variables. This proposed estimator can be developed for 

future work by considering smoothing and bandwidth 

parameters according to both response and predictor 

variables. Despite this limitation, this research certainly adds 

to our understanding of the mixture Spline Smoothing and 

Kernel estimator in multi-response nonparametric 

regression. 
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