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Abstract—In this paper, we discuss the permanence of a class
of discrete single-species population model with time delays. In
most of the previous literature, the population models have
only one positive equilibrium.While the system we considered
has more than one positive equilibrium point and its dynamic
behaviors will be more complex. By using the theory of
oscillation of difference equation, we have established a new
and rather weaker condition to ensure the permanence of the
system.

Index Terms—Permanence, Oscillation, Semicycle,Discrete
population model, Equilibrium point.

I. INTRODUCTION

D ISCRETE population models have been extensively s-
tudied in the past two decades and successively applied

to different areas, especially bio-mathematics.These applica-
tions rely heavily on the dynamic behavior of the models.
The equation sometimes seems to be simple, but its dynamic
behavior may be complex. The variation of some parameters
will lead from stability to chaos[1-4]. In previous research,
the population models proposed usually have exactly one
positive equilibrium except the zero equilibrium.In [6], the
author studied a nonlinear discrete population, and obtained
sufficient conditions to ensure the global attractiveness of
the model. In [8], a single-species discrete population model
with stage structure and birth pulses was proposed and the
effect of seasonal harvesting was investigated. In [10], the
author considered a single-species discrete population model
with periodic harvest stock and proved the existence of
periodic solution.We can find that the models have only one
positive equilibrium also in [5,7,12,13]. Given the scarcity of
literature on this topic, we need to consider the population
models with a finite number of equilibriums.

The rest of this paper is organized as follows. Section
A provides the basic preliminary and hypothesis. The main
results are presented in Section B, where we establish a
sufficient condition to ensure the permanence of a class
discrete single-species population model with delays and
multi positive equilibriums. In section C, we give a brief
conclusion and some open problems.

Generally speaking, one basic hypothesis of previous
studies is that the system has only one equilibrium point.
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The present paper aims to give a new sufficient condition
to ensure the permanence of a class of different equations
with more than one equilibrium point. To complete our
conclusion, some new concepts such as oscillation about
[a, b], and middle cycle about [a, b] have been proposed.
Making use of these concept, we have obtained some good
results.

A. Preliminaries

In this paper, we will establish the permanence of solutions
for the following class discrete population model:

tn+1 = tnf(tn, T
r
n), n = 0, 1, 2, · · · . (3.1)

Where, T r
n = (tn−k1

, · · · , tn−kr
).

Definition 1. Equation (3.1) is said to be permanent, if
there exist constants E and F with 0 < E ≤ F < ∞ such
that for any initial values t−k, · · · , t0 ∈ (0,∞), there exists
a positive integer N which only depends on the initial values
such that

E ≤ tn ≤ F for all n ≥ N.

Definition 2. (a). Sequence {tn} is said to oscillate about
t̄, if the sequence {tn− t̄} is neither eventually all positive nor
eventually all negative.

(b). Sequence {tn} is said to strictly oscillate about t̄, if
for every n0 ≥ 0, there exist integers l, s ≥ n0 such that
(tl − t̄)(ts − t̄) < 0.

(c). Sequence {tn} is said to oscillate about [a, b], if the
sequence {tn − a} are not eventually all negative or {tn − b}
eventually all positive.

(d). Sequence {tn} is said to strictly oscillate about [a, b],
if for every n0 ≥ 0, there exist integers l, s ≥ n0 such that
tl − a < 0 and ts − b > 0.

Definition 3. (a) A positive semicycle about t̄ of a so-
lution {tn} of equation (3.1) consists of a “string” of terms
{tl, tl+1, · · · , tz}, all greater than or equal to t̄, with l ≥ −k
and z ≤ ∞ and such that

either l = −k or l > −k and tl−1 < t̄

and

either z =∞ or z <∞ and tz+1 < t̄.

(b) A negative semicycle about t̄ of a solution {tn} of equa-
tion (3.1) consists of a “string” of terms {tl, tl+1, · · · , tz}, all
less than or equal to t̄, with l ≥ −k and z ≤ ∞ and such that

either l = −k or l > −k and tl−1 ≥ t̄

and
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either z =∞ or z <∞ and tz+1 ≥ t̄.

Definition 4. A ”string” of terms {tl, tl+1, · · · , tm} in
{tn} is said to be a positive semicycle about [a, b], if it
is a positive semicycle about point b, and is said to be a
negative semicycle about [a, b], if it is a negative semicycle
about point a, and is said to be a middle cycle about [a, b],
if all terms are in [a, b).

In this paper, we will assume that k1, k2, · · · , kr are
positive integers and we will denote by k the maximum
of k1, k2, · · · , kr. We will also assume that the function
f(q0, q1, · · · , qr) satisfies the following hypotheses:

(H1) f ∈ C[(0,∞) × [0,∞)r, (0,∞)],
g ∈ C[[0,∞)r+1, (0,∞)], and

g(q0, Q
r) = q0f(q0, Q

r),

g(0, Qr) = lim
q0→0+

g(q0, Q
r).

here, Qr = (q1, · · · , qr) ∈ [0,∞)r.
(H2) The equation f(t, t, · · · , t) = 1 has N positive

solutions with 0 < t̄1 < t̄2 < · · · < t̄N <∞.
(H3) f(q0, Q

r) is non-increasing in qi on [0, t̄1] and non-
increasing in qi on [t̄n,∞] for all i = 1, 2, · · · , r.

Clearly, by the continuity of the function f , it follows that
there exist positive number α ∈ (0, 1] and β ≥ 1 such that

α ≤ f(q0, Q
r) ≤ β

for all q0 ∈ [t̄1, t̄N ] and Qr ∈ {[t̄1, t̄N ] ∪ {0}}r.
To be convenient, we first set some constants before

proposing the forth hypothesis.

λ
4
= sup

t∈[0,t̄1]

{f(t, Qr)

δ
4
= max{f(t̄N , Q

r)}

A
4
= λδk

B
4
= t̄Nβ

k+1

E
4
= max{A,B}

where, Qr ∈ {{0} ∪ [t̄1, t̄N ]}r. Clearly, δ ≥ 1.
(H4) The function f(q0, Q

r) does not depend on q0 or

f(t, qr) ≥ f(t̄1, Q
r)

for all t ≤ t̄1 and qı ∈ [t̄1, t̄N ] ∪ {0, E}, and

f(t, Qr) ≤ f(t̄N , Q
r)

for all t ≥ t̄N and qı ∈ [t̄1, t̄N ] ∪ {0, E}.
If a−k, a−k+1, · · · , a−1 ∈ [0, ∞) and a0 ∈ (0,∞)

are given, then equation (3.1) has a unique solution {tn}
satisfying the initial conditions t = a for all  = −k, · · · , 0.
Clearly, tn > 0 for all n ≥ 0.

In the sequel, we only consider solution of equation (3.1)
with initial values a−k, a−k+1, · · · , a−1 ∈ [0, ∞) and a0 ∈
(0, ∞).

B. Main Results

Lemma 1. Let {tn} be a solution of equation (3.1) such
that for some n0 ≥ 0 either

tn ≥ t̄N for n ≥ n0 (3.2)

or
tn ≤ t̄1 for n ≥ n0. (3.3)

Then for all n ≥ n0 + k, the sequence {tn} is mono-
tonic, (3.2) implies limn→∞ tn = t̄N and (3.3) implies
limn→∞ tn = t̄1.
Proof: Assume that (3.2) holds, then first by using (H3) and
then (H4) we see that for n ≥ n0 + k

tn+1 = tnf(xn, T
r
n)

≤ tnf(tn, t̄N , · · · , t̄N )

≤ tnf(t̄N , t̄N , · · · , t̄N )

= tn.

Hence {tn} is nonincreasing for n ≥ n0 + k. Let` =
lim
n→∞

tn ≥ t̄N , for the sake of contradiction, assume ` > t̄N ,
then take the limit on both sides of the equation(3.1), we
obtain f(`, `, · · · , `) = 1, which contradicts the hypothesis
that t̄N is the maximum positive solution of equation (3.1).

Assume that (3.3) holds, then first by using (H3) and then
(H4) we see that for n ≥ n0 + k

tn+1 = tnf(tn, T
r
n)

≥ tnf(tn, t̄1, · · · , t̄1)

≥ tnf(t̄1, t̄1, · · · , t̄1)

= tn.

Hence {tn} is nondecreasing for n ≥ n0 + k. Let ` =
lim
n→∞

≤ t̄1, for the sake of contradiction, assume ` < t̄1,
then take the limit on both sides of the equation(3.1), we
obtain f(`, `, · · · , `) = 1, which contradicts the hypothesis
that t̄1 is the minimum positive solution of equation (3.1).
The proof is completed.

Lemma 2. Let {tn} be a solution of equation (3.1). Then
the extreme point in any semicycle about [t̄1, t̄N ] occurs in
one of the first k + 1 terms of the semicycles about [t̄1, t̄N ].
Proof: We assume that {tl, tl+1, · · · , tl+m} be a positive
semicycle about[t̄1, t̄N ]. The case of negative semicycles
about [t̄1, t̄N ] is similar and hence be omitted.

If m ≤ k, then the conclusion is obvious.
Now, let m > k and assume that extreme point does not

occur in one of the first k + 1 terms. Let tl+k+s be the
extreme point s ≥ 1, then first by using (H3) and then (H4),
we see that

tl+k+s = tl+k+s−1f(tl+k+s−1, T
r
l+k+s)

≤ tl+k+s−1f(tl+k+s−1, t̄N , · · · , t̄N )

≤ tl+k+s−1f(t̄N , t̄N , · · · , t̄N )

= tl+k+s−1.

Then tl+k+s = tl+k+s−1.If s = 1, that is, tl+k is the
extreme point which is contradiction. Otherwise continue the
step above. After finite s0 steps, we can have s−s0 = 0, that
is, tl+k+s−s0 = tl+k is the maximum, which is contradicts
the hypothesis.The proof is completed.

Theorem 1. Let {tn} be a solution of equation (3.1)
which is not strictly oscillatory about [t̄1, t̄N ], then {tn} is
bounded away from zero and infinity by positive constants.

IAENG International Journal of Applied Mathematics, 51:3, IJAM_51_3_29

Volume 51, Issue 3: September 2021

 
______________________________________________________________________________________ 



Proof: Because {tn} is not strictly oscillatory about [t̄1, t̄N ],
then one of the following five cases occurs.

Case 1. For some n0 ≥ 0, tn < t̄1 for all n ≥ n0.

Case 2. For some n0 ≥ 0, tn ≥ t̄N for all n ≥ n0.

Case 3. For some n0 ≥ 0, t̄1 ≤ tn < t̄N for all n ≥ n0.

Case 4. For some n0 ≥ 0, positive semicycle and middle
cycle alternates for n ≥ n0.

Case 5. For some n0 ≥ 0, negative semicycle and middle
cycle alternates for n ≥ n0.

For cases 1 and 2, making use of lemma 1, we can
easily obtain the conclusion of theorem 1. For case 3, the
conclusion of theorem 1 is obvious. Now, it remains to
prove cases 4 and 5. For case 4, we only need consider
the terms in positive semicycles. Let tM be extreme point
with the smallest possible indices in a positive semicycle
{tp, tp+1, · · · , tq}, where p > n0 + k + 1, then by lemma
2, we have M − p ≤ k.

To be convenient, we define function

ψ(t) =


0, 0 < t < t̄1,

t, t̄1 ≤ t < t̄N ,

t̄N , t ≥ t̄N .

and then we set

ψ(T r
n) = (ψ(tn−k1

, · · · , ψ(tn−kr
)).

By using (H3) and then (H4), we can obtain

tM = tp−1

M−1∏
=p−1

f(t, T
r
 )

≤ tp−1

M−1∏
=p−1

f(t, ψ(T r
 ))

= tp−1f(tp−1, ψ(T r
p−1))

M−1∏
=p

f(t, ψ(T r
 ))

≤ tp−1f(tp−1, ψ(T r
p−1))

M−1∏
=p

f(t̄N , ψ(T r
 ))

≤ tp−1β
M−1∏
=p

β

= tp−1β
M−p+1

≤ t̄NβM−p+1

≤ t̄Nβk+1

= B.

For case 5, we only need consider the terms in negative
semicycles. To be convenient, we define function

φ(t) =

{
t̄1, 0 < t < t̄1,

t, t̄1 ≤ t < t̄N .

Let tm be extreme point with the smallest possible indices
in a negative semicycle {tq, tq+1, · · · , ts}, where q > n0 +
k+1, then by lemma 2, we have M −q ≤ k. By using (H3)

and then (H4), we can obtain

tm = tq−1

m−1∏
=q−1

f(t, T
r
 )

≥ tq−1

m−1∏
=q−1

f(t, φ(T r
 ))

= tq−1f(tq−1, φ(T r
q−1))

m−1∏
=q

f(t, φ(T r
 ))

≥ tq−1f(tq−1, φ(T r
q−1))

m−1∏
=q

f(t̄1, φ(T r
 ))

≥ tq−1α
m−1∏
=q

α

= tq−1α
m−q+1

≥ t̄1αm−q+1

≥ t̄1αk+1

= C.

The proof is completed.

Theorem 2. Let {tn} be a solution of equation (3.1)
which is strictly oscillatory about [t̄1, t̄N ], then {tn} is
bounded away from zero and infinity by positive constants.
Proof: Because {tn} is strictly oscillatory about [t̄1, t̄N ],
then one of the following two cases occurs.

Case 6. For some n0 ≥ 0, positive semicycle and negative
semicycle alternates for n ≥ n0.

Case 7. For every n0 ≥ 0, besides positive semicycles and
negatives semicycle, middle cycles also occur for n ≥ n0.

For case 6, let {tp, tp+1, · · · , tq}, where p > n0 + k + 1,
be a positive semicycle about [t̄1, t̄N ] followed by a negative
semicycle {tq+1, tq+2, · · · , ts} about [t̄1, t̄N ]. If tM and
tm are the extreme values in these positive and negative
semicycles, respectively, with the smallest possible indices
M and m. Then by lemma 2, we have M − p ≤ k and
m− q − 1 ≤ k. Then, by using (H3) and then (H4) we can
obtain that

tM = tp−1

M−1∏
=p−1

f(t, T
r
 )

≤ tp−1

M−1∏
=p−1

f(t, ψ(T r
 ))

= tp−1f(tp−1, ψ(T r
p−1))

M−1∏
=p

f(t, ψ(T r
 ))

= tp−1f(tp−1, ψ(T r
p−1))

M−1∏
=p

f(t̄N , ψ(T r
 ))

≤ λ
M−1∏
=p

δ = λδM−p ≤ λδk = A

From the proof above, we know that the terms in positive
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hemicycles are always bounded by E, so we define function

Φ(t) =


t̄1, 0 < t < t̄1,

t, t̄1 ≤ t < t̄N ,

E, t ≥ t̄N .

By using (H3) and then (H4), we see that

tm = tq

m−1∏
=q

f(t, T
r
 )

≥ tq
m−1∏
=q

f(t,Φ(T r
 ))

= tqf(tq,Φ(T r
q ))

m−1∏
=q+1

f(t,Φ(T r
 ))

= tqf(tq,Φ(T r
q ))

m−1∏
=q+1

f(t̄N ,Φ(T r
 ))

≥ tqω
m−1∏
=q+1

γ = tqω
m−q−1

≥ t̄Nωγm−q−1

≥ t̄Nωγk

= D,

where

ω
4
= inf

(t,Qr)∈[t̄N ,E]×[{E}∪[t̄1, t̄N ]]r
f(t, Qr),

γ
4
= min

Qr∈[{E}∪[t̄1, t̄N ]]r
f(t̄1, Q

r).

For case 7, we only need consider terms in positive and
negative semicycles. Let us first consider positive semicy-
cles let {tp, tp+1, · · · , tq} be a positive semicycle, then the
following two cases occur.

Case a. A negative semicycle is followed by the positive
semicycle.

Case b. A middle cycle is followed by the positive semi-
cycle.

From the proof of cases 4 and 6, we know the terms
in positive semicycles are bounded by constants E and t̄N .
Then, let us consider terms in negative semicycles. Similarly,
we know, for negative semicycle, the following two cases
occur.

Case c. A positive semicycle is followed by the negative
semicycle.

Case d. A middle cycle is followed by the negative
semicycle.

From the proof of the case 6, we know that for case c
the terms in negative are bounded by D and t̄1. It remains
to prove the case d. To end it, let tm be extreme point
with the smallest possible indices in a negative semicycle
{tq, tq+1, · · · , ts}, where q > n0 + k+ 1, then by lemma 2,
we have M−q ≤ k. Clearly, by the continuity of the function
f , it follows that there exist positive number ᾱ and β̄ such
that 0 < ᾱ ≤ f(q0, q1, · · · , qr) ≤ β̄, 0 < ᾱ ≤ 1 and 1 ≤ β̄
for all q0 ∈ [t̄1, t̄N ] and q1, · · · , qr ∈ [t̄1, t̄N ] ∪ {0, E}.

Then, we have

tm = tq−1

m−1∏
=q−1

f(t, T
r
 )

≥ tq−1

m−1∏
=q−1

f(t, φ(T r
 ))

= tq−1f(tq−1, φ(T r
q−1))

m−1∏
=q

f(t, φ(T r
 ))

≥ tq−1f(tq−1, φ(T r
q−1))

m−1∏
=q

f(t̄N , φ(T r
 ))

≥ tq−1ᾱ
m−1∏
=q

ᾱ = tq−1ᾱ
m−q+1

≥ t̄N ᾱm−q+1

≥ t̄N ᾱk+1 4= C̄

The proof is completed.

Theorem 3. If assumptions (H1) − (H4) hold, then
equation (3.1) is permanent.
Proof: From theorems 1 and 2, the conclusion of theorem 3
is obviously.

C. Conclusion

In general, there may be multiple equilibrium points of
a discrete population. If a linear difference equation has
more than one positive equilibrium points, its dynamic be-
havior may become complex. In this paper, we have first
proposed the concept of oscillation about [a, b], and then
obtained a sufficient condition to ensure the permanence of
a class of discrete population model (3.1) with more than
one equilibrium point. In fact, the global attractivity of the
model is also important problem. While previous research
efforts have largely focused on the dynamic behaviors of a
single equilibrium including zero equilibrium. We propose
an open problem that is the global attractivity of model
(3.1). In fact, dynamical behaviors will be rather complex,
so instead of considering the single equilibrium property, we
can investigate the property of a certain set.
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