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New Operations on n-Intuitionistic Polygonal
Fuzzy Numbers

Mahmoud H. Alrefaei and Marwa Z. Tuffaha

Abstract—Recently, intuitionistic fuzzy sets and numbers are
widely interesting in the literature, and many types of Intuition-
istic Fuzzy Numbers (IFN’s) are studied and applied to different
mathematical and real life problems. In this paper, an algorithm
to approximate general IFN’s by the n-Intuitionistic Polygonal
Fuzzy Number (n-IPFN) is introduced. The approximation
facilitates the calculations due to its linearity, not to mention
its realisticity and flexibility. After that, a new method to
rank IFN’s is introduced and applied to the n-IPFN. Based
on that, convenient arithmetic operations for n-IPFN’s that
preserve the ranking values are proposed and shown to satisfy
the most important properties. As a result, defining a ranking
equivalence relation gave a strong algebraic structure that is
isomorphic to the real numbers set. Finally, some definitions
are proposed for dealing with matrices, functions, equalities
and inequalities with n-IPFN’s.

Index Terms—Intuitionistic Fuzzy Numbers, Polygonal Fuzzy
Number, Binary Operations

1. INTRODUCTION

According to Fuzzy Set theory, which was proposed by
Zadeh [1] to represent vagueness in real-life, each element
xz € X in an ordinary fuzzy set A=< X,z > has
a degree of membership in A, that is u;(z) € [0,1].
This implicitly gives another value, 1 — pz(z) € [0,1],
which represents the degree of non-membership of x in A.
Atanassov and Krassimir [2] answered an important question
here: What if the degree of non-membership of x is not the
complementary of y ;(z) to 1? In this case, another function
is required to represent the degree of non-membership of
z, that is the non-membership function, which results in
a generalized type of fuzzy sets called the Intuitionistic
Fuzzy Sets (IFS). Later, Biswas [3] showed that there are
some real life situations where IFS’s are more appropriate
in representing vagueness than ordinary fuzzy sets. This
happens when there is insufficient information to determine
the membership value.

A convex IFS whose domain is the set real numbers
is an Intuitionistic Fuzzy Number (IFN). In the literature,
there are lots of studies and applications of many types
of IFN’s, especially in decision-making [4], [S], [6]. The
type of an IFN determines the shape of its membership and
non-membership functions. For instance, each function of a
triangular [5], [7] or a trapezoidal IFN [4], [8] consists of
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two or three linear pieces, respectively. Zulkifly et. al [9]
introduced Intuitionistic Fuzzy B-Spline Curve interpolation
model by defining intuitionistic fuzzy control point relation
and blended it with B-spline basis function.

Although linearity is preferable since it facilitates the
calculations, there are sudden sharp changes in the functions
if the number of linear pieces is small. On the other hand,
using an LR IFN [6], whose functions are not necessarily
piecewise linear, restricts the usage of this type due to the
special relationship assumed on the left and right parts of
the functions. In order to make use of the advantages of
linearity while having less sharp changes, in this paper, we
introduce the n-Intuitionistic Polygonal Fuzzy Number (n-
IPFN), which generalizes the triangular and the trapezoidal
IFN’s into an IFN with n linear pieces on the left and right
sides of both the membership and non-membership functions.
This type can be used to approximate any type of IFN’s
into an IFN with piecewise linear membership and non-
membership functions, with higher accuracy as n increases.
The approximation facilitates applying arithmetic operations
on any two IFN’s by unifying their type first, then performing
the operations.

Recently, ordinary polygonal fuzzy sets and numbers [10]
has been getting a big interest in the literature with applica-
tions in neural networks and decision-making [11], [12]. In
a previous work, Tuffaha and Alrefaei [13] considered the
ordinary m-polygonal fuzzy number and introduced conve-
nient arithmetic operations on it. These arithmetic operations
were then shown to satisfy the most important properties,
such as commutativity, associativity, having identities and
inverses, and preserving the ranking values [14]. The authors
also introduced a ranking equivalence relation on the set
of all n-polygonal fuzzy numbers and showed that the set
of equivalence classes is isomorphic to the real numbers
set. In this paper, we generalize that work to IFN’s, giving
a strong tool to represent vagueness in intuitionistic fuzzy
environments.

To the best of our knowledge, intuitionistic polygonal
fuzzy numbers are not studied in the literature, except for
Wang and Duan [15], who considered such a type of fuzzy
numbers, but with a different definition. Although their
definition does not require the membership or the non-
membership function to reach one or zero, respectively, our
definition is more general in the sense that it does not restrict
the endpoints of the linear pieces in the membership and the
non-membership functions to be equal as in the definition by
Wang and Duan [15]. Giving the freedom to the x’s of the
corresponding knots in the two functions provides a more
realistic representation, which we seek in this paper.

The paper is organized as follows: the intuitionistic polyg-
onal approximation of IFN’s and the definition of the n-IPFN
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are given in Section II. An extension of the ranking function
with total integral value to IFN’s is introduced in Section III
and then applied to the n-IPFN. After that, suitable arithmetic
operations on the n-IPFN are introduced and shown to
satisfy the most important properties in Section IV, while in
Section V the ranking equivalence relation is presented and
studied. Finally, some definitions are proposed for dealing
with matrices, functions, equalities and inequalities with n-
IPFN’s in Section VI followed by concluding remarks and
future insights in Section VII.

II. INTUITIONISTIC POLYGONAL APPROXIMATION

First, the definitions of intuitionistic fuzzy sets and num-
bers are presented.

Definition 1: [2] An intuitionistic fuzzy set (IFS) Al
is a triple < X,pzr,v5r >, where X is a set and
pir,vir + X — [0,1] are called the membership and
the non-membership functions, respectively. The values of
tz:(x) and v 5, (x) represent the “degree of membership”
and the “degree of non-membership” of z in Al where
0 < pii(z) + vi(xr) < 1. The complementary of this
sum to 1 is called the degree of hesitation, = ;(z) =
1~ (@) = v (2) € [0,1].

Definition 2: [16] A real intuitionistic fuzzy number
(IFN), AT is an intuitionistic fuzzy subset of & with a

membership p;; and a non-membership v 4, functions,
which can be déscrrbed as:

ufﬁ (z) ;a<z<b
(z) = 1 ib<zx<c
Y u%(m) je<z<d’
0 otherwise
vE (@) sa <z <V
vi(z) = 0 b <<
A ng (z) ;d<z<d
1 otherwise

where a,b,c,d,a’,b’,c and d’' are real numbers. Moreover,
ps, e, b] = [0,1] and v%, 2 [a, 0] — [0,1] are the left
membership and non-membership functions of A’ which are
continuous, increasing and decreasing, respectively. On the
other hand, 1%, : [c,d] — [0,1] and v%, : [¢,d'] — [0,1]
are the right membership and non-membership functions
of A, which are continuous, decreasing and increasing,
respectively.

A. Intuitionistic Polygonal Approximation

Let A’ be an IFN defined as in Definition 2. The left
and right membership and non-membership functions of Al
uk e pul e A , and 2 ‘11> are approximated by piecewise linear
functions fr, fr, g1 and gg, respectively, as follows:

Step 1: Choose n € Z%, which indicates the

number of linear pieces in each one of fr, fr, g1,

and gR.

Step 2: Divide the interval [0, 1] into n equal subin-

tervals with nodes: 0 < % < % <. < ”T_l <L

Step 3: Without loss of generality, we assume
that 1%, and VEE are strictly increasing functions,
while u§ ; and v, are strictly decreasing functions.
Then, these functions are one-to-one. In addition,

each one of them is onto and covers the interval

[0,1] co mpletely Therefore their inverse functions,
'L Ly— 1
( A) (1 ) ,(VA) and (v ) , exist.
StaO:a anfb by = ¢, bnfd
=W G =12, 1,
andb:(A) HE=OK 1—1 -1,
Then, ap < a1 < .. <an1<an§bo<b1<
< b1 < by
Also setap=a’,al, =b, b, =7, b, =d,
— L\—1(/n—i ;
a;, = /(I/A) R(ll1 ) i= 1,2,..,n—1,
and b; = (v3)"'(5;) ri=1,.,n— 1
Then af < a} < ..<al,_y <a, <by<b) <. <

bl,_, <.
Step 4: Perform two piecewise linear interpolations
between the points:

{(ao,O) (al, 71L) . .,(ai,%),:..,(afl_l, %),(an,l),
(bo, 1), (b1, = ),...,(bi,%),...,(bn,_l,%),(bn,o)}
and the pomts

{(aé)vl) (alhnnl)v”"(a;7n;i)_7' 7( ;717% )

(a7, 0), (b, 0), (¥ (0 ), e (U1, 50,

(0 1)}

The resulting functions, respectively denoted
by f 4 and gj4r, are the piecewise linear
approximating functions, given by:
%[aiﬁ:%iai] + 1 ja; <z < aiq,
1=0,.,n—1
1 sa, <a <b
far(@) = —1[_z—b; I
A T[blil b] nnl ;biSCCSbH_l,
1=0,..,n—1
0 otherwise
(1)
_11 z—a} i
7[(1;_'_17(11}—’—"77,7 70’;§m§a’:+17
1=0,.,n—-1
0 a, <z <b
gAI (Cﬂ) = 1 w—b,:- i ’ /n ’
E[b;ﬁfb;]—’_ﬁ by < < by,
1=0,.,n—-1
1 otherwise
2)

Then, f;:,94 : IR — [0, 1] can be seen as a membership
and a non-membership functions of an IFN. This gives the
definition of the n-intuitionistic polygonal fuzzy number.

Definition 3: A real IFN with a membership
and a non-membership functions given as in
equations (1) and (2), respectively, is called an n-
Intuitionistic ~ Polygonal Fuzzy Number, denoted
by n-IPFN, which is represented by its  knots:
{(ag, a1, .., an;bo, b1,..,byn), (ag,ay, .., al; by, by, .., 00} If
a, = bg, then the n-IPFEN is called non- ﬂat. Otherwise, it
is called flat. Moreover, the set of all n-IPFN’s is denoted
by ZP,,.

Example 1: Let A" be an IFN with a membership
function 4 5; and a non-membership function v 4; given by:

i(m+1) i—1<z<1
pir(e) =4 (z—2)* 1<z <2
0 otherwise
1 2
v Ye-1)? s-1<2<3
vir (@) { 0 otherwise

Let n = 3. Then the piecewise linear membership function
approximating p 5, is:

Volume 51, Issue 3: September 2021



TAENG International Journal of Applied Mathematics, 51:3, [JAM_51 3 30

0.289(z + 1) ;—1 <2 <0.155
0.697(z — 0.155) + % ;0.155 < x < 0.633
0.908(x — 0.633) + 2 ;0633 <z <1

1 ;e =1

Far(@) =0 Z3458(z — 1)+ 1 1< <1.096
—2.318(z — 1.096) + 2 ;1.096 < = < 1.24
—0.439(z — 1.240) + 2 124 <z <2
0 otherwise

Whereas the piecewise linear non-membership function
approximating vz, is:

—0.908(x + 1) + 1 ;=1 <2< -0.633
—0.697(z +0.633) + 2 ;—-0.633 <z < —0.155
—0.289(x + 0.155) + 2 ;—0.155 <z <1
1 ;e =1

941() =9 0.288(z — 1) 1<z <2157
0.7(x — 2.157) + 1 12157 < x < 2.633
0.908(x — 2.633) + 2 ;2633 <z <3
0 otherwise

These two functions represent the non-flat 3-IPFN:
{(-1,0.155,0.633, 1; 1, 1.096, 1.240, 2),
(—1,-0.633,—0.155,1;1,2.157,2.633, 3) }.
Figure 1 clarifies the approximation of Al

1 o
1% —_ d
\ ’LLAI I
. v s ¥
0.8 ¥ il
X o ful 7
06 " ’
: \ * g/i[ o
X o
X /
04r ¥ ¥
* *
C)s * OO n:’
02 r °° \:x Q:/
oo \ % * O,
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062 ‘ IS e
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Fig. 1. The piecewise linear approximation of the IFN in Example 1
Remark 1: Any real number a € IR can be expressed in
the n-IPFN form:
a = {(a,a,..,a;a,a..,a),(a,qa,.,a;a,a..,a)}, and it is
called a crisp real number to indicate that it is not fuzzy.
Table II-A shows how the intuitionistic triangular, trapezoidal
and hexagonal fuzzy numbers are special cases of the n-
IPFN:

TABLE I
SOME SPECIAL TYPES OF n-IPFN
n=1 | an =by Intuitionistic Triangular non-flat
n= apn # bo | Intuitionistic Trapezoidal flat
n=2 | ap # bo | Intuitionistic Hexagonal flat

Example 2: Figure 2 shows an example of a flat 2-IPFN
given by AT = {(~1,2,3;5,7,10), (-2, -1,2;6,8,11)}.

III. RANKING FUNCTION

Ranking (comparing) IFN’s in the literature takes two
different approaches. The first one is to make lexicographic
comparisons between values assigned to the compared IFN’s,

Fig. 2. The 2-IPFN in Example 2

with priorities related to the importance of each one of these
values in determining the relationship between the two IFN’s
[17], [18], [19]. The second approach is to assign one real
value to each IFN, often by taking a convex combination of a
value related to the membership function and another related
to the non-membership one, and then comparing the IFN’s
according to the real values assigned to each one of them
[20], [5], in this paper, we consider the second approach.

Many of existing approaches depend on generalizing the
ranking methods for ordinary fuzzy numbers. The ranking
function given in this section for the n-IPFN proposes a
generalization of the ranking function with total integral
value on ordinary fuzzy numbers, which was introduced by
Liou & Wang [21]. The definition is presented first and then
extended to IFN’s and applied to the n-IPFN.

Definition 4: Let N be any fuzzy number. The ranking
function with total integral value is given by:

(1—a)Jo(N) + aJr(N) 3)

where: Jp(N) = fo (1k(x)) N y)dy, Jr(N) =
fol (1 ()" (y)dy, and a € [0,1] represents the decision
maker’s degree of optimism.

This definition can be extended to intuitionistic fuzzy
numbers by applying it to both the membership function
(1 5:) and the complement of the non-membership function
to one (1 — v4;), which gives two values. Taking a convex
combination of these two values gives the ranking value of
the given IFN.

Definition 5: Let Al =< IR, i1,V 4 > be an intuition-
istic fuzzy number and let «q, 2, A € [0, 1] be three values
that represent the decision maker’ s degree of optimism.
Assume v, = 1 — vz, vl =1—-vk and v =1 - Vﬁ,.
Then, the ranking function with total integral value of Al
is defined as follows:

R(AT) = AR, (AT) +

where, R, (A7) = oy Ix(A?) +
and 8? (AI) = OZQJR(AI)

R(N) =

(1= AR, (AD), )

(1 — Ozl)I[L(AI)
+ (1 — ag)JL(AT), such that

In(Al) = / (1, () (v)dy,
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IL(A") = / (1, (2)) " () dy,
Tr(Al) = / (vF () )y,

and Jp(AT) = / (vE (@) (y)dy.
0

Now, let AL = {(po,P1, s Pni 0, 15 -+ Gn),s

(P, Py s Phi 4 Qs -5 4)} € IPy. Applying Definition 5
to Al and considering a; = as = A = 0.5 as is usually
done in the literature gives the following ranking function
for the n-IPFN A”:

RAT) = g [po+2p1+2p2+ ... +2pn 1+

+a0 +2q1 +2¢2 + .. + 2¢n—1+ 0

+P0 + 21 + 205 + -+ 2P, 1 + P,

a0+ 201 + 205+ 2¢0 oy +qn] )

Example 3: The ranking value for the 2-IPFN in Example

2is R(A) = L[-1+4+3+54+144+10-2-2+2+
6416 + 11) = 4.125.

Comparing Intuitionistic polygonal fuzzy numbers

Here, we propose a way to compare n-IPFN’s through
comparing their ranking values.
Definition 6. Let

AI = {(ao,a1, ..,an;bo,bl, ..,bn), (Co,Cl, ..,Cn;do,dl, ..,dn)},

I ’ / / / / / / / / / / /
B = {(a07a17 "7an7bOabla "7bn)? (COacla "7cn7d07d17 adn)}

be two IPFN-n’s. Then:

« A and B! are called equivalent, denoted A’ ~ B!, if
R(AT) = R(B'),

o Al and B! are called equal, denoted A’ = B!, if a;
a;,, byj="b,ci=c,andd, =d] forall i =0,1,..,n.

« Al is said to be greater than (greater or equal) B’,
denoted A = BT (AT = B), if ®(A") > R(B')
(R(AT) > R(B)).

o Al is said to be smaller than (smaller or equal) B/,
denoted A’ < B! (Al < BY), if ®(A!) < R(B)
(R(AT) < R(B")).

Example 4: Consider the following three 3-IPFN’s:

Al = {(=7,-6,-2.5,-2; -2, —1,1,4),(—10, -9, —=7.5, —4;
1,3,5,6)}, Bf = {(=3,-2,-2,—-2; -2, -2, -2, —1), (—4,
—3,-2,-2:-2,-2,—-1,0)}, and C' = {(1,3,4,5;5,6,8,
9),(~2,1,2,4;6,8,9,10)}.

Note that R(AT) = R(B’) = —2 and R(CT) = 5. Thus A’
and B’ are equivalent, but not equal. In addition, A7 < C!
and C! ~ BI.

IV. ARITHMETIC OPERATIONS

In this section, four arithmetic operations are introduced
on the n-intuitionistic polygonal fuzzy numbers, and many
properties of these operations are shown.

A. Addition on TP,

In the following three definitions, let Al and BT € IP.,
given as in Definition 6.

Definition 7: The addition of A’ and B’ is defined as
follows:

Al B! =
{(ag + ag, a1 + al, ..,an + al;bo + by, by + b7, .., b, + 1),
(co+ chycr+ s yen + ¢ydo + dy,dy + dy, .y dy +d))}

Note that:

e IP, has an addjtive identity, that is the crisp number
0, since for all A’ € TP,

Al @ {(0,0,..,0;0,0,..,0),(0,0,..,0;0,0,..,0)} = Af

o It is clear that the addition defined above on ZP,
generalizes the conventional addition on the crisp real
numbers since for all p,g e R: pPg=p+g¢q

Now, we have the following theorem.
Theorem 1: For all A’ B’ € TP,, R(A' © B") = R(A") +
R(BT).
Proof:
Let
A" = {(ao, a1, .., an; b0, b1, ..., bn), (Co,C1, .., Cnido, di, ..y dn)},
B = {(af, dl, .., al; by, by, ., b)), (s chy ooy s dp, i, . dly)}
Then,
R(A' & B') =R[{(ao+ ab, a1 + a}, .., an + ay;
bo + b6, b1 + bll, wybn + bf,L),
(co +ch,c1+Chy ey Cn + Ch;
do + db,di +di,..ydn + di)}]
= =[(ao + ap) + 2(a1 + a?) + ...
+2(an—1+an_1) + (an + ay,)

+(bo + bp) + 2(by + b1) + ...

+2(bn—1+ by 1) + (bn +by,)

+(co+ o) +2(c1 + 1) + ...

+2(cn—1+ch_1)+ (cn +cp)

+(do + do) + 2(dy + di) + ...

+2(dn—1 +dp_1) + (dn + d3,)]

= gnlao +2a1 + ...+ 2an-1 +an

+bo + 2b1 + ... + 2br—1 + by

+co+2c1 4 ... +2ch-1+cn

+do +2d1 + ... + 2dn—1 + dn]

+2-lap +2a) + ...+ 2a,_1 +ay,

+bh 4+ 26y + ...+ 26, + U,

+cp+2¢h + ...+ 24+,

+dy +2d) + ... +2d,_1 + dy,]

= R(P) +R(Q)
Definition 8: The additive inverse of Al , in the sense that Al
(—A") =~ 0, is defined as follows:

—AI = {(—bn, —bn_l, .oy —bl, —bo; —Qnp, —An—1,.., —A1, —ao),
(—dn,—dn_h.., —Cl,—Co)}
Definition 9: The subtraction of B! from A’ is defined as A’ ©
B = Al g (—B).
Example 5: Consider AT and C' given in Example 4.
R(CT & AT) = R({(-6,-3,1.5,3;3,5,9,13),
(=12, —8,-5.5,0;7,11,14,16)}) = 3 = R(CT) + R(AT).
R(CT e AT = R({(-3,2,5,7;7,8.5,14,16),
(—8,—4,—1,3;10,15.5,18,20)}) = 7 = R(CT) — R(AT).

—dy, —do; —Cn, —Cn—1, ..,
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B. Multiplication on TP,:

A convenient multiplication on ZP,, must satisfy some
basic properties, such as:

1) Commutative property.

2) Generalization of the known multiplication on real
numbers.

3) I'P,, has a multiplicative identity 1.

4) For all A € ZP,,, where R(A’) # 0, A’ has a multi-
plicative inverse Bl e IP,., such that: Al BT ~ 11,

5) Moreover, the multiplication must preserve the ranking
values of the multiplied fuzzy numbers, i.e.

R[AT] - R[B'] = R[A” ® B'] (6)

In what follows, our aim is to introduce a multiplication on
TP, satisfying these properties.

First, we introduce definitions for the i-th spreads of a
n-IPFN which are used in this section.

Definition 10:
Let Al = {(ao, a1, -, an; ant1, ant2, - a2nt1),
(bo, b1,..,bn; bn+1, bn+2, . b2n+1)} eIP,.
For i = 1,2,..,2n + 1, the interval I; = [a;—1,a;] is
called the i-th membership interval of A, and its length
L; = a; —a;_1 is called the i-th membership spread of Al
Moreover, for i = 1,2, ..,2n + 1, the interval I = [b;_1, b;]
is called the i-th non-membership interval of Al , and its
length L; = b; — b;—; is called the i-th non-membership
spread of A’.

Now, let AT = {(ag, a1, .., an;bo, b1, ..,bn), (o, €1, ., Cn:

do,dy,...,dn)}, B = {(ah, a}, .., aly; b, by, .., L), (ch ch,

,Cpidy,dy, .. d)}. We want the product of A’

and B! to be also a n-IPFN, so let it be: C! =
{(eo, €1, ens fo, f1, -5 fn)s (905 915 s Gni hos Py o b))} €
IP,.

From Equation (6), we want:

= ~ 1
§R(AI) : §R(BI) = %[60 +2e1 +2e9+ ...+ 2ep-1 + €y

+o+2fi+2fo+. . +2fn 1+ fn (D)

+90 + 291 + 292 + ... + 29n—1 + gn
+ho + 2h1 + 2he + ... + 28— + By

Let

I = %[(ao +2a; +2a9 + ... +2a,_1 + an,
+bo + 2b1 + 2bs + ... +2by,—1 + b,
+co 4+ 2¢1 +2¢c0 + ...+ 2¢,_1 +
+do + 2d1 + 2do + ... +2d,—1 + dy) (8)
(ap + 2a) + 2ab + ... + 2a,,_, + al,
+by + 267 + 205 + ...+ 20,4 + b,
+cp +2¢) +2ch + ..+ 2¢,_, + ¢
+dy +2d) +2dy + ...+ 2d,_, + d,)]

Then, from equations (7) and (8), our first condition is:

I = eo+ 261 +2e5+...4+2e,_1+e,
+fo+2fi+2fa+ ... +2fn_1+ fn &)
+90 + 291 + 292 + ... + 2901+ gn

+ho +2hy +2ho + ... + 2hp_1 + Dy,

This condition guarantees (6).

Now, for i =1,2,..,n, let
Xi= (a;i —ai-1) + (aj — aj_,),
Yi= (ci—ci1)+(c;—ciy),
X71,+1 = (bO - an) + (b6 a;:,)’ (10)
Yot1 = (do—cn)+ (dy—cp),
Xpy1vi = (b —bi1) + (b = bi_y),

(di —di—1) + (d} — d;_,),

where the Xj’s and Y}’s equal the sum of the membership
and non-membership k-th spreads of AI~ and B, respec-
tively. We let the spreads of the product C satisfy:

fi— fic1 = Xnt144
(1)
nt+1, hi—hi—1 =Yni 14 (12)

Yn+1+i =

e —ei—1=X;, fo—en= Xn+17

9i—gi-1=Ys, ho—gn =

foralli=1,..,n.

Conditions (9), (11) and (12) are 4n + 3 equa-
tions while we have 4n + 4 variables, which are
603617~-a6n7f0af1;--7fn390agla-~7gn;h0;h17 "7hn' Thus’

we need one more equation. A logical condition is to control
the distance between membership and non-membership func-
tion of the product such that the distances are proportional
to those between the membership and non-membership func-
tions of A’ and B. This can be done by adding the equation
ho—f():dé—bé-i-do—bo, or

fo—ho=2 (13)
Z = by + by — dy — d, (14)

Now, by solving Equations (9), (11), (12) and (13), we get
the values of the variables that determine the product cr.

Remark 2: Although using the product of the lengths in
equations (11) might seem more logical at first glance, we
use the sum instead, since the properties 1-5 mentioned at
the beginning of this section do not hold together if we use
the product, but they all hold with the sum. This is shown
later in the following sections.

Theorem 2: The multiplication operation defined above:

®:IP, xIP, — IP, is well-defined.
Proof: It is easy to show that the system of linear
equations (9), (11), (12) and (13) has the unique solution.

where,

hn = Jn
hi_1 = hi_Yn+1+i7 for i:n,n—l,..,l
gn = ho—Ynn
Ggi-1 = ¢i—Yi fori=n,n—1,.,1 (15)
fn = Hp,+ hO
fi—l = fi_Xn+1+i7 fori:n,n—l,..,l
€En = fo — Xn+1
ei-1 = e — X, fori=n,n—1,..,1
where,
nt1
Hy = 2+ Xoi (16)
i=2
Jo = i I+ ;(22' —1)X; +2n X1

+ @M +14) = DXngari + Y (20— 1)Yi + 20V

i=1 i=1

+) (2Bn+1) = )Yay11s — dnH, (17)
=1
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Summary of the multiplication algorithm:
Let 121[ = {(ao, A1y ..y Ap; b(), bl, . ,b ) (Co, Cly .oy
dn)}7 B! = {(ag,a’l,.

0y dyy . di )} € IP,,.
To find the product AY @ B! = {(eq, e1, .., en; fo, fior fn),
(90,91, > 9n; ho,h1..,hy)}, we first find the values of
I, X1,X5,..,Xont+1,Y1,Yo, .., Yo11, Z, H, from equations
(8), (11), (14) and (16), then we find the values of
€0, €1, -+ €ns f0, f15 [y 905 915 -, Gns o, R1.., by from equa-
tions (17) and (15).

Example 6: The multiplication of

Cn;d07dla

/ / / / / /.
L an; o, b, .0, (b, s e cls

Al ={(-5 —1,1;2,2.5,4,7), (=6, —4,—1.5,0;
3,3.5,5 9)} and B! = {(-10,-7,—4.5,—-1;0,2,4,7),
(511, —7,-5,-2;3,5,8,11)}, where n = 3, is

Al ® B! = {(-16,-10,—6.5,—1;1,3.5,7,13),

(=81, —12,—17.5,-3;5,7.5,12,19)}.

Note that R(A!) - R(B!) = R(A! ® B') = —0.5.

1) Multiplication Properties: Now, the properties men-
tioned at the beginning of this section are discussed. Proper-
ties 1 and 2 are clearly satisfied, while property 5 holds by
construction. The rest of the properties are discussed in the
following theorems.

Theorem 3: IP,, has a multiplicative identity, that is the
crisp number

1={(1,1,..., 151, 1,...,1),(1,1,...,1;1,1,..., 1)}
Proof- Let N = {(ag,al,. y G5 b, b1,y 0p),
(co, 1y Cnido,dy,...dy) € IP,. Suppose that N @ 1 =

{(eo, €1, .. 7€n,f07f1,- s fn)s (90,915 s Gns hoy b,y o By}
Then: I = g [a0—|—2a1+ +2ap-1+an, +bo+2by +... +
2bn 1+bn+00+2cl+ +2crb 1+Cn+d0+2d1+ .+
2d,—1 + d,][8n]

I:a0+2a1+...+2an,1 +an+b0+2b1++2bn,1+
b, +co+2c1+..4+2¢,—1+c,+do+2d1 +...+2dp—1 +d,,.

Moreover, X; = a; —a;—; fort =1,...,n, X;,41 = bg—an,
Xn+1+i = bi — bi—l for i = 1,...,7’7,, Y; = C; — Ci—1 for
1= 1, ey N, Yn+1 = do — Cp, and Yn-‘rl—i—i = dz - dj_l for
¢ =1,...,n. Thus,
n+1
Hy = Z+) Xnwi
i=2
= bo—do+by —bo+by—br+ ... +bp1—by 2+
bn - bn—l = *dO + bn
1
J, = 8—[I+X1 +3Xo+5X3+...+(2n—-1X,
n

+2nXpp1 + (20 + 1) Xn 1 + (20 + 3) X3
+2n+5) X4+ ..+ (dn— 1) Xopn1a
+4ndy — 4nb,, + Y7 + 3Y5 +5Y3 + ...

+(2n —1)Y, +2nY,41 + (6n + 1)V, 41
+(6n+3)Y, 13+ (6n+5)Y,pa + ...

+(8n —1)Yon11

1

= —[I—ap—2a1 —2a3 — ... — 2ap_1 — ay,
&n
—bg —2b; — 2by — ... — 2b,,_1 — b,
—co—2¢1 —2¢9 — ... — 2Cp_1 — ¢y, — dp
—2d; — 2dy — ... — 2d,,—1 — d;,]
1

= —[I—-1+8nd,]=d,
Sn[ + 8ndn]

Hence, h,, = J, = dp, hpn_1 = hyp — Yopy1 = dp, — (dy, —
dp—1) = dp—1, and similarly we find: h; = d; and ¢; = ¢;
for all ¢ = 0,..,n. Moreover, f, = H, + hg = —do + b, +
do = by, fnfl = fn - X2n+1 =b, — (bn - bnfl) =bp_1,
and similarly we find: f; = b; and e; = a; forall i =0,..,n
Therefore, N ® 1 = N' and 1 is the multiplicative identity

in ZP,,. R [ |
Theorem 4: Let NI = {(ag,a1,..,an;bo,b1, -, by),
(co,c1, -+ ¢nidosd, . dy)} € TP, where §R(NI) # 0.

Then, NT has a multiplicative inverse, N- L in the sense
that NV @ N~ ~ 1.

Proof: Let
~ 1
= RN+ —— —d,

9o (N7) R(NT)

9i = gi-1+ (dn—i-‘rl - dn—l) fOT all i = 13 - 1

hO = 0gn + (dO - Cn)

h; = hi_1+ (Cn,iJrl — Cnfi) foralli=1,..,n

eg = hp+ (CO - bn)

e, = €1+ (bn—i+1 — bn—i) fO’I‘ all 1 = 1, N

fO = ep+ (bO - an)

fi = fici+(an—iz1 —an—) foralli=1,..n
Then N_l = {(60761’-~7€n;f0;f17~-7fn>7(307917“7971;
ho, h1, .., hy)} is the multiplicative inverse of N.

Note that R[N! @ N~1] = LI, where it can be seen by

simple calculations that I = 8n.

Therefore, RIN! @ N~1] = & - 8n = 1, which completes

the proof. ]
Definition 11: Let A’, B! € IP,,, where R(B') # 0. We

define the division of A’ over B’ as follows:

AI/BI :AI®(B—1)

Example 7: Let
Al = {(-3,-1,2;5,7,8),(—4,—-3,1;7,8.5,9)},
B! = {(-5,-3,0;2,8,9), (-7, —2.5,—1;5,7,10)}.
Note that R(B!) =2 # 0. Let B~ be {(eo, e1, .., n;
fo, f17 ..,fn)7 (901917 <y gns ho, hl, ey hn)} Then,
go = %(B)‘F%(B)*].O =-7.5,91 = go+(10*7) = —4.5.
Similarly, g5 = —2.5, hg = 3.5, hy =5, hy = 9.5,

eo = —6.5, e1 = —5.5, es = 0.5, fo = 2.5, f1 = 5.5,
and fo = 7.5.
So, X! = A!/B!
= A'@{(~6.5,-5.5,0.5;2.5,5.5,7.5),
(=7.5,—4.5,—2.5;3.5,5,9.5)}
= {(~11.5,-8.5,0.5;5.5,10.5,13.5),
(—13.5,—9.5,—3.5;8.5,11.5,16.5)}

We note that XT @ BT ~ A! since:
X' @ B! ={(—17,-12,0;7,18,22), (21,
13,18,26)} and R(X! ® BY) =3 = R(A!).

—12.5, —5;

V. THE RANKING EQUIVALENCE RELATION

Deﬁnm()n 12: Define the rankmg relation ~ on ZP,, by:
For all N/, NI € ZP,: N! ~ NI & R(N{) = R(NI).
It is clear that ~ is an equivalence relation. The set of all
equivalence classes in ZP,, is denoted by

IF,={[N!]: N ezP,}.
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Definition 13: The addition and multiplication on Z.F,,
are defined as follows. Let [N{],[N{] € ZF,. Then:

[N{]+[N;] = {A"eB': A", B' €1IP,,

R(AT) = R(NL) and R(BY) = R(NI)Y
[N{]-[Nj] = {A"eB': A", B e1P,,

R(AT) = R(NY) and R(BY) = R(NI)Y

The proof of the following theorem is straight forward and
similar to that shown in [14].

Theorem 5: The structure (ZF,,,+,-) is a field.

Theorem 6: The field (ZF,,+,-) and the real numbers
set with the conventional binary operations are isomorphic
as rings.

Proof: Consider the map 1 IF, — IR with

Y([N']) = R(NT). Then, for all [A],[B!] € ZF,, it can
be easily shown that:

V([AT]+ [B']) = »([AT]) + w([B']),
Y([AT] - [B]) = »([A") - w([B"])

Moreover, 1) is obviously onto and one-to-one. Therefore, 1)
is an isomorphism and IR ~ ZF,, as rings. ]

VI. GENERALIZATION OF SOME CONCEPTS WITH
POLYGONAL FUZZY NUMBERS

In this section, some definitions are proposed to generalize
some concepts related to the n-IPFN’s. These concepts are:
fuzzy matrices, fuzzy-valued functions and fuzzy equalities
and inequalities, which can help to implement n-IPFN’s in
many applications, such as linear systems and optimization.

A. Matrices with polygonal fuzzy numbers
Definition 14:
e An intuitionistic polygonal fuzzy matrix M is a matrix
whose entries are n-IPFN’s.
o The set of all intuitionistic polygonal fuzzy matrices is
denoted M(ZPL,).
o The addition and multiplication of intuitionistic polygo-
nal fuzzy matrices are similar to those on real matrices,
but using the binary operations introduced in section IV
on ZP,.
Definition 15: Let M = [l ]pxq: N = [Al]pxq €
M(IPL,,). Then:
1) M and N are said to be equal, written M = N, if

ml = ﬁfj foralli =1,..,pand j~: 1,~..,q. Moreover,
I

ij
we call them equivalent, written M ~ N, if Thfj ~ fLij
(have the same rank) forall i =1,..,pand j = 1,..,q.

2) A set of rows of M, {m,,,,,,...,th;, }, is said to
be linearly independent if the equation: a; *m;, B ag *
m;, &..Dap*m,;, ~ 0 with ai,as,...,ar € R can
only be satisfied when a; =0 for all i =1, .., k.

3) The rank of M is the maximal number of linearly
independent rows of M.

4) If p = ¢ then M is a square fuzzy matrix, and
we define the determinant of M, denoted det(M),
to be a PLFN-n computed in a similar way to com-
puting the determinant of a real square matrix, but
using the binary operations defined in section IV on

PL,,. Furthermore, it can easily be shown that if
det(M) 5 0, then M has an inverse matrix M~! such
that M « M~! ~ I, where the square matrix I is a
fuzzy identity matrix in M(PL, ) which has n-IPFN’s
equivalent to 1 on the main diagonal, and all its other
elements are equivalent to 0.

Al I
Example 8: Let M = [ gl g 7 ], where
A“#@JA&GUA2&Z&&NR
B! ={(5,6,7;7,8,9),(—4,1,5;8,9,11)},
Cl = {(-2 0 2,3,4,5),( 0,1;6,8,12)} and

3,
Df_{(14668,11) —4, 117912)}
Then det(M) = ® D) & (CT ® BY)
{(—11,-4,2;4,10,17), (—27,—16,-9;9,18,31)} % 0.

This means that M has an inverse:

) (
(Af
(=

DI B! A/[ B/I
. e s A P
where A1 = {(—5.5,-0.5,2.5;2.5,5.5,10.5), (—5.5, —3.5,

—0.5;7.5 8.5,8.5)}, B! = {(=6,—5,—5; -5, —5, —4),

(8,2,— i —2:—4;-9)}, C"T = {(-0.5,-0.5, —1.5;
—25,-25,-1.5),(5.5,1.5,1.5; 1.5, —4.5, —11.5)} and
D' = {( 6 -2,1;2,4 ,7)( 3, 21787)}
Note that
MsxM-! =
(AI®A/I)@ (BI®C«/I) (AI@)B/I)@ (BI®1~)/I)
(CI®A/I)@(DI®C/1) (CI®B/I)@(DI®D/1)
I ol B
= |: EN‘I }jI :| ~ I
G!' H
where ET = {(-11,-3,2;2,7,15), (—16,—11,-2;10,11,8)},
FI = {(-16,-8,-2;0,4,10),(—10,-8,—2,10;12,10)},
G! = {(-16,-6,0;0,6,16),(—16,—12,—6;10,12,12)}

and H' = {(—19,-9,-2;0,5,13), (-8, =7, —4; 12, 15,16)}.
In fact, if we find the real matrix equivalent to M by

ranking all its fuzzy numbers, we get: N = ;1 g
Note that det(N) = R[det(M)] = 2 and
-1 25 =3 | _ ~ 1
N _{—1.5 2 }-SR[M )
where [[1’1] : ~/I]
~—1 R R[B
M = - 2 )
= | Ren) o |

B. Fuzzy-Valued Functions

Many applications of fuzzy numbers require dealing with
fuzzy-valued functions. For instance, in fuzzy optimization,
one seeks the maximum or the minimum of a fuzzy-valued
function subject to some constraints. Therefore, it is impor-
tant to introduce definitions of the maximum or the minimum
of a set of fuzzy values or a fuzzy-valued function in a way
that is compatible with our definitions in this paper.

Definition 16: Let I be an arbitrary index set, and let
S = {al : i € I} be a set of n-IPFN’s. We define the
maximum and minimum fuzzy values of the elements of S,
denoted mazx(S) and min(S), to be the elements of S with
the maximum and minimum ranking values, respectively.
In other words, if h1 = maz{R@L) : al € S} and
hy = min{9(a}) : a} € S}, then:

max(S) = {al € S:R(@al) = hi}
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min(S) = {al € §: R(al) = hy}
Note that maz(S) and min(S) may have more than one
element of S if it contains more than one n-IPEN with the
maximum or minimum ranking value.

Definition 17: Let f : (ZP,)* — IP,,, where k € N, be
a fuzzy-valued function. Then the maximum and minimum
of f are defined by:

maz{f(x') : X € (TP,)"}

min{f(x!) : %! € (TP,)*}

max(f) =

min(f) =

Remark 3: max(f) = —min(—f)

Proof:
g’ e max(f)
& RG> RFED) v e P,k
& - < -RFEH vx e @p,)*
& R[] <R[-FE) V&' e (TP,
= —yI € min(—f)
e gl e —min(—f)

C. Fuzzy Equalities and Inequalities

Here, we give some properties of the equalities and
inequalities between n-IPFN’s. The proof is straightforward.

Theorem 7: For AL, B!,C! € IP,,, we have:

1) If Al® B! ~ !, then A ~ C! o B'.

2) If AL® B! < C! and B! = 0, then AL < C1.

3) If AT < C7, then CT & AT = 0.

4) If AT <CT and B! =0, then A’ ® B! < C! @ BI.

5) If AT <0, then A’ @ B! < BI.

6) Al < B! if and only if —A! = —B!,

VII. CONCLUSION

In this paper, the n-polygonal fuzzy number is extended
to a more general form, that is the n-IPFN, which is
shown to give a realistic piecewise linear approximation of
any general IFN in order to facilitate the calculations. A
ranking function on the n-IPFN is introduced by applying
a generalization of the ranking function with total integral
value for ordinary fuzzy sets. After that, arithmetic operations
on n-IPFN’s are introduced and shown to satisfy the most
important properties, these are associativity, commutativity,
having identities and inverses, and preserving the ranking
values. Finally, an equivalence relation is proposed on the set
of all n-IPFN’s based on the ranking values. The resulting set
of equivalence classes is studied and proved to be a strong
algebraic structure isomorphic to the real numbers set.

In the future, many applications of the n-IPFN can be
studied, such as in neural networks and decision-making.
Moreover, the ranking function and the arithmetic operations
given in this paper can be extended to a more general type of
IFN’s by allowing the maximum of the membership and the
minimum of the non-membership functions to not necessarily
reach one and zero, respectively.
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