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Modular Grad-Div Stabilization and
Defect-Deferred Correction Method for the
Navier-Stokes Equations

Huiping Cai, Feng Xue, Haiqgiang Xiao, Yang He, and Lingzhi Qian*

Abstract—We present the modular grad-div stabilization and
defect-deferred correction (MGDDC) method for the incom-
pressible Navier-Stokes equations. The new algorithm does not
suffer from either solver breakdown or debilitating slow down
for large values of grad-div parameters. Furthermore, it is
improving two aspects of the numerical simulations for the
problem. In the first step, a deferred correction method lifts the
numerical order of accuracy from first order to second order
in terms of the time interval. In the second step, a further
defect correction is included as well, which is often included to
control numerical noise. Stability analysis and optimal-order
convergence of the method are proven. Numerical tests are
presented to highlight the accuracy and effectiveness of the
algorithms.

Index Terms—Navier-Stokes equations, Modular grad-div
stabilization, Defect-deferred correction, Stability analysis, Er-
ror estimates.

I. INTRODUCTION

HE incompressible Navier-Stokes equations(NSE)

model Newtonian fluids, such as air flow at low
speed and water flow. It is well known that numerical
approximation of nonstationary Navier-Stokes equations
plays an important role in the transient Navier-Stokes
problems. Thus, designing efficient numerical scheme for
investigating nonstationary Navier-Stokes problem has
practical significance[1], [4], [7], [10], [11], [14], [15], [19],
[21], [22], [23], [33], [36].

The time-dependent Navier-Stokes equations is given as
follows: For a bounded regular domain Q c R¢ (d=2 or 3).
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Find u: Qx[0,T] = R, p: Qx[0,T] — R, satisfying:

Uy — pAu+ (u-Vyu+Vp = f,
V.-u=0, in Qx[0,7T]
u(x,0) = uy(x), in Q
u=0, on 0Q x (0,T]

in Qx[0,7T]

6]

where u represents the flow velocity, p denotes the pressure,
f is an external force, and u > 0 is the kinematic viscosity.
T is the given final time.

Grad-div stabilization of fluid flow problems has drawn
attention in recent years. But the new computational diffi-
culties are introduced. For example, the condition number of
the resulting linear system generally grows without bound
when the grad-div parameter y increases. In the application,
modular or even large values of y may be unavoidable[16],
[24]. Furthermore, grad-div stabilization increases coupling,
decreases sparsity, and makes preconditioning more difficult.
Most aspects has addressed, but full resolution is still an open
problem.

The classical deferred correction approach could be seen
in[17]. A modification of the classical deferred correction
approach was introduced by Dutt, Greengard, and Rokhlin
[12]. This allowed the construction of stable and high-order
accurate spectral deferred correction(SDC) methods[6], [30],
[31]. In the deferred correction approach, the formal accuracy
is increased to order At* through a series of k — 1 additional
correction steps.

Defect correction has been proven computationally at-
tractive in fluid applications[3], [5], [13], [17], [27], [28],
[29] and references therein. The general idea of any defect
correction method can be formulated as follows(see, e.g.[5],
[35]). Given an operator G to approximate Gx = 0, build an
iterative procedure:

le = 0,
Gxis1 = Gx; — Gxyyi > 1.

The choice of a particular approximation G determines the
defect corrrection method in use. In this paper, the “defect”
will present viscosity, i.e. we represent using the additional
parameter H > O to obtain an effective viscosity coefficient
of u+ H.

In this paper, we develop the MGDDC method for the
incompressible Navier-Stokes equations. First, a deferred
correction approach lifts the numerical order of accuracy
from first order to second order in terms of time interval.
Second, a further defect correction is included as well, which
is included to control numerical noise or provide a significant
reduction of overdiffusive effects. Finally, a modular grad-div
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stabilization method is given to reduce the storage and remain
efficiency. The algorithms are simple to implement, retain the
benefits of grad-div stabilization, and are resilient to solver
breakdown as stabilization parameters increase. Furthermore,
the second-order convergence rate can be obtained on the
time interval, as well as the improved accuracy is using
defect correction to reduce the artificial viscosity effects.

The rest of the paper is organized as follows. In section
2, notations and mathematical preliminaries are given. In
section 3, we present the fully-discrete numerical scheme
for the NSE. Stability analysis and error estimate are given
in section 4. In section 5, we give our computation to verify
the accuracy and effectiveness of our new algorithms. Finally,
we give the conclusion and future work in section 6.

II. NOTATIONS AND PRELIMINARIES

Assume the domain Q be a convex polygon or polyhedra
and let (-,-) and ||-|| denote the standard L*(Q) inner product
and norm, respectively. Define

X = (Hy(Q)’
={ve L2’ : Vve L2 Q)™ and v = 0 on dQ},

0:=L}Q) ={qge *(Q): fqu =0}
Q

Let
b(u,v,w) : = ((u-Vv),w) + %((V S UV, W)
1 1
= 5((14 -Vv,w) — z((u -Vw, v).
L0, T;X)
={v:{t, -, tm} = X IVMl=o,1:%) = glgnﬁlﬂv(l‘i)ﬂx < oo}

Then, the weak formulation of problem (1) is as follows:

(ug, v) + b(u; u,v) + u(Vu, Vv) — (p, V - v)
=(f,v),Yve X )
(g, V-u)=0,Yqg € Q.

Assume that (Xj,, Q) C (X, Q) are LBB stable finite element
spaces defined on a regular mesh 7,, where / denotes the
maximum element diameter. If we consider the Taylor-Hood
elements:

X, = {uy € C(Q)lunle € P2(6)?, Vi € 13},
O = {up € C(Q)|uplx € P1(x), Yk € Tp},

where Pi(x),k = 1,2 is the space of kth-order polynomials
on K.

Next, we introduce some useful lemmas to be used in the
sequel.

Lemma 2.1: The Taylor-Hood element pair (Xj, Q;) =
(Py, Pr—1) provides the following approximation properties

inf flu = vl < CH*ull o - 3)
VEX)
‘}Qf”u - V”] < Ch ”u”HkH(Q)d (4)
mf”P -7l < Ch ”p”Hk(Q)d. 5
reQ

Lemma 2.2: If u,v,w € (H}(Q)), then

bu, v, w) < CE@)IIVul IV Iwl> 19w, (6)
b(u, v, w) < CE|IVull [[VVI[ [[Vw]. )

The following discrete Gronwall lemma will also be utilized
in the subsequent analysis.

Lemma 2.3: [2] Let I, m, and a;, b, d, gy, for integers
s > 0, be nonnegative numbers such that

a, + lZn:b_Y < lzn:dsas + lznlgs +m, VYn=>=0. ®)
s=0 s=0 s=0

Suppose that Id; < 1 for all s, and set p; = (1 —Id,)~". Then

a, + lzn:bs < exp (lipsds] {lzn:gs + m} , Yn>0. (9)
s=0 s=0 s=0

III. NUMERICAL SCHEME

Denote the fully discrete solutions by uj and pj at time
levels * = nAt,n = 0,1,---N and T = NAt. The fully
discrete approximations of (1) are

Algorithm 3.1 (MGDDC scheme) Let Ar > 0,f €
H(Q).

Step 1: Given iy € Xp,nefl,2,---
and pi*!' € Q) satisfying

,N—1}, find &/*' € X,
(i\lzﬂ An
At
+b@, W v + (V- 10 qn)

= (") Vv, € Xa,

Do) + (o HYOVEE, Vo) — (L V - vy

(10)

An+l

Step 2: Then, given i;*" and i}, find itz*l satisfying

ﬁnJrl ~n
() + (e + BV V) = (B9 - w)
+ b, v + (V-7 qn)
n+1 n ’\Vl+1 on
+f + H)At -
=y EEDE 9 ),
ﬁ;;“ + " 1 | 1
+ H(V(T),Vvh) + zb(ﬁz,ﬁf 2 Vh) = Eb(ﬁ;’,ﬁz,vh),
An+l _ an
—(%Mm vy € X, (1)
Step 3: Given @/*!, find u)*' € X, satisfying
@ v + (B + yAO(Y - @V - vy)
= @@ ) + BV - it V i) (12)

where “IZ’ ﬂ’;l will denote the discrete approximations (defect

step and correction step, respectively) to u(t).

IV. STABILITY ANALYSIS AND ERROR ESTIMATE

In this section, we will give the theoretical result of the
MGDDC scheme.

Lemma 4.1: (Stability of the defect approximation)

Let u; € X, satisfy step 1 for each n € {0,1,--- ,N — 1},
Then exists C > 0 such that & A"” satisfies

||An+l||2 + Z”An-H An”Z +Atz([l+H)”VA”+1”2

< lluf)? + CZ = (13)
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Lemma 4.2: (Accuracy of the defect approximation)

Let the problem data be smooth enough, the discrete
velocity-pressure spaces consist of continuous piecewise
polynomials of degrees m and m — 1, respectively (m > 2).
Then exists C > 0 such that

|Iun+1 _ ﬁz+1||2

N
At el o
+ 5 ;-1 (u+ V@™ = @+ h|?

< C(K*" + AP + H?). (14)

Theorem 4.1: (Accuracy of time derivative of the error in
the defect step)

Assume that u € H*(Q), Au € L*0,T;L*(Q)) and
U, s, ut € L2(0, T; L>(Q)). Then exists C > 0 such that for

any n € {0,1,--- , N — 1}, the discrete time derivative of the

n+1 .
error eT; satisfies
en+1 —e" n+l — e 5
=P + Aru +H)Z IV E——I

< C((Aan? +n + HZ). (15)

where " = u" — @i}
Proof. Write (2) at time ¢,,; to obtain

n+l _ n
(”T, V) + (u + HYVi™, Vo) + b u, v)
- ("L V) = (") + HVU L V)
un+l —ut
+ (T’ v). (16)
Denote “—“—u!*! = p™!. Subtract (10) from (16) to obtain
the equation for the error ¢! = u"*! — 4*! Then, we have
en+1 e
(T V) + (u+ HY(VE™ V) + b u™ v)
_ b(/\n+1 An+1 V) (pn+1 ZJrl V V)
= H(Vu"“, W) + (o™, v) (17)
Decompose ' = u' — il = (it — i) — (i’ — u') = ¢}, — ' for
some I € Xj,.
+1_an
Taking v = % € X;, in (17) leads to
¢n+1 _ ¢h ¢n+l _ n
, +(u+ H)(Vet vy "1
( A A7 )+ (u+ H)( A7 L)
¢ﬂ+1 ¢ ¢n+1
+b n+1 n+1 hy _ An+1’An+1,
(u ——) = ( iy, A )
¢>I‘L+1 ¢n ¢n+1 ¢
n+1 An+1 n+l h
- - ,V- HV/"™ ,V————
(p D A7 ") = H(Vu A )
) ¢n+l ¢
A v} (18)
Also, take v = % R YE 44 € Xj, in (17) at the previous time level

and subtract the resulting equation from (18).

4=

mtl = Z—h we obtain for n > 1.

Denoting s

||Sn+1||2 _ (Sn+1, S}’L) + (l'[ + H)At||VSn+l||2 + b(u"+l;u"+

Vl+l) l’/\t;?—l, Il+l) + b(i\lz,ﬁz,

1’ Sn+l)

An+l, n+1
b(i), )

- b u", s

an+l an

pt—p Py TPy V. gl
At At )

n+l n+l

_n
- HAt(V(—) vt + AI(T’O, )
n+1 n 1

1 277
(Ar)?

n+1 n

o —-n
At

—(

+ At( n+l)

+ (u+ H)A(V( ), Vs, (19)

The nonlinear terms are bounded in a manner typical for the
deferred correction methods for NSE(See, eg.[2]).

Using the Cauchy-Schwarz and Young’s inequalities leads
to

||Sn+1||2 _ (S”+1, Sn) + (ﬂ + H)At||vsn+1”2 + b(l/l”+1;1/ln+1, SIH-I)
_ b(u";u", Sn+1) (An+1 ﬁZ+1’ n+1) + b(ﬁz, AZ: I‘l+1)
n n+l _ an
- (p ! _p ph+ Py V- n+1)
At At
un+1 —u" "
= HAt(V(——), Vs"
(V). 95"
pn+1 _pn il n+l 277 + n il
+ At(———, + At(——————,
%) & A2 )
n+1 7]”
+(u+ H)At(V(—t), Vs, (20)

Summing over the time levels, multiplying both sides by 2,
and using the modified Gronwall lemma gives

N
1" + e+ HDAL Y (19"
n=1

< C(IS?I> + OW*" + (A1)* + H?)). (1)

In order to be able to finish the proof using the discrete
Gronwall lemma, we will need the following bound:

Isl? + Ad[Vs'|? + Af|Vs2|]> < C(h* + (AD)). (22)

The details can be shown in [2]. Using the discrete Gronwall
lemma and the triangle inequality, we can derive

+1 _

P +Ar(u+H)Z||V( e

en+l —et
I At

< C((A0? + " + H?). (23)
where ¢ = u' — ii'.

Theorem 4.2: (Stability of correction step of DDC) Let
! e X, satisfy (11) for each n € {0,1,2,--- ,N — 1}. Then
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exists C > 0 such that #"*! satisfies

N-1
11 + At + H) Z Va1

At(y +H) Z[At P 4 A2 cz,

SAt

+1 n
Z[quv"“nﬂnf makN

Z[Ar v IR

n=1
An+lp2 2 Anp2 et — e 2
+ AtV ™| AtCVﬁ’ + AtV || AtII(T) I
Anp2 2
+ At||Vig || Cm].

where Cg. = [[Vu,(x, Dll(0.51@)-
Proof Choosmg V= N”” in (11) gives

(24)

un+1 i
( h ~ h ~n+l)+(‘u+H)(Vu'Z+1 Vﬂn+l) ( ~n+1 V ~n+1)

+ b(uh, ~n+1 ~n+1) + (V Mn+1,4h)

fn+1 +fn o (/J + H)Al n+1 A: )
= (" + g (V. Vi),
An+l
Z+ + i ~n+1 An+l An+1 ~n+l
+H(V(—2 WVi,™) + b( S i)
1 o An+1 ﬁn ”
- bt - (P v ), (25)

The nonlinear terms on the right-hand side are treated as
follows

_b(i\t;’;+1 An+1 , ~n+l) _ _b(ﬁz, If/\tz’ ﬁ2+1)

_ An+1 An+1 ~n+l An an ~n+l
—_b( S ) = b(”h’”h’“h

+ b(ﬁnJrl, AZ? ~Z+l) _ _b(f\nJrl7 Azaa2+l
A A un+1 o 5 At ft”+l ot .
— ?b(uz+l h ~ H,un+l)+ 7b( h o h, Z, Z+1)
=A+B. (26)
An+1 ~n
||VAZH||||V(—)|I||VIZZH||
tz An+1 An
< +H V~n+1 2 VAnJrl \v, h
e+ H)|IVi, " |I” + —16e(y+H)” 11l (—t Il
n+1 n
< +H V~n+1 2+ e VAnJrl ZAt \v, 6——
< e(u+ H)|IVig,™ || 16+ H)” g, |17 AdIV( A l
2At
———— IV P ArCE 27
* Toe (;1+H)” i, IFAtCy,, . (27)
Similarly,
At en+1 _n
B < H V“"Jr12 —  _IV&PAV(—————
4 DIV + e VP AV (5l
2At
————— IV PALCE 28
* oV AR, 8)

Note that Af[VaY~'|? < Ar¥N-'|[Vag|* and the stability

bound for the defect step approximation can be utilized.
Finally, choosing € = 11—0, multiplying through by 2At and

summing over the time levels gives us the desired result.

We now have all the intermediate results that are needed
for proving the accuracy of the correction step solution uZ”

Theorem 4.3: (Accuracy of correction step of DDC) Let
the assumptions of theorems 7 and 8 be satisfied. Then exists
C > 0 such that #"*! satisfies

N-1
ot = R+ Aru+ H) Y IV G -

n=1

< C(h* + B*AF + h* + H* AP + (AD*).

~ny2
i)l

(29)

Proof. First, sum (16) at time levels ¢, and t,,; and divide
by 2 to obtain

Mn+1 _n un+l n
—_— V(——),V
( = )+ (e + HYV (), V)
+1 + p
+ = b(un+l L)+ b(u" u",v) — (Tp’ V)
n+1 n n+l +u" n+1 +u"
f - +f v)+H(V(T,V)—(%,v)
un+1 —u
o (30)
Denoting Wt M = ! and Cet! = U(tyer) — ﬁn+1,
we obtain
C€n+1 - Ce" n+1 n+l,  n+l
(T,v) + (u+ H)(V(C™M), v) + b u™!, v)
;b(un+1 V) b(~n+l ~n+1’v)

1
+2b(u Ut v) + b(u'“rl oy

1 An An n ~n
—§b< V)= (P =PV )

n+l n n+l n

)W)+ v

= —(/1 + Hy(v(——% A Y
+H(Ve”+‘,vv) + (r"“, V)

A n+l _ n an+l _ an
MYy S b N 31)

2 At At

Decompose Ce"! =y — ™! = ¢i*! —

+1 +1
L gy € Xy, we
now choose v = ¢Z+1 € X,.

Notice that after applying the Cauchy-Schwarz and Young
inequalities, the expected second order of smallness, O(At(h+
H + Ap)). This follows from the results of Lemma 4.2 and
Theorem 4.1.

The nonlinear terms are treated as follows

n+l 1 n+1
b(u —b(u ;

n+1 ¢n+l) b(ﬁn+l;ﬁn+l’¢z+l) _ un+1,¢z+1)

1
¢1];+])+ —b(itn+l'12n+l ¢Z+l b(An AN ¢n+l)

—b(u"+1 C n+l ¢Z+1)+b(cen+l ~n+1 ¢I‘L+1)

1
+ Eb(u”' u",

1 a1 n
_ Eb(unJrl;CvenJrl’¢Z+l) _ Eb(e"”;u +17¢h+1)

1 1
+ btse, o) + S bee”s . (32)
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Adding and subtracting more nonlinear terms and writing
n+1 ¢n+1 n+l we get

( n+l. ¢n+l ¢n+l)+b(un+l’nn+l ¢n+l)

At un+1 —u"

b(¢n+l’ ~n+1 ¢Z+l)

n+1 ~n+l n+1 = L n an+l

+ b0y, g, >+2b< e

At n+l _ At n+l _
+ ?b(urﬁl e ¢n+l) + 7b(en+1 u ¢n+l)

At en+l — e At en+l _
iy n+]; , n+1 + —b . An n+1

p e A O F N At S

(33)

The first of these terms is identical zero; the third term is
treated by using the sharper bound by Lemma 2.2, and then
it is subsumed using the Gronwall lemma. The remainder of
the nonlinear terms provide the necessary second order of
smallness. Then we complete the proof of Theorem 4.3.

Lemma 4.3: Consider step 3 of Algorithm MGDDC, then
we have the following results

||un+1||2+||ﬁz+l n+1||2+2'yAt||V
+/3<||V~uz+‘||2 IV - 2+ IV - @ = I (34)

Proof. Let v, = uz”l in step 3 of Algorithm MGDDC, Then,
we have

12 12
llig, ™ 117 = " ||

@ty = P+ B+ yADIV - i1
_B(V . ﬁZ+1,V . Mn+l).

Consider (i*',uj*") and —B(V - 2",V -
polarization identity on each term. Then

(35)

wth). Use the

(un+l ||~n+1

1
uptty = E(uaz”uz + P - uP). (36)

_ﬂ(v . ftzH,V . uz+l)
= —E(IIV PV -y P =Y - gt = a IR BT

Using (36) and (37) and multiply by 2. We can easily derive

||~n+|||2 _ ||Mh+l||2 + ||~n+l n+l||2 + 2)/At||V . ﬁn+l”2
+BAV -y NP = IV - @ P+ IV - @t - athIP. (38)
as needed.

Using Theorem 4.2 and Lemma 4.3, we can obtain the
following theorem.

Theorem 4.4: (Stability of MGDDC) Consider the Algo-
rithm of MGDDC, the following inequality is hold.

N2 ~n+l _
Al +Z<|| "

+ﬁ(I|V uz“n2 + ||V (u"”

i1+1||2 + |I~n+1 "Zh||2 + Z’YAt”V . ﬁ2+1”2

Az”)uz))

At(y +H) Z (AP ||V( )||2 +APCy, )

SAt y n

Z[HZ"V ”||2+||f e

5— S acivae = g
H =1

n+1

+ AV AtCVu + At||Vﬁh||2At||( )2||

+ At||Vf4h|| Cva,] + ||uh||2. 39)

V. NUMERICAL EXPERIMENTS

In this section, we present some numerical experiments
to illustrate the theoretical results in the previous section
and show the effectiveness of the new method. The software
FreeFem++ developed by Hecht et al. [20] is used in our
experiments.

We first consider the experiment to test the convergence
rate for the problem Q = [0, 1]x][0, 1], where the true solution

is given by
— 872t
uy(x,y,t) = —cos(2mx) sin(2my) exp( ),
2
- t
ur(x,y,t) = sin(2mx) cos(2my) exp( ),
1 —8n%t
p(x,y,t) = —Z(cos(47rx) + cos(4my)) exp( ).

we choose 7 = 100, Re = 1, Ar = 1/m. The initial condition
is given by the exact solution at t = 0. We set y =1 and 8 =
0.2 for the convergence and vary m between 32,40,48,56
and 64. Errors are computed for velocity and pressure in the
approximate norms. The results are presented in Tables 1-4
for both the MINI and Taylor-Hood elements.

1/2
ldlz2q0.7:22c) = (Aanu(m uhum) :

N 12

2

leellz2 0,725 )) = (AIZHM(In) - MZHHI(Q)) .
n=0

N 1/2

2

IPllz20.7:220) = (Athp(rn) - panz(QI)) .
n=0

The corresponding error and convergence rates of u; in L

norm, H'-norm and py, in L?>-norm of the classical finite

element method are shown in Tables 1 and 2.

Table 1. Errors and rates for the MINI elements

m (1]l 2 rate (1]l g1 rate [1pll2 rate
32 1.87x10™* - 5.09 x 107! - 7.08 x 1072 -

40  1.24x10™* 185 455x107! 051 547x107% 1.16
48 898x107  1.77 415x1071 051 444x1072 113
56 6.89x1075  1.71 3.84x107! 051 3.75x1072 111
64 551x107  1.68 3359x107" 050 324x1072 1.10

Table 2. Errors and rates for the Taylor-Hood elements

m [lall;2 rate (1]l g1 rate [1Pll2 rate
32 137x107* - 5.10x 107! - 5.94 x 1072 -

40 9.85x107 148 455x1071 051 474x1072  1.01
48 752x1075 148 4.15x1071 051 3.95x1072  1.01
56 598x107° 149 3.84x107' 051 338x1072 1.01
64 490x107 149 359x107! 051 296x1072  1.01
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Table 3. Errors and rates for the MINI elements

m [laall 2 rate [lzall g1 rate [Ipll;2 rate
32 120x107* - 2.56 x 1072 - 7.08 x 1072 -

40 6.85x107 252 1.83x1072 150 547x107% 1.16
48 433x107 251 1.39x1072 150 444x1072 113
56 2.94x1073 251  1.10x1072 150 3.75x1072 1.1
64 210x1073 251 9.03x1073 150 324x1072  1.10

Table 4. Errors and rates for the Taylor-Hood elements

m [faall 2 rate [zl g1 rate [Ipll;2 rate
32 1.08x 1073 - 5.69 x 1073 - 5.94 x 1072 -

40 653x107° 226 3.72x107° 190 4.74x107% 1.0l
48  431x107° 227 262x10 193 395x1072 1.01
56 3.04x107% 228 1.94x1073 195 338x1072 1.00
64 224x107% 229 149x1073 197 296x1072 1.01

In tables 1 and 2, we show the errors and convergence rates
for MINI elements and Taylor Hood elements respectively,
the convergence rates of velocity are deteriorative. In tables
3 and 4, the desired convergence rates of our MGDDC
scheme reached to second order, which agree very well with
our theoretical results in our numerical analysis. Finally the
velocity streamlines and pressure contours with numerical
solution and exact solution are presented in Fig. 1 and Fig.
2, respectively. (mesh size 64 x 64, T = 1,dt = 1/64).
In summary, these experiments confirm the stability, con-
vergence and effectiveness of our MGDDC scheme. Our
second test is for Re increasing. A characteristic of grad-
div stabilization is an increase in pressure robustness. That
is, the effect of the pressure error on the velocity error is
reduced by an appropriate choice of y. For this test, we fix
At = 1/m = 1/64 and set y = 1 and g = 0.2. We vary
Re such that 1 < Re < 10°. The results are presented for
Taylor-Hood elements in table 5. From the results, we can see
the MGDDC implementations are in good agreement with
insignificant error growth for all computed quantities.

Table 5. Errors of our proposed scheme with increasing Re
Re lluel 2 lleel 1 lIpll 2

1 1.08 x 1073 5.69 x 1073 5.94 x 1072
lel 279x 1074 1.39 x 1072 5.92 x 1072
le2 1.92x 1073 3.58 x 1072 5.88 x 1072
le3 2.60x 1073 3.58x 1072 5.88 x 1072
led 2.69x 1073 4.40x 1072 5.88x 1072
le5 2.69 x 1073 4.40 x 1072 5.87 x 1072
le6 2.69x 1073 4.40 x 1072 5.87x 1072

VI. CoNCLUSION

In this work, We present a modular grad-div stabilization
and defect-deferred correction method for the incompress-
ible Navier-Stokes equations. The new algorithm does not
suffer from either solver breakdown or debilitating slow
down for large values of grad-div parameters. Furthermore,
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Fig. 1: Velocity contours -(a) numerical solution of u, (b)
exact solution of u; (¢) numerical solution of v, (d) exact
solution of v.
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Fig. 2: Pressure contours -(a) numerical solution of p,
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it is improving two aspects of the numerical simulations
for the problem. Modular grad-div stabilization and defect-
deferred correction approaches are combined into a so-called
MG-DDC method. Stability and optimal-order convergence
of methods are proven. Numerical tests are presented to
highlight the accuracy and effectiveness of the algorithms.
Moreover, the modular grad-div stabilization and defect-
deferred correction method for fluid-fluid interaction are need
to further study.
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