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Abstract—Trapdoor functions contributed since their an-
nouncement in the evolvement cryptography as we know it,
especially the lossy mode, by helping reduce the residual
leakage for an optimal rate, but to make it more resilient
cryptographically: generic constructions were made based on
graph isomorphism, or other NP-hard problems defended by
the zero-knowledge proof, such were used in Indistinguishability
under Chosen-Plaintext Attack (IND-CPA), Computationnal
Diffie-Hellman (CDH), or Decisional Diffie-Hellman (DDH).
Once schemes like Indistinguishability under Chosen-
Ciphertext Attack (IND-CCA) were adopted it became clear it
cannot simulate a decryption using Lossy Trapdoor Functions
(LTF); the problem with existing trapdoor functions in general
is partial information leakage, lack of randomness and multiple
messages insecurity.
In the light of the following issues came the idea to present
through this paper a simple but important fix, in the note of
randomness a new Variate of the Engel expansion (VEE) is
chosen, providing a pseudo-random bit sequence as an output,
the reason being to recover the seed of the algorithm for
an attacker, it is considered a hard number theory problem,
and surely after the new construction in this paper, another
NP-complete problem emerging from tensors the scheme is
more secure. As for the strenghtening evidence of how it can
be trusted, it seems more robust to supply a proof of its
ergodicity as being done in this article, instead of semantic
security analysis, to prove the efficiency of the new construction
resolving the issues surrounding multi-challenge using a lossy
trapdoor function.

Index Terms—Engel expansion, ergodicity, chaos, LTF,
PRNG, IND-CCA, DDH.

I. INTRODUCTION

F IRST and foremost, it is essential to tackle the definition
of the Engel expansion [1].

Let x be a positive real number such that:

x =
1

a1
+

1

a1a2
+

1

a1a2a3
+ ...

The unique non-decreasing sequence of positive integers
a1, a2, a3, a4, ... is called the Engel expansion.
The Engel expansion of x can be obtained through executing
the fllowing algorithm:

• let u1 = x ,

• ak =

[
1

uk

]
+ 1 and uk+1 = ukak − 1

• If uk = 0 the algorithm stops.

Let ai be the number of digits of ai and TE the
Variate Engel Expansion (VEE) defined by the following
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expression:

x =
1

a1a110−a1
+

1

a1a2a210−a2
+

1

a1a2a3a310−a3
+ ...

with the same initial conditions and starting domain required
for the Engel expansion.

A. Brief introduction to chaos-based cryptogrtaphy

Chaos-based cryptography is interesting due to the broad-
band power spectrum of chaotic signals, high rates of infor-
mation transmission, and efficiency at sufficiently low signal-
to-noise ratio, chaos is a behaviour of a nonlinear system,
looking random, with no stochastic reason [2]. To encrypt
using this method keys are generated with chaotic maps
or in this case the ergodic nature of the chaotic trajectory,
emerging from a seed intializing the system at first.

B. Random number generators

The main one used primarly is the pseudo-random number
generator (PRNG) which is periodic and deterministic and
the other is the true random number generator (TRNG).
When dealing with cryptography, a PRNG is called cryp-
tographically strong if an intruder intercepts information
generated by the PRNG, but still doesn’t have the possibility
to reconstruct the remaining data of the output.

C. Ergodic theory

Ergodic theory is the study of the asymptotic average
behavior of systems evolving in time. The collection of all
states of the system form a space X, and the evolution is
represented by a transformation T : X → X , where Tx is
the state of the system at time t = 1, when the system (at
time t = 0) was initially in state x.

D. One way function

1) Negligible function: A function r : N → N is
negligible if ∀p : N→ N polynomial, ∃k0 integer such that:

r(k) ≤ 1

p(k)
for k ≥ k0.

2) One way function definition: A function f is called a
one way function if:

1) f is polynomial time computable.
2) Any probabilstic algorithm for inverting f(x) given a

random y = f(x) (x at random) has negligible chance
of finding a preimage of y.

E. Trapdoor function

A trapdoor function is given an input m is easy to compute
the result, but the reversible process is a NP-Hard problem
except if we know a special piece of information being the
secret.
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F. Losiness
When you switch to lossy mode, you no longer have to

deal with polynomial time machines as the proofs become
statistical arguments. Thus, a cipher made by an injective key
is decrypted, while the one made by a lossy key is statistically
independent of the original message, making the both keys
indistinguishable from each other.
A lossy function means the size of their image is smaller
than the one of their domain.
Let us assume having an input message x of n bits and r
exists such that |ImF | < 2r in lossy mode, with the image
consisting of the residual leakage (leaks bits from the input),
if given less than n− r bits of x, then f cannot be inverted.

G. Plan
This paper is divided into several sections as follows:
• Related works: where the aim is to mention previous

works in similar domains which gather the essence of
our contribution.

• LTF construction: where the construction of the trapdoor
function starts its building blocks towards the one-way
function as a first step.

• Preliminary: which is a section englobing multiple pre-
requesites necessary to understand how the issue at hand
is approached.

• Effectiveness proof: is a section in which we use the
prerequisites we already mentioned before, to prove
some properties such as ergodicity.

• Using the VEE as LTF for the DDH: This is the final
attained objective where the Diffie-Hellman assumption
and trapdoor function are gathered via the first one-way
function to solve the problem of Multi-Challenges in
IND-CCA.

• Conclusion: It is the final section summing up the
focus of our contribution in this paper and possible
perspectives.

II. RELATED WORK

One-way trapdoor functions are one of the most funda-
mental cryptographic primitives, especially lossy trapdoor
functions LTFs attracting a lot of attention since the con-
tribution of the pioneers [6], unleashed a wave of similar
works on LTFs. [7] thought of a new technique to shrink the
public key of matrix construction of [6]. [8] and [9] showed
LTFs imply correlated-product TDFs and adaptive TDFs.
After being introduced by [6], Lossy trapdoor functions have
become more popular in the recent years, due to the multiple
varieties they can offer and how it can benefit other concepts
like extending it to the identity-based setting, and trying other
constructions more efficient hence the design suggested in
this paper.
A previous paper [14] did investiga a novel computational
problem ”the Composite Residuosity Class Problem, and
its applications to public-key cryptography” in which he
suggested a new trapdoor mechanism, he also came up
in the same work with a trapdoor permutation and two
homomorphic probabilistic encryptions.
Another paper can be mentionned here as well [16] show-
ing techniques used for generic constructions of fully-
secure IBE( Identity-Based Encryption) and selectively-
secure HIBE (Hierarchical IBE).

Another technical novelty was back when the paper [7]
proposed a compact encoding technique for generating
compressed representations for some sequences of group
elements using public parameters, which also focuses on
shkrinking the discrete-log lossy trapdoor functions key size.

III. LTF CONSTRUCTION

Random proceses cause electronic noise, varrying a signal
from its digital position in time, this ”jitter” would later serve
us in generating random numbers.
The idea is to assemble with a XOR operation multiple
outputs coming from inverter ring oscillators. Instead of
Brownian noise, so φi is the i-th term of the VEE (Variate
Engel Expansion).

Fig. 1. Circuit diagram ring design of the LTF

The events φ1, φ2, ...φr fill the oscillation period of the
signal φ which is subdivided into r equal time intervals
”urns” less than the jitter boundaries of one ring output,
providing a random bit when sampling it as the time lapse
is shortened between events as in figure 1.
Now in each of those rings the output value is made
following the process we choose to detail afterwards. Once
we choose the seed x and number N of iterations, we may
follow both strategies below:

1) Divide [0, 1[ using the Variate Engel Expansion (VEE)
to get an ideal true random number generator allowing
the harvest of random integers.

2) Divide [0, 1[ using a partition Pn of 2n intervals, to
get a non-ideal true random number generator with 2n

random integers.
Given X an irrational number on which we count on
applying the expansion, the procedure is like the following
described algorithm:
During the initialisation, the counter C and key K are set
to null giving a clear assumption that the generator is not
seeded at first as shown in algorithm 1.
Then the internal entity of the PRNG generates at random
a number of blocks.
GenerateRandom function check first if C is not null, as
the generator is not seeded in algorithm 2, then the loop
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Algorithm 1: Initialisation
Input: Initialise

1 Allocate a real number value to x and
2 an integer one to N /* N being the

N-th term of the VEE of x */
Output: Generator state

3 (K,C)← (0, 0)
4 (X,N)← (x, n) /* x ∈ R and n ∈ N

*/

Algorithm 2: GenerateRandom
Input: GenerateRandom
/* The VEE(j) of the iteration j is

loaded and given the couple (x, n)

*/
1 G: Generator state has the VEE
2 k: block number

Output: Pseudorandom string
3 while C 6= 0 do
4 r ← ε /* empty string */
5 Append block
6 for i=1,...,k do
7 r ← V EE(i)
8 C ← C + 1

9 return r

starts with ε in r and appends blocks that are computed into
r building the output value by the VEE.
Now we know if we take a rational x0 ∈ ]0, 1], and un is
a serie of its Engel expansion starting from rank N, then
Engel’s algorithm offers an expansion of x0 as a limited
continued fraction [13].

x0 = 1
u0− u0

u1+1− u1
u2+1−... ···−

uN−2

uN−1+1−
uN−1
uN

While a mapping of continued fractions is given by:

xn+1 = T (xn) =
1

xn
− d 1

xn
e

Gauss found this probability distribution:

p(x) =
1

(1 + x) ln 2

The amplification sensitivity measured by the kolmogorov
entropy [12] is as follows:

h =

∫ 1

0

ln |dT
dx
|p(x)dx

Which results in the following for the mapping T:

h =

∫ 1

0

−2 ln(x)

(1 + x) ln 2
dx =

π2

6 ln 2

Knowing h is non-zero the mapping is considered chaotic
so we can deduce Engel Continued Fractions (ECF) is
therefore at least sensitive dependent on initial conditions.
The algorithm we chose following the function F is
similar to the r-adic Rényi transformation in shifting [11]:
S(x) = rx(mod1) which is already chaotic for 0 ≤ x ≤ 1

and r > 1.

Due to the relation between regular continued fractions and
ECF we can deduce that the VEE of x has the approximation
[10] :

x̃ : x −→ p

q

with p, q ∈ Q.
For n ≥ 1 and 1 ≤ k ≤ an+1 − 1 the mediants are defined
by:

f̃ :
p

q
−→ kpn(x) + pn−1(x)

kqn(x) + qn−1(x)
10an

which is the finite-precision approximating function, with
pn(x)

qn(x)
the convergents of x in regular continued fractions

(RCF).
Let |f(x) − f̃(x)| = ε(x), then if for all x: ε(x) << 1 we
can conclude that f̃ shadows f [2] for the pseudo-chaotic
approximation f̃ox̃.
Hence, the use of the ergodic property for this map, to
create a nonlinear PRNG which is the main concern and
core of our intended LTF, aiming towards a low-complexity
implementation and strong statistical test results.

IV. PRELIMINARY

A. Prerequisites

Let (Ω1, F1, P1) and (Ω2, F2, P2) be probability spaces
and T a transformation:

1) T is measurable if ∀E ∈ F2 ⇒ T−1E ∈ F1

2) A measurable transformation T is non-singular if ∀E ∈
F2 : P2(E) = 0⇒ P1(T−1E) = 0

3) A measurable non-singular transformation T is ergodic
if T−1E = E for E ∈ F ⇒ P (E) = 0 or P (E) = 1

B. Theorem:[3]

Let E a Lebesgue measurable subset of [0, 1] with P (E) >

0 and Lebesgue measure is λ(Bn) =
∏n

j=1

1

k
′
j

∀n ∈ N∗,

J a collection of subintervals of [0, 1]:
1) Every open subinterval of [0, 1] is almost a denumer-

able union of disjoint elements of J (P almost surely)
2) ∀B ∈ J, P (EB) ≥ cP (E) with constant

c > 0⇒ P (E) = 1

C. Theorem:

We define Bn = Bn(k1, k2, ...) = {x ∈ (0, 1]/a1(x) =
k, a2(x) = k2, ...an(x) = kn}∀k1, ...kn ∈ N∗ for
ai, i = 1, ..., n being the coefficients of the Variate Engel
Expansion sequence.
The set is Bn is bounded and its bounds are:

Mn = supBn(k1, k2, ..., kn) =
10k1

k1
+

10k2

(k1 + 1)k2
+

...+
10kn

(k1 + 1)(k2 + 1)...(kn + 1)k′n

mn = inf Bn(k1, k2, ..., kn) =
10k1

k1
+

10k2

(k1 + 1)k2
+ ... +

10kn

(k1 + 1)(k2 + 1)...(kn−1 + 1)kn
+

10kn−1

(k1 + 1)(k2 + 1)...k
′
n−1
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Proof: If an(x) = kn then rn−1(x) =
1

kn
− 1

kn+1
rn(x), n ∈

N∗ where rn(x) =
1

an+1(x)
+

1

an+1(x) + 1

1

an+2(x)
+ ..

with an+1 ∈ N∗ ∀m ≥ 1 and x ∈ Bk1k2..kn

Therefore if x ∈ Bk1k2..kn then:

x =
10k1

k1
+

10k2

(k1 + 1)k2
+ ..

+ 10kn
1

(k1 + 1)(k2 + 1)..(kn−1 + 1)kn
+

10kn+1
1

(k1 + 1)(k2 + 1)..(kn + 1)an+1(x)
+

10kn+2
1

(k1 + 1)..(kn + 1)(an+1(x) + 1)an+2(x)
+ .. =

10k1

k1
+

10k2

(k1 + 1)k2
+ ..+

10kn

(k1 + 1)(k2 + 1)..(kn−1 + 1)kn
+

10kn+2

(k1 + 1)(k2 + 1)..(kn + 1)
.(

1

an+1(x)
+

1

(an+1(x) + 1)an+2(x)
+ ..

)
=

10k1

k1
+

10k2

(k1 + 1)k2
+ ..+

10kn

(k1 + 1)(k2 + 1)..(kn−1 + 1)kn
+

10kn

(k1 + 1)(k2 + 1)..(kn + 1)
rn(x)

Now we are facing two situations:
1) First scenario n = 2k + 1, k = 0, 1, 2, ..
If rn(x) = 0, then:

mn = inf Bn(k1, k2, ..., kn) =
10k1

k1
+

10k2

(k1 + 1)k2
+

..
10kn

(k1 + 1)(k2 + 1)..(kn−1 + 1)kn
and if rn(x) = 1, then

Mn = supBn(k1, k2, ..., kn) =
10k1

k1
+

10k2

(k1 + 1)k2
+

..
10kn

(k1 + 1)(k2 + 1)..(kn−1 + 1)kn
+

10kn

(k1 + 1)..(kn + 1)
2) Second scenario n = 2k, k = 0, 1, 2, ..
If rn(x) = 0, then:

mn = inf Bn(k1, k2, ..., kn) =
10k1

k1
+

10k2

(k1 + 1)k2
+

..
10kn

(k1 + 1)..(kn−1 + 1)kn
+

10kn−1

(k1 + 1)..(kn−1 + 1)
while if rn(x) = 1, then:

Mn = supBn(k1, k2, ..., kn) =
10k1

k1
+

10k2

(k1 + 1)k2
+ .. +

10kn

(k1 + 1)..(kn−1 + 1)kn

V. EFFECTIVENESS PROOF

Ergodicity is the chaotic property equivalent to the crypto-
graphic confusion of Shannon in information theory, where
the output has the same distribution for all inputs, making
the keystream sequence unpredictable, and kept secret with
absence of redundancy.
In order to ensure the chaotic behaviour of the PRNG,
ergodicity is a must, knowing with this property at hand
trajectories have an invariant distribution unattached to the
initial state, and visiting all intervals of all sizes. Thus, what
follows in the paper is the ergodicity establishment of the
function TE defined in the beginning.

A. Theorem

The built up transformation based on the Variate Engel
expansion TE is ergodic relatively to the Lebesgue measure
λ.
Proof: Let’s define a function ψn =
ψn(k1, k2, ..., kn), ψn [0, 1]→ Bn,

ψn(v) =
∑n

j=1

10kjλ(Bj−1)

kj
+ 10kn .v.λ(Bn) =

∑n
j=1

10kj

k1k2..kj−1

(
1 +

10kj−1

kj

)
+ 10kn .v.

∏n
j=1

1

kj
if x ∈ Bn then:

x =
∞∑
j=1

10kj

a1a2..aj−1aj

=
n∑

j=1

10kjλ(Bj−1)

kj
+ λ(Bn).

∞∑
j=n+1

10kj

an+1a2..aj−1aj

= ψn(Tn
E(x))

then ψn = Tn
E : Bn → I

and Mn = ψn(1), mn = ψn(0), ∀n = 2, 4..

with ψn(0) =
10k1

k1
+

10k2

k1k2
+ ..+

10kn

k1..kn

and ψn(1) =
∑n

j=1

10kjλ(Bj−1)

kj
+ 10knλ(Bn)

(If n is odd we invert)
So for any interval ]a, b[ ⊆ I we have:

λ(Tn
E ]a, b ]∩Bn ) = λ(ψn[a, b ]∩Bn )

= |ψn(b)− ψn(a)|
= (b− a)λ(Bn)

= λ]a, b ].λ(Bn)

thus

λ(T−nE E ∩Bn) = λ(E)λ(Bn) (*)

No matter the set inside the boolean ring R of all finite
disjoint unions of intervals ]a, b] ⊂ I the equation is still
valid for all borel set E in I .
Let now E be a Borel set in I such that:
T−1E E = E then: T−nE = E,∀n ≥ 1
and (*)⇒ λ(E ∩Bn) = λ(E)λ(Bn)
or λ(E ∩Bn) = Kλ(Bn) with K = λ(E) > 0
If C is the collection of all cylinders Bn, n > 1, and aj+1 >
aj , aj > 1∀j ≥ 1, then any open subinterval of (0, 1 ] would
be denumerable at most as a disjoint union of elements of
C, therefore:
λ(E ∩B) = Kλ(B), ∀B = Bn a set of a countable disjoint
union. Hence:
From [Theorem 4.2, property 1)] we have λ(E) = 1 and
by [ Prerequisite 4.1 assertion 3)]
⇒ T−1E E = E ⇒ P (E) = 1⇒ TE is ergodic.

B. Product’s sequence correlation

Using the wavelet scalogram as in the figure 2 it is shown
there is no consistent correlation in the product resulting
from the expansion of the specific sequence being chosen,
where the horizontal axis represents the time, the vertical
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axis represents the scale, with which normally correlation is
found by measuring energy, where the wavelet transform is
defined like the following:

Wf(u, s) := 〈 f, ψu,s〉 =

∫ +∞

−∞
f(t)ψ∗u,s(t)dt

where

ψu,s :=
1√
s
ψ(
t− u
s

)

u ∈ R, s > 0.
Hence the scalogram of f, S is:

S(s) := ‖Wf(u, s)‖ = (

∫ +∞

−∞
|Wf(u, s)|2du)

1
2

Fig. 2. Wavelet scalogram for an egyptian product

Using the innerscalogram which is the normalized scalo-
gram [4], the observer can deduce the scale index obtained by
dividing the minimal value of the last one by its maximum,
will lead obviously here close to 1 for this highly non
periodic expansion [5].
As for the wavelot plot of our egyptian product, it can be
noticed on figure 3 that when cross-correlating the wavelot
transform with this signal there is no spots at the first rows
that may show matches, so it may happen at high number
rows randomly due to the specification of the VEE algorithm,
thus proving the point.

Fig. 3. Wavelet plot for an egyptian product

VI. USING THE VEE AS LTF FOR THE DDH

In this section, the Variant Engel Expansion is being put
use as a Lossy Trapdoor Function for the Decisional Diffie-
Hellman problem in order to establish a well put together
encryption.

A. Multi-Challenge solution in IND-CCA

When dealing with one sender or user in IND-CCA, the
trapdoor is used in one challenge making easy to perform
hashes or encryption via a one-way function; the issue at
hands occurs when dealing with multiple users forcing the
encryption modules to handle Multi-Challenges.
Selective Openings do target this topic :

Alice Oscar

. .

C∗1 , ..., C∗n

(c∗i ) ∀i ∈ I

I

As you can see, there is no indistinguishability with this
adaptive corrutpion of multiple senders, giving away open
(c∗i ) ∀i ∈ I while sending the ciphertexts C∗1 , ..., C∗n, which
makes the attacker well aware of important informationnal
parts on the public key pk and ciphers (c∗i ), since the
randomness uses openings in committment.
Now let’s consider in what follows this keyed function:

x −→ fki
(x)

with k1: the key corresponding to the invertible mode
and k2: the key corresponding to the lossy mode
where k1 ≈ k2 and the VEE will be used as the trapdoor
function f .
In the case of invertibility, an invertible key is being called
upon while when needing lossiness the construction of the
function guarantees that the image set is much smaller than
the preimage set (fk2

(x)� X).
So getting back to the issue, knowing the attacker gets the
LTF key and image pk, c

∗ from the sender, then although
switching LTF to lossy mode would deny the eavesdropper
from reaching information on the messages, if the sender is
operating under IND-CCA the decryption oracle is unable
to function in lossy mode, due to its limitation to work
either under a cipher using fully invertible mode or lossy,
and cannot alternate between the two.
To prevent this from happening while keeping the encryption
functional, tags like t∗ are being introduced [14] that switch
the function fk,t to lossy mode only for one special tag.
Let f be an n-degree polynomial function such that :

f(t) =
∑

fit
i

with fi being the output pf the VEE.
and the only tags non-null are t∗1, ..., t

∗
n.

then k = (pk, C0 = Epk
(f0), ..., Cn = Epk

(fn))

and fk,t(x) = (
∏
ct

i

i )∗ = Epk
(f(t)X). Now due to the

number of challenges to encode n lossy tags the space
complexity is linear, and the Selective Openings chosen-
ciphertext attack (SO-CCA) model would secure the public
key echange (PKE) but will make the public key pk larger,
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so the sender will have to consider each t∗i sampled by the
trapdoor function is corresponding to a ciphertext challenge,
because there are many superpolynomial lossy tags.

B. DDH construction over LTF

The adopted approach her is where matrices are used
instead of single bits, hence the encryption will be performed
over a matrix M as the message, the E denotes the DDH
encryption scheme and t is the lossy tag used alongside the
trapdoor function (TDF).

t→ E(M) =

E(M1,1) . . . E(M1,n)
...

. . .
...

E(Mn,1) . . . E(Mn,n)



then the function becomes fk,t(x) = E(M) =

x1...
xn


So

fk,t(x) =


∏

iE(M1,i)
xi

...∏
iE(Mn,i)

xi

 = E(MX)

Notice fk,t is lossy ⇐⇒ M is non-invertible

⇐⇒ det(M) = 0

This det(M) can be used to encode complex computations
when being cubic, but this is not the aim in this section.
In Diffie-Hellman, the model relies on a number g ∈ G
considered as a group generator such that if M is a bit
sequence of the message:

M ∈ Zn×n
p ⇒ [M ] = gM

Giving
[M ] ∈ Gn

Allowing any integer matrix M to be encoded as [M ],
therefore any input of the TDF as bits x ∈ {0, 1{ can be
encoded as [Mx].
The slight twist here is to substitute the exponentiation gM

by E(M) which is additively homomorphic and the pairing
becomes the multiplication introduced earlier (Paillier) when
dealing with matrices.
In order, to establish the earlier method for a multi-
dimensionnal purpose tensors are considered and instead of
matrix multiplication tensor product is adopted.

Let there be the field G = GF2 and vector spaces

F ∼= Gd1 ,M ∼= Gd2 , X ∼= Gd3

Then E is a 3-tensors space :

E = F ⊗M ⊗X

and let F ? = Hom(F,G)

Given the action of the group G = GL(F ) × GL(M) ×
GL(X) on E if (e1, . . . , ed1

) is the considered basis for U,
the dual basis is

(
e?1, . . . , e

?
d1

)
for U? where e?i ej = δij ;.

The (E;n)-tensor is as follows:

E =
n∑

i=1

fi ⊗mi ⊗ xi

for vectors f1, . . . , fn ∈ F being the decomposition of
f the Variant Engel Expansion (VEE) one-way function
m1, . . . ,mn ∈ M those of the message sequence and
x1, . . . , xn ∈ X an input sequence of bits.

Let E be a bilinear mapping, the difficulty the attacker
would encounter arrises from the bilinear inversion problem
which is NP-complete:
Given E ∈ T and z ∈ X, find x and y such that E(x, y) = z.

Let d1 = |F | = d2 = |M |, d3 = |X| and E the
space of bilinear mappings

E : F ? ×M? → X

E(x, y) = E · (x⊗ y)

So

(E(x, y))k =
∑
i,j

Ei,j,kxiyj for k ∈ {1, . . . ,m}

The public key is E and the private key is the decompo-
sition f1, . . . , fd3 ∈ F, v1, . . . , vd3 ∈M,w1, . . . , wd3 ∈ X.

The one-way function is the bilinear map

T : F2d1 → Fd3 , (x, y)→ T (x, y) = z

taking m and n two factors (ai) of the VEE expansion
such that n < m, leaving the problem NP-Hard, thus the
robustness of the encryption scheme.

VII. CONCLUSION

Ergodic theory is a gathering of number theory, probability
theory, group actions of homogenous spaces and other fields.
An additional concept may arise and can be relied on, the
one of asymptotic average weak independence much stronger
which is mixing, deriving from the Birkhoff’s ergodic theo-
rem.
This notion presented the opportunity to entangle LTFs from
another point of view, the seed of the system became the
parameter of the key generation algorithm, while the VEE
designed in this paper outputs the one-way trapdoor function,
and the chaotic behaviour made the lossy mode accessible
through the ergodic property.
Over the line of this work, this new construction combines
both aspects of number theory problem and a chaos theory:
the use of a lossy trapdoor function was aimed towards fixing
revolving issues surrounding multi-party communications,
while using the DDH for exchange, thus making a sound
proof to what may become a IND-CCA resistant scheme,
especially if studied in the future along distributed systems
or adopted in certain communication protocols.
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Editions, 1987.

[14] Paillier, P., (1999) ’Public-key cryptosystems based on composite-
degree residuosity classes’, Advances in Cryptology-EUROCRYPT’99,
Lecture Notes in Computer Science, vol. 1592, ed. J. Stern. Springer-
Verlag, Berlin, 223–238.

[15] Alexeev, B., Forbes, M., and Tsimerman, J., (2011) ’Tensor rank: some
lower and upper bounds’, Preprint arXiv:1102.0072v1, 2011.
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