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Abstract—In this paper, we investigate the problem of 

event-triggered finite-time stabilization for a class of uncertain 

nonlinear switched systems with time-varying delay. Firstly, we 

propose an event-triggered sampling mechanism and an 

event-triggered state feedback controller. By using the Lya-

punov-Krasovskii functional method and the free-weight matrix 

method, we give new sufficient conditions of the finite-time 

stabilization for nonlinear switched systems under 

event-triggered state feedback control. The design method of 

controller gain matrix is given. Finally, a numerical example is 

provided to illustrate the effectiveness of the obtained results. 

 
Index Terms—Switched systems, finite-time stabilization, 

uncertain, time-varying delay, event-triggered controller. 

 

I. INTRODUCTION 

HE switched system is composed of several subsystems 

and switched strategies acting on them. Stability and 

control design are very important topics in the theoretical 

study of switched systems, and many results have been re-

ported [1-3]. In [2], Liu et al. investigated stability and sta-

bilization of nonlinear switched systems under average dwell 

time. In [3], Dong et al. dealt with exponential stabilization 

and L2 gain for uncertain switched nonlinear systems. 

The research on stability of switched systems generally 

focuses on Lyapunov stability. Not much attention was paid to 

finite-time stability. However, for some systems that operate 

in a finite time, it is extremely important to study the finite 

time stability [4-8]. In [5], the problem of the finite time 

control for switched stochastic nonlinear systems was con-

sidered. In [6], Wang et al. studied the finite-time stability and 

stabilization of switched nonlinear systems with asynchro-

nous switching. In [7], Chen et al. considered the finite time 

stability for switched systems with stable and unstable sub-

systems.  
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Because of external disturbances, time delays and uncer-

tainties often exist in actual physical systems, which leads to 

instability and degradation of some performance. The stabil-

ity and stabilization of switched systems with uncertainties, 

time delays and external disturbances have become important 

research topics [8-12]. In [8], the authors designed the fi-

nite-time control for switched linear systems with interval 

time-delay. The stability of a class of switched linear systems 

with uncertainties and averaged well time switching was 

considered in [9]. In [10], Shen et al. gave the stability anal-

ysis for uncertain switched neural networks with time-varying 

delay. In [11], Lin investigated the problem of stabilization 

for LTI switched systems with input time delay. 

An event-triggered mechanism strategy is different from 

the time trigger mechanism: it controls the system by de-

signing an event-triggered controller. The advantage of 

event-triggered controller is that it can effectively improve the 

utilization rate of system resources by reducing the sampling 

update and network communication frequency of controller. 

It can also save system resources by reducing unnecessary 

sampling and calculation. In recent years, scholars have be-

come more and more interested in switched systems and 

event-triggered control. Therefore, a number of research 

results have been reported [13-15]. In [13], Ma et al. con-

sidered the finite-time event-triggered H
 
control for 

switched systems with time-varying delay. In [14], Liu et al. 

designed the event-triggered controller for nonlinear systems 

with state quantization. In [15], Zhang et al. studied the 

event-triggered control for networked switched fuzzy system 

based on average dwell time. However, to the fullest of our 

authors’ knowledge, the problem of event-triggered fi-

nite-time stabilization for uncertain nonlinear switched sys-

tems with time-varying delay has yet to be explored. 

In this paper, we investigate the problem of finite-time 

stabilization for nonlinear uncertain switched systems with 

time-varying delay by constructing an event-triggered con-

troller. We give the sufficient conditions for the finite-time 

stabilization of switched system and design the 

event-triggered controller gain by using matrix inequality 

technique and averaged dwell time method. 

The remainder of this paper is organized as follows.  Sec-

tion II gives the model description and preliminaries. In Sec-

tion III, the new criteria are obtained to ensure the finite-time 

stabilization of uncertain switched systems with time-varying 

delay. Section IV gives a numerical example to illustrate the 

validity of the results. Section V summarizes the paper. 

 Notation. N represents a set of natural numbers.
n nR 
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notes the set of n n real matrices.
TA and 

1A
 are the trans-

pose and inverse of A, respectively. 0X  ( 0X  ) means X 

is a negative definite (semi-negative definite) matrix. * is the 

terms below the main diagonal of a symmetric matrix.   

II. PROBLEM STATEMENT AND PRELIMINARIES 

Consider the following switched nonlinear system with 

time-varying delay:  

( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( ( )) ( )

( ( )) ( ( ( ))),

( ) ( ) [ ,0],

t d t t

t t

x t A t x t A t x t t B u t

f x t g x t t

x t t t

   


  


  
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 





 

      (1) 

where ( ) nx t R is the system state,
mRtu )( is the control 

input vector, )(t represents the time-varying delay which 

satisfies 

.1ˆ)(0,)(0   tt 
 

1( ) ([0, ], )nt C R  is a continuous initial function. 

( ) :[0, ) {1,2, , }t M N   is the switching signal. 

0 0 1 1{( , ),( , ), ,( , ), ,| , 0,1, }k k ki t i t i t i M k  is a 

switching sequence, where 0t is the initial time instant, 

and kt is the kth switching instant. When ),,[ 1 kk ttt the thik  
subsystem is activated. 
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where , ,i di iA A B are known real-valued matrices, and the 

matrix iB has a full column rank. ( ) ( )tA t and ( ) ( )d tA t are 

the time-varying parametric uncertainties satisfying 

   1 2( ) ( ) ( )[ ],i di i i i iA t A t H F t E E  
            

(2) 

where iii EEH 21 ,,
 
are  known  constant  matrices.  )(tFi is an 

unknown real-valued matrix function which satisfies 

( ) ( ) , 0.T

i iF t F t I t    

( ( ))if x t and ( ( ( ))) ( )ig x t t i M  are nonlinear functions 

with (0) 0,if  (0) 0 ( ),ig i M  and satisfy  

     
     
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(3) 

where , n n

i iU V R  are known constant matrices.  

Lemma 1 [16]. Let X, U be real matrices with appropriate 

dimensions, and a matrix ( )F t satisfies ( ) ( ) .TF t F t I Then 

for any 0,v   the following inequality holds 

  1( ) ( ) .
T T TXF t U XF t U v XX vU U    

Definition 1. Given time instants T and T with 0 ,T T   

let ( , )N T T indicate the switching number of ( )t over 

( , ).T T  If 

  0, ( ) / ,aN T T N T T     

holds for constants 0 0, 0,aN   then a is called an average 

dwell time and 0N is called the chattering bound. Without loss 

of generality, we choose 0 0N  in this paper.  

     Consider the following system  

( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( ( ))

( ( )) ( ( ( ))),

( ) ( ) [ ,0],

t d t

t t

x t A t x t A t x t t

f x t g x t t

x t t t
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 




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  

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(4) 

Definition 2. [17] Given a positive definite matrix R, and 

three positive constants 1 2, ,T c c with 
1 2 ,c c and a switching 

signal ( ).t  If  

   

   

1
0

2

{ ( ) ( ) }

[0 ],

T T

s
T

sup x s Rx s ,x s Rx s c

x t Rx t c , t ,T
  



   
                 (5) 

holds, then system (4) is said to be finite-time stable with 

respect to  1 2, , , , .c c T R   

III. MAIN RESULTS 

 

We develop an event-triggered mechanism: 

,)()(
22

txte                          (6) 

where ),()ˆ()( txtxte s  10  is a given event threshold 

valve.  
0

ˆ
kst is a sequence of event-triggered instants 

with .ˆˆ
1 ss tt The event-triggered instant is determined by the 

designed event-triggered mechanism (6). We denote )ˆ( stx as 

the sampling state of the triggered instant ,ŝt then the next 

sampling instant is determined by  
2 2

1
ˆ ˆinf{ | ( ) ( ) }.s st t t e t x t                (7)  

For any ),,[ 1 kk ttt the state feedback controller can be de-

signed as follows: 

 
( )

ˆ( ) ( ),t su t K x t                            (8)  

where
iK is the control gain of the ith subsystem. Suppose that 

there is no Zeno behavior. 

For the convenience of discussion, let 
1 1 1 1 1 1

2 2 2 2 2 2

1 1

2 2
1 min 2 max
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, , ,

, ( ), ( ),

( ), ( ), ( ).
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 

  

  

  

 

Now, we have the following theorem. 

Theorem 1. Given a positive definite matrix R, and positive 

scalars 
1 2, ,c c T  with 1 2 ,c c  the system (4) is finite-time 

stable with respect to 1 2( , , , , ( ))c c T R t for any switching 

signal )(t  with average dwell time a  satisfying 

*

2

1 2 1 2 3 4 5

ln
,

ln( ) ln( ( ))
2

a a

T

c c T


 


     

 

      

(9) 

if there exist positive definite matrices , , , , ,i i i iP R S Z i M  

any matrices ,,,, 2121 iiii TTWW and positive scalars 

1 2 3 4 5 1 2, , , , , , , , 1,          ,i j M  such that  

11 12

22
0,

*

i i

i

i

  
   

 

                    

(10) 

, , , , , ,i j i j i j i jP P R R S S Z Z i j M        
      

(11)                

2

1 2 3 4 5 1 2( ) ,
2

Tc c e 
                 (12)  

where 
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Proof. Choose the following multiple Lyapunov-Krasovskii 

functionals: 

1 2 3( ) ( ) ( ) ( ),i i i iV t V t +V t +V t

                

(13) 
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Calculating the derivative of (13) along the trajectory of (4), 

we have  
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For any matrices iiii TTWW 2121 ,,, with appropriate dimensions, 

one can get 

1 2

( )

2[ ( ) ( ( )) ]

[ ( ) ( ( )) ( ) ] 0,

T T

i i

t

t t

x t W x t t W

x t x t t x s ds







 

      
          

(15) 

1 2

( )

2[ ( ) ( ( )) ]

[ ( ( )) ( ) ( ) ] 0.

T T

i i

t t

t

x t T x t t T

x t t x t x s ds




 

     






 
     

 
(16) 

In addition, note that 
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It then follows from Jensen’s inequality and (14)-(18) that 
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( )

0

( ) [ ( ), ( ), ( ( )), ( ), ( ( )),

( ( ( ))), ( ) , ( ) ,

( ) ] ,

T T T T T

i

t t
T T T

i
t t t

t
T T

t

t x t x t x t t x t f x t

g x t t x s ds x s ds

x s dsd

 

 

  

  

 

 

 

  





 

1 2

1 2

11 12

22

[ ,0, ,0,0,0,0,0,0] ,

[ ,0, ,0,0,0,0,0,0] ,

,
*

T T T

i i i

T T T

i i i

i i

i

i

W W W

T T T

 








 
  
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 
 
 
 

i

i

i

P

P

  

11 13

1

11 33

2

1

22

2 2

( )

* 2 ( ) 0

,* * 0

* * * 0

* * * *

2
( , , , ).

 
 

 
  
 

 
  

    

T

i i i i i i

i i di i

i i i

i

i i i i

A t P T P

P P A t P

T

R

I

diag I R S Z

 

 



  
 

  

 

Using Schur complement, it follows from (10) that 

.0
11


 T

iii

T

iiii TZTWZW 
 

So, we have   

( ) ( ) 0.i iV t V t                            (20) 

Suppose that at the switching instant ,kt ( ) ,kt i   

( ) , , .kt j i j M    
 
It follows from (11) and (13) that,  

( ) ( ).k kV t V t   

When ),,[ 1 kk ttt multiplying (20) both sides by ,te 

 
one 

has 

( ) ( ).t t

i ie V t e V t   
                         

(21)
 

Integrating (21) from
 kt

 
to t, yields 

( )

( )

( ) ( )

( )

(0),

k

k

t t

k

t t

k

N T

V t e V t

e V t

e V



 



















                        (22) 

where N represents the switching number of )(t over ].,0[ T
 

Since ,/ aTN  it follows that 

).0()( VetV T

T

a 
 

From (13), one has 

min 1( ) ( ) ( ) ( ) ( ) ( ),T T

iV t P x t Rx t x t Rx t            (23) 

and 

 

 

 

0

0 0 0

(0)

max max
0

max
0

2

max
0

2 3

(0) (0) (0) ( ) ( )

( ) ( ) ( ) ( )

( ) (0) (0) ( ) sup ( ) ( )

( ) sup ( ) ( )

( ) sup ( ) ( )
2

(

T T

i i

T T

i i

T T

i i

T

i

T

i

V x Px x s R x s ds

x s S x s ds x s Z x s dsd

P x Rx S x Rx

R x Rx

Z x Rx



  

 

 

 



   

  


  

  



 

  

  

  

 

 

 





  



  

2

4 5 1) .
2

c


 

 

  (24) 

From (22), (23) and (24), we get 

/

1

2
/

2 3 4 5 1

1

(0)
( ) ( )

( )
2 .

a

a

T T
T

T T

e V
x t Rx t

e c



  



 

 






    



            (25) 

When ,1
 
from (12), we have 

1

2

2 3 4 5 1

2

1

( )
( ) ( )

( )
2 .

T

T

V t
x t Rx t

e c

c






   





  

 

        

   (26) 

While ,1 from (9), we have 

.
lna

T 

 
                                  (27) 

Therefore, it can be obtained that 
2

2 3 4 5 1

1

1 2

22

2 3 4 5 1

( )
2( ) ( )

.

( )
2

T T

T

c

x t Rx t e

c
e c

c






   






   



  



 

  

   (28) 

Based on Definition 2, the system (4) is finite-time stable with 

respect to 1 2( , , , , ( )).c c T R t This completes the proof.  

Remark 1. The lower bound of the average dwell time can be 

estimated by the condition (9) in Theorem 1. 

When ,0)()( )()(  tAtA tdt  the switched delay sys-

tem (4) can be written as follows: 

( ) ( ) ( )

( )

( ) ( ) ( ( )) ( ( ))

( ( ( ))),

( ) ( ), [ ,0].

   


 


  

t d t t

t

x t A x t A x t t f x t

g x t t

x t t t

  







 

     (29) 

Corollary 1. Given a positive definite matrix R, and positive 

scalars 
1 2, ,c c T  with 1 2 ,c c  the system (29) is finite-time 

stable with respect to 1 2( , , , , ( ))c c T R t for any switching 

signal )(t  with average dwell time a  satisfying (9), if there 

exist positive definite matrices , , , , ,i i i iP R S Z i M  any ma-

trices ,,,, 2121 iiii TTWW and positive scalars 1 2 3 4, , , , ,      

5 1 2, , , 1,     such that (11), (12) and the following ine-

quality hold for any , ,i j M  

11 12

22

ˆ ˆ
ˆ 0,

ˆ*

i i

i

i

  
   

  

                    

(30) 

where 
11 13

1

11 33

2

1

* 2 0

ˆ ,* * 0

* * * 0

* * * *

 
 

 
  
 

 
  

T

i i i i i i

i i di i

i i i

i
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T

R
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 

 



 

IAENG International Journal of Applied Mathematics, 51:3, IJAM_51_3_34

Volume 51, Issue 3: September 2021

 
______________________________________________________________________________________ 



 

1 1

12

2 2

0 0 0

0 0 0 0 0

ˆ ,0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

 
 
 
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 
 
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P
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2 2

11

1 1 1
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1 2 1

33

2 2 2 2 2

2 1 1ˆ ( , , , , , ),

,

,

ˆ(1 ) .

      

       

   

       

i i i i i i

T T T

i i i i i i i i i i i i

T

i i di i i i

T T T

i i i i i i i i

diag I R S Z Z Z

P A A P R S W W U U P

P A W W T

S W W T T V V

  
 

   

  



  

 

Because Theorem 1 contains uncertainties, it is incon-

venient to apply. Next, an improved result of Theorem 1 is 

given. 

Theorem 2. Given a positive definite matrix R, and positive 

scalars 
1 2, ,c c T  with 1 2 ,c c  the system (4) is finite-time 

stable with respect to 1 2( , , , , ( ))c c T R t for any switching 

signal )(t  with average dwell time a  satisfying (9),  if there 

exist positive definite matrices , , , ,i i i iP R S Z any matrices 

,,,, 2121 iiii TTWW and positive scalars 1 2 3 4 5, , , , , ,       

1 2 1 2, , , , 1,       such that (11), (12) and the following 

inequality hold for any , ,i j M
 

11 12

22
0,

*

i i

i

i

  
   

 
                      (31) 

where 
11 13

1

33

11 2

1

2

1 1 1

12 2 2 2

* 2 0

* * 0 0
,

* * * 0 0

* * * * 0

* * * * *

0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0
,

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

T

i i i i i i i

i i di i i

i i

i

i

T

i i i i i

i i

T

i i i

i

A P T P P

P P A P P

T

R

I

I

W T E PH

PH

W T E

 










 
 

 
 

  
 

 
 

  

 
 
 
 

  
 
 
 
  
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2

1

1 2 1 2

11

1 1 1

13

1 2 1

33

2 2 2 2 2

2 1 1
( , , , , ,

( ) , , ),

,

,

ˆ(1 ) .

i i i i i i

T T T

i i i i i i i i i i i i

T

i i di i i i

T T T

i i i i i i i i

R S Z Z Z

I I I

P A A P R S W W U U P

P A W W T

S W W T T V V



     

   

       

   

       

  


   

   

  



  

 

Proof.  From (2), the condition 0 i in (10) can be rewritten 

as  

1 1

2 2

ˆ ( ) ( )

( ) ( ) 0,

T T T

i i i i i i i i

T T T

i i i i i i

F t F t

F t F t

     

   

  

                 

(32) 

where 

1

2

[ ,0,0,0,0,0,0,0,0,0,0] ,

[0, ,0,0,0,0,0,0,0,0,0] ,

T T T T

i i i

T T T T

i i i

H P

H P








 

1 2[ ,0, ,0,0,0,0,0,0,0,0].i i iE E

 
Using Lemma 1, the inequality (32) holds if 

1 1

1 1 1 2 2 2 1 2
ˆ ( ) 0.T T T

i i i i i i i

               
  

(33) 

Furthermore, by using Schur complement, (33) holds if 
1 1

1 1 1 2 2 2

1

1 2

ˆ
0.

* ( )

T T T

i i i i i i

 



  
 

  

       

 
   

 (34) 

Then, by Schur complement and (31), we can obtain (34). 

Therefore, according to Theorem 1, the system (4) is fi-

nite-time stable with respect to 1 2( , , , , ( )).c c T R t  

Under the controller (8), the closed-loop system is given 

by: 

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( ( ) ) ( ) ( ( ))

( ) ( ( )) ( ( ( )))

( ).

t t t t

d t t

t t

x t A t B K x t f x t

A t x t t g x t t

B K e t

  

   



   

 

 

 

         

(35) 

Definition 3. Given positive constants 
1 2, ,c c T with

1 2 ,c c a 

positive definite matrix R and a switching signal ( ).t  If the 

following condition is satisfied 

   

   

1
0

2

{ ( ) ( ) }

[0 ],

T T

s
T

sup x s Rx s ,x s Rx s c

x t Rx t c , t ,T
  



   
  

then system (1) under the event-triggered controller (8) is said 

to be finite-time stabilizable with respect 

to 1 2( , , , , ( )).c c T R t
 
 

Theorem 3. Given a positive definite matrix R, and positive 

scalars
1 2, ,c c T with

1 2 ,c c  the system (1) is finite-time 

stabilizable with respect to 1 2( , , , , ( ))c c T R t for any switch-

ing signal )(t with average dwell time a  satisfying (9),
 
if 

there exist positive definite matrices , , , ,i i i iP R S Z any ma-

trices ,,,,, 2121 iiiii TTWWX and positive scalars 1 2 3 4, , , , ,      

5 1 2 1 2, , , , , 1,      such that (11), (12) and the following 

inequality hold for any , ,i j M
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*

i i

i

i

 




 
  
 
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where 
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
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 
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     
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2
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  
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  

  

  
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and all other sub-blocks in ,i i   and i  are 0. Furthermore, 

the controller gain is given by .T T

i i iK P X  

Proof. Consider the multiple Lyapunov-Krasovskii func-

tional (13). Calculating the derivative of (13) along the tra-

jectory of (35), we have  
1 1( ) ( ) ( )( ) ( )

( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( ),
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  
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


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According to Schur complement, we get 0i  if and only if 

1
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We have that 0,i  if 
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According to Schur complement, we can get that 0,i  if  
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According to Schur complement, (37) holds, if  
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and the other sub-blocks in ,i i  are the same as those in 

,i i  . Let .T

i i iX K P
 
From T

iii

T

i BPPB
~

 and (36),
 
one has

 
ˆ 0.i 

 
Therefore, it follows that  

( ) ( ) 0.i iV t V t   

The other proofs are similar to that of Theorem 1, which are 

omitted here. 

Remark 2. In [8], the finite-time control was considered, but 

the authors only studied the linear switched systems. In this 

paper, we investigate finite-time control for uncertain non-

linear switched systems. Compared with [8], the results pre-

sented in this paper have a wider range of applications. 

Remark 3. In [12], the robust control for a class of nonlinear 

switched systems was investigated, but the finite-time stabi-

lization problem was not concerned. In this paper, we con-

sider the finite-time stabilization for nonlinear uncertain 

switched time-delay systems and give new criteria of fi-

nite-time stabilization. 

Remark 4. In [6], the finite-time stabilization problem was 

investigated, but the event-triggered control was not consid-

ered. Compared with the traditional time-triggered control, 

event-triggered control can effectively improve the utilization 

rate of system resources by reducing the sampling update and 

network communication frequency of controller. In this paper, 

we solved the event-triggered finite-time stabilization prob-

lem for nonlinear uncertain switched systems with 

time-varying delay. 

IV. NUMERICAL EXAMPLE 

Consider the nonlinear uncertain switched systems (1) with 

the following parameters: 
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1 2

1 2
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0.02 0.13 0.02 0.04

0.05 0 0.04 0
, ,

0 0.07 0 0.03

0.03 0.02 0.04 0.02
, ,

0.02 0.08 0.03 0.05
d d

A A

B B

A A

    
    

    

   
    
   

   
    

     

 

1 2

1 2

0.02 0.03 0.13 0
, ,

0 0.08 0.03 0.04

0.01 0 0.02 0
, ,

0 0.01 0 0.05

E E

H H

   
    
   

    
    

    

 

1

1

2

1

2

2

0.05sin( ( ( )))
( ( ( ))) ,

0.05sin( ( ( )))

0.07sin( ( ( )))
( ( ( ))) ,

0.07sin( ( ( )))

x t t
g x t t

x t t

x t t
g x t t

x t t

 
   

 

 
   

 











 

1

1

2

1

2

2

0.04sin( ( ))
( ( )) ,

0.04sin( ( ))

0.06sin( ( ))
( ( )) ,

0.06sin( ( ))

( ) 0.1sin .

 
  
 

 
  
 



x t
f x t

x t

x t
f x t

x t

t t

 

Take 

1 20.001, 4600, 20, , 0.5,

ˆ0.5, 0.3, 0.1, 1.001.

c c T R I 

   

    

   
 

It is very easy to get 

1 2

1 2

0.07 0 0.08 0
, ,

0 0.07 0 0.08

0.09 0 0.08 0
, ,

0 0.09 0 0.08

U U

V V

   
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   
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    
   

 

Using Matlab LMI control Toolbox to solve inequalities 

(11)，(12) and (36), we obtain  

1

2

6.5454 0.0375
,

 0.1037 5.1627

8.1486 0.1770
,

0.0071 11.1121

  
  

 

 
  

  

K

K

 

and
* 1.9803.a a    According to Theorem 3, the switched 

system (1) is finite-time stabilizable with respect 

to ).,,,,( 21 RTcc  In this paper, we choose the average dwell 

time 2.a 
 
Fig. 1 shows the switching signal. The state 

response of the switched system is shown in Fig. 2. Fig. 3 

depicts the event-triggered instants 

 

 
Fig. 1. The switching signal ( ).t

 

 

 

 
Fig. 2. The state trajectory of the switched system. 

 

 
 

Fig. 3. Event-triggered instants: logical value is true  

when an event is triggering. 

V. CONCLUSION 

In this paper, we have investigated the problem of finite time 
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stabilization of uncertain nonlinear switched system under the 

event-triggered control. An event-triggered sampling mech-

anism for nonlinear switched system with time-varying delay 

and uncertainties has been proposed, and an event-triggered 

controller has been designed based on the system state. The 

sufficient conditions of the finite-time stabilization for un-

certain nonlinear switched system have been developed. 

Finally, a numerical example has been presented to demon-

strate the effectiveness of the main results. 
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