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Abstract—In this paper, we introduce an iterative scheme
{xn} for finding a common element of the set of fixed points
of quasi-nonexpansive mapping and the solution set of general
system of variational inequality problems. We prove strong
convergence theorem without condition Tω = (1− ω)I + ωT,
and demiclosed condition, where T is a quasi-nonexpansive
mapping on Hilbert space. Strong convergence theorems are
established in the framework of Hilbert spaces.

Index Terms—system of variational inequalities, quasi-
nonexpansive mapping, nonspreading mapping, fixed point.
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I. Introduction

THROUGHOUT this paper, let H be a real Hilbert
space with the inner product ⟨·, ·⟩ and the norm

∥·∥. Let C be a nonempty closed convex subset of H.
Then, mapping T : C → C is called contraction if there
exists α ∈ (0, 1) such that

∥Tx− Ty∥ ≤ α ∥x− y∥ , ∀x, y ∈ C,

and T is called nonexpansive if the last inequality holds
for α = 1. The set of fixed points of a mapping T : C → C
is denoted by F (T ) , that is F (T ) = {x ∈ C : Tx = x} .
Recall the mapping T : C → C is said to be quasi-
nonexpansive if F (T ) ̸= ∅ and

∥Tx− p∥ ≤ ∥x− p∥,

for all x ∈ C and p ∈ F (T ). Fixed point problems have
been investigated in the following literature; see [1], [2]
and [3].
A mapping A : C → H is called α-inverse-strongly
monotone if there exists a positive real number α such
that

⟨Ax−Ay, x− y⟩ ≥ α ∥Ax−Ay∥2 , ∀x, y ∈ C.

The variational inequality problem for a monotone map-
ping B is the problem of finding a point u ∈ C satisfying

⟨Bu, v − u⟩ ≥ 0, ∀v ∈ C. (1)
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We denote the solution set of (1) by V I(C,B). If B is
a continuous monotone mapping then the solution set
V I(C,B) is always closed and convex.

The variational inequalities theory has shown itself
to be an important and fascinating aspect of applied
mathematics with a wide scope of uses in pure and
applied sciences, etc.

F. Ma et al. [4] researched, created, and devel-
oped a new prediction-correction method for monotone
variational inequalities with separable structures. Each
iteration of the algorithm also permits the involved
subvariational inequalities to be solved simultaneously.

A. Barbagallo and P. Mauro [5] deals with a dynamic
oligopolistic market equilibrium situations true-to-life
case in which capacity constraints and production ex-
cesses are permitted, moreover, the production function
relies not only on the time but also on the equilibrium
distribution. The authors demonstrate the equivalence
between this equilibrium definition and a suitable evo-
lutionary quasi-variational inequality. And they pursue
the analysis of existence, regularity, and sensitivity of
solutions.

In 1976, G.M. Korpelevich [6] introduced the extra-
gradient method for solving the variational inequality
problem in the Euclidean space Rn, as follows:

x0 = x ∈ C,

yn = PC (xn − λAxn) ,

xn+1 = PC (xn − λAyn) , ∀n ≥ 0,

(2)

where A is a monotone and κ- Lipschitz continuous
mapping of C into Rn and λ ∈

(
0, 1

κ

)
. If V I(C,A)

is nonempty, then the sequence {xn} generated by (2)
converges weakly to an element in V I(C,A).

Later, motivated by G.M. Korpelevich [6], N. Nadezhk-
ina and W. Takahashi [7] and L.C. Zeng and J.C. Yao [8]
proposed some iterative schemes for finding the common
elements in F (T ) ∩ V I(C,A). After that, Y. Yao and
J.C. Yao [9] proposed a new iterative scheme for finding
an element in F (T ) ∩ V I(C,A) under some suitable
conditions and shown the strong convergence theorem
in a real Hilbert space.

The general system of variational inequalities has been
widely studied and developed in the following literature
(see [10]-[14]).

Recently in 2017, K. Siriyan and A. Kangtanyakarn
[15] introduced a new problem about system of varia-
tional inequalities in a real Hilbert space, which involves
finding (x∗, y∗, z∗) ∈ C × C × C such that
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
⟨x∗ − (I − λ1D1)(ax

∗ + (1− a)y∗), x− x∗⟩ ≥ 0, ∀x ∈ C,

⟨y∗ − (I − λ2D2)(ax
∗ + (1− a)z∗), x− y∗⟩ ≥ 0, ∀x ∈ C,

⟨z∗ − (I − λ3D3)x
∗, x− z∗⟩ ≥ 0, ∀x ∈ C,

(3)
where D1, D2, D3 : C → H be three mappings,

λ1, λ2, λ3 > 0 and a ∈ [0, 1]. If putting a = 0 in (3),
we have

⟨x∗ − (I − λ1D1)y
∗, x− x∗⟩ ≥ 0, ∀x ∈ C,

⟨y∗ − (I − λ2D2)z
∗, x− y∗⟩ ≥ 0, ∀x ∈ C,

⟨z∗ − (I − λ3D3)x
∗, x− z∗⟩ ≥ 0, ∀x ∈ C.

(4)

If we put D3 = 0 and x∗ = z∗, then the problem (4)
reduces to the general system of variational inequality
problem introduced by L.C. Ceng et al. [10].

Many authors proved strong convergence theorem
involving a quasi-nonexpansive mapping T by assuming
the following conditions:

1) Tω = (1− ω)I + ωT, ω ∈ (0, 1
2 ),

2) T is demiclosed on H.
For example,M. Tian and X. Jin [16]-[17] and P.E.
Mainge [18].

In 2014, K. Cheawchan and A. Kangtunyakarn [19]
introduced the new method for finding a common ele-
ment of the set of fixed points of a quasi-nonexpansive
mapping and the set of solutions of a modified system
of variational inequalities without the conditions 1) and
2) in a framework of Hilbert space.

Inspired and motivated by K. Siriyan and A. Kang-
tanyakarn [15] and K. Cheawchan and A. Kangtunyakarn
[19], we introduce a new method for finding a common
element of the set of fixed point of system (3) in a real
Hilbert space without the conditions 1) and 2). Then,
we establish and prove the strong convergence theorem
under some proper conditions.

II. Preliminaries
In this section, we provide some useful lemmas and

remarks that will be needed to prove our main result.
Let H be a real Hilbert space with inner product ⟨., .⟩

and norm ∥.∥. We denote strong and weak convergence by
notations ”→” and ”⇀”, respectively. For every x ∈ H,
there exists a unique nearest point PCx in C such that

∥x− PCx∥ ≤ ∥x− y∥, ∀y ∈ C.

PC is called the metric projection of H onto C.
It is well known that metric projection PC has the

following properties:
1) PC is firmly nonexpansive, i.e.,

∥PCx− PCy∥2 ≤ ⟨PCx− PCy, x− y⟩, ∀x, y ∈ H.

2) For each x ∈ H,

z = PCx ⇔ ⟨x− z, z − y⟩ ≥ 0, ∀y ∈ C.

Lemma 1. [20]. Each Hilbert space H satisfies Opial’s
condition , i.e., for any sequence {xn} with xn ⇀ x, the
inequality

lim inf
n→∞

∥xn − x∥ < lim inf
n→∞

∥xn − y∥.

holds for every y ∈ H with x ̸= y.

Lemma 2. Let H be a real Hilbert space. Then the
following results are well known:
1) ∥x± y∥2 = ∥x∥2 ± 2 ⟨x, y⟩+ ∥y∥2,
2) ∥x+ y∥2 ≤ ∥x∥2 + 2 ⟨y, x+ y⟩, ∀x, y ∈ H.

Lemma 3. [21]. Let (E, ⟨., .⟩) be an inner product space.
Then, for all x, y, z ∈ E and α, β, γ ∈ [0, 1] with α+ β+
γ = 1, we have
∥αx+βy+γz∥2 = α ∥x∥2+β ∥y∥2+γ ∥z∥2−αβ ∥x− y∥2−
αγ ∥x− z∥2 − βγ ∥y − z∥2 .

Lemma 4. [22]. Let {sn} be a sequence of nonnegative
real numbers satisfying

sn+1 ≤ (1− αn)sn + δn, ∀n ≥ 1

where {αn} is a sequence in (0, 1) and {δn} is a sequence
such that :
1)

∑∞
n=1 αn = ∞,

2) lim supn→∞
δn
αn

≤ 0 or
∑∞

n=1 |δn| < ∞.
Then, limn→∞ sn = 0.

Lemma 5. [23]. Let C be a nonempty closed convex sub-
set of a real Hilbert space H and let D1, D2 : C → H be
d1, d2-inverse strongly monotone mappings, respectively,
which V I(C,D1) ∩ V I(C,D2) ̸= ∅. Define a mapping
G : C → C by

G(x) = PC(I − λ1D1)(ax+ (1− a)PC(I − λ2D2)x),

for every λ1 ∈ (0, 2d1), λ2 ∈ (0, 2d2) and a ∈ (0, 1). Then
F (G) = V I(C,D1) ∩ V I(C,D2).

Lemma 6. [24]. Let H be a real Hilbert space, let C be
a nonempty closed convex subset of H and let A be a
mapping of C into H. Let u ∈ C. Then for λ > 0,

u = PC(I − λA)u ⇔ u ∈ V I(C,A),

where PC is the metric projection of H onto C.

Lemma 7. [19]. Let C be a nonempty closed convex
subset of a real Hilbert space H and let T : C → C
be a quasi-nonexpansive mapping. Then V I(C, I −T ) =
F (T ).

Remark 1. from Lemma 6 and Lemma 7, we have F (T ) =
V I(C, I − T ) = F (PC(I − λ(I − T ))), ∀λ > 0.

Lemma 8. [15]. Let C be a nonempty closed
convex subset of a real Hilbert space H and let
D1, D2, D3 : C → H be three mappings. For every
λ1, λ2, λ3 > 0 and a ∈ [0, 1]. The following statements
are equivalent
1) (x∗, y∗, z∗) ∈ C × C × C is a solution of the problem
(3),
2) x∗ is a fixed point of the mapping G, i.e. x∗ ∈ F (G),
defined the mapping G : C → C by

G(x) = PC(I − λ1D1)(ax+ (1− a)PC(I − λ2D2)(ax+
(1− a)PC(I − λ3D3)x)), ∀x ∈ C,

where y∗ = PC(I − λ2D2)(ax
∗ + (1 − a)z∗) and z∗ =

PC(I − λ3D3)x
∗.
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III. Main Results
Theorem 1. Let C be a nonempty closed convex
subset of a real Hilbert space H and T : C → C is a
quasi-nonexpansive mapping. Let D1, D2, D3 : C → H
be d1, d2, d3-inverse-strongly monotone mappings and
a ∈ [0, 1]. For every λ1, λ2, λ3 > 0 defined the mapping
G : C → C by

G(x) = PC(I − λ1D1)(ax + (1 − a)PC(I − λ2D2)(ax +
(1− a)PC(I − λ3D3)x)), ∀x ∈ C.

Assume F = F (T ) ∩ F (G) ̸= ∅. Suppose that x1, u ∈ C
and let {xn} be a sequence generated by

xn+1 = PC(I − λn(I − T ))(αnu+ (1− αn)Gxn),

where λ1 ∈ (0, 2d1), λ2 ∈ (0, 2d2), λ3 ∈ (0, 2d3).
Suppose the following condition holds:
1) limn→∞ αn = 0 and

∑∞
n=1 αn = ∞,

2)
∑∞

n=1 λn < ∞ and 0 < λn < 1,
3)

∑∞
n=1 |αn+1 − αn| < ∞.

Then {xn} converges strongly to z0 = PFu.

Proof: We will present our proof in five separate
steps.

Step 1. We show that {xn} is bounded. Let
x, y ∈ C. Since D1 is d1-inverse strongly monotone and
λ1 ∈ (0, 2d1), we have

∥(I − λ1D1)x− (I − λ1D1)y∥2

= ∥x− y∥2 − 2λ1⟨x− y,D1x−D1y⟩
+λ2

1∥D1x−D1y∥2

≤ ∥x− y∥2 − 2d1λ1∥D1x−D1y∥2 + λ2
1∥D1x−D1y∥2

≤ ∥x− y∥2.

Therefore (I − λ1D1), (I − λ2D2) and (I − λ3D3)
are a nonexpansive mapping. Hence PC(I − λ1D1),
PC(I − λ2D2), and PC(I − λ3D3) are nonexpansive
mappings. From definition of the mapping G, we have
G is a nonexpansive mapping. Let x∗ ∈ F and remark
1, we have

x∗ = F (PC(I − λn(I − T ))) = F (T ).

By defining G, we have

x∗ = G(x∗) = PC(I − λ1D1)(ax
∗ + (1 − a)PC(I −

λ2D2)(ax
∗ + (1− a)PC(I − λ3D3)x

∗)).

Let Mn = αnu + (1 − αn)Gxn. Since T is a quasi-
nonexpansive mapping, we have

∥TMn − Tx∗∥2

= ∥TMn − x∗∥2

= ∥(Mn − x∗)− (I − T )Mn∥2

= ∥Mn − x∗∥2 − 2⟨Mn − x∗, (I − T )Mn⟩
+∥(I − T )Mn∥2

≤ ∥Mn − x∗∥2,

then

∥(I − T )Mn∥2 ≤ 2⟨Mn − x∗, (I − T )Mn⟩. (5)

We will show that {xn} is bounded by induction that is

∥xn − x∗∥ ≤ M, (6)

when M = max{∥u− x∗∥, ∥x1 − x∗∥}.
From definition of xn and (5), we have

∥xn+1 − x∗∥2

= ∥PC(I − λn(I − T ))Mn − x∗∥2

≤ ∥(I − λn(I − T ))Mn − PCx
∗∥2

= ∥Mn − x∗ − λn(I − T ))Mn∥2

= ∥Mn − x∗∥2 − 2λn⟨Mn − x∗, (I − T )Mn⟩
+λ2

n∥(I − T )Mn∥2.
≤ ∥Mn − x∗∥2 − λn∥(I − T )Mn∥2

+λ2
n∥(I − T )Mn∥2

≤ ∥Mn − x∗∥2

∥xn+1 − x∗∥
≤ ∥Mn − x∗∥
= ∥αn(u− x∗) + (1− αn)(Gxn − x∗)∥
≤ αn∥u− x∗∥+ (1− αn)∥Gxn − x∗∥
≤ αn∥u− x∗∥+ (1− αn)∥xn − x∗∥
≤ M.

From induction, we have (6). This implies that the
sequence {xn} is bounded.

Step 2. We show that limn→∞ ∥xn+1 − xn∥ = 0.

∥xn+1 − xn∥
= ∥PC(I − λn(I − T ))Mn

−PC(I − λn−1(I − T ))Mn−1∥
≤ ∥(I − λn(I − T ))Mn − (I − λn−1(I − T ))Mn−1∥
= ∥(Mn −Mn−1)− λn(I − T )Mn

+λn−1(I − T )Mn−1∥
= ∥(Mn −Mn−1)− λn((I − T )Mn

−(I − T )Mn−1)− (λn − λn−1)(I − T ))Mn−1∥
≤ ∥(Mn −Mn−1)∥+ λn∥(I − T )Mn

−(I − T )Mn−1∥+ |λn − λn−1|∥(I − T )Mn−1∥
= ∥(αnu− αn−1)u+ (1− αn)(Gxn −Gxn−1)

−(αn − αn−1)Gxn−1)∥+ λn∥(I − T )Mn

−(I − T )Mn−1∥+ |λn − λn−1|∥(I − T )Mn−1∥
≤ |αn − αn−1|∥u∥+ (1− αn)∥Gxn −Gxn−1∥

+|αn − αn−1|∥Gxn−1∥+ λn∥(I − T )Mn

−(I − T )Mn−1∥+ |λn − λn−1|∥(I − T )Mn−1∥
≤ |αn − αn−1|∥u∥+ (1− αn)∥xn − xn−1∥

+|αn − αn−1|∥Gxn−1∥+ λn∥(I − T )Mn

−(I − T )Mn−1∥+ |λn − λn−1|∥(I − T )Mn−1∥

From conditions 1), 2), 3) and Lemma 4, we have

lim
n→∞

∥xn+1 − xn∥ = 0. (7)

Step 3 We show that limn→∞ ∥PC(I − λn(I − T ))Mn −
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Mn∥ = 0. From definition of xn, we have
∥xn+1 − x∗∥2

= ∥PC(I − λn(I − T ))Mn − x∗∥2

= ∥PC(I − λn(I − T ))Mn − PC(I − λn(I − T ))x∗∥2

≤ ⟨xn+1 − x∗, (I − λn(I − T ))Mn − (I − λn(I − T ))x∗⟩

=
1

2
(∥xn+1 − x∗∥2 + ∥(I − λn(I − T ))Mn − x∗∥2

−∥xn+1 − x∗ − ((I − λn(I − T ))Mn

−(I − λn(I − T ))x∗)∥2)

=
1

2
(∥xn+1 − x∗∥2 + ∥Mn − x∗∥2

−2λn⟨Mn − x∗, (I − T )Mn⟩+ λ2
n∥(I − T )Mn∥2

−∥xn+1 − x∗ − ((I − λn(I − T ))Mn

−(I − λn(I − T ))x∗)∥2)

≤ 1

2
(∥xn+1 − x∗∥2 + ∥Mn − x∗∥2 − λn∥(I − T )Mn∥2

+λ2
n∥(I − T )Mn∥2 − ∥xn+1 − x∗

−((I − λn(I − T ))Mn − (I − λn(I − T ))x∗)∥2)

≤ 1

2
(∥xn+1 − x∗∥2 + ∥Mn − x∗∥2

−∥xn+1 − x∗ − ((I − λn(I − T ))Mn

−(I − λn(I − T ))x∗)∥2)

=
1

2
(∥xn+1 − x∗∥2 + ∥Mn − x∗∥2

−∥xn+1 −Mn − λn((I − T )x∗ − (I − T )Mn)∥2)

=
1

2
(∥xn+1 − x∗∥2 + ∥Mn − x∗∥2 − ∥xn+1 −Mn∥2

+2λn⟨xn+1 −Mn, (I − T )x∗ − (I − T )Mn⟩
−λ2

n∥(I − T )x∗ − (I − T )Mn∥2),

implies that
∥xn+1 − x∗∥2

= ∥Mn − x∗∥2 − ∥xn+1 −Mn∥2

+2λn⟨xn+1 −Mn, (I − T )x∗ − (I − T )Mn⟩
−λ2

n∥(I − T )x∗ − (I − T )Mn∥2.

From definition of Mn, then we have
∥xn+1 −Mn∥2

= ∥Mn − x∗∥2 − ∥xn+1 − x∗∥2

+2λn⟨xn+1 −Mn, (I − T )x∗ − (I − T )Mn⟩
−λ2

n∥(I − T )x∗ − (I − T )Mn∥2

≤ αn∥u− x∗∥2 + (1− αn)∥xn − x∗∥2 − ∥xn+1 − x∗∥2

+2λn⟨xn+1 −Mn, (I − T )x∗ − (I − T )Mn⟩
−λ2

n∥(I − T )x∗ − (I − T )Mn∥2

≤ (∥xn − xn+1∥)(∥xn − x∗∥+ ∥xn+1 − x∗∥)
+αn∥(u− x∗)∥2

+2λn⟨xn+1 −Mn, (I − T )x∗ − (I − T )Mn⟩
−λ2

n∥(I − T )x∗ − (I − T )Mn∥2.

From condition 1), 2) and (7), we have limn→∞ ∥xn+1 −
Mn∥ = 0. This implies that

lim
n→∞

∥PC(I − λn(I − T ))Mn −Mn∥ = 0. (8)

Since
∥Mn − xn∥ ≤ ∥Mn − xn+1∥+ ∥xn+1 − xn∥,

(7) and (8), we have

lim
n→∞

∥Mn − xn∥ = 0. (9)

From (9) and condition 1), we have

Mn − xn = αn(u− xn) + (1− αn)(Gxn − xn)

lim
n→∞

∥Gxn − xn∥ = 0. (10)

Step 4 We show that lim supn→∞⟨u− z0,Mn − z0⟩ ≤ 0,
where z0 = PFu. To show this inequality, take a
subsequence Mnj

of Mn such that

lim sup
n→∞

⟨u− z0,Mn − z0⟩ = lim sup
j→∞

⟨u− z0,Mnj
− z0⟩

Since {Mn} is bounded sequence, without loss of gener-
ality, we may assume that Mnj

→ ω as j → ∞, where
ω ∈ C. First, we show that ω ∈ F (T ). From remark 7,
we have F (T ) = F (PC(I−λnj (I−T ))). We also assume
that ω /∈ F (T ), therefore ω ̸= PC(I − λnj (I − T ))ω. By
Mnj

→ ω as j → ∞,(7) and Opial’s property, we have

lim inf
j→∞

∥Mnj
− ω∥

< lim inf
j→∞

∥Mnj
− PC(I − λnj

(I − T ))ω∥

≤ lim inf
j→∞

(∥Mnj
− PC(I − λnj

(I − T ))Mnj
∥+

∥PC(I − λnj
(I − T ))Mnj

− PC(I − λnj
(I − T ))ω∥)

≤ lim inf
j→∞

(∥Mnj
− PC(I − λnj

(I − T ))Mnj
∥+

∥Mnj
− ω∥+ λnj

∥(I − T ))Mnj
− (I − T ))ω∥)

= lim inf
j→∞

∥Mnj
− ω∥.

This is a contradiction. We have

ω ∈ F (T ). (11)

Assume that ω /∈ F (G). By Opial’s property and (10),
we have

lim inf
j→∞

∥xnj − ω∥

< lim inf
j→∞

∥xnj
−G(ω)∥

≤ lim inf
j→∞

(∥xnj
−G(xnj

)∥+ ∥G(xnj
)−G(ω)∥)

≤ lim inf
j→∞

(∥xnj
−G(xnj

)∥+ ∥xnj
− ω∥)

≤ lim inf
j→∞

∥xnj
− ω∥.

This is a contradiction. We have

ω ∈ F (G). (12)

From (11) and (12), we have ω ∈ F. Since Mnj
⇀ ω as

j → ∞, we have

lim sup
n→∞

⟨u− z0,Mn − z0⟩

= lim
j→∞

⟨u− z0,Mnj − z0⟩

= ⟨u− z0, ω − z0⟩ ≤ 0, (13)

where z0 = PFu.

Step 5 Finally, we show that the sequence {xn}
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converges strongly to z0 = PFu. From the definition of
xn, we have

∥xn+1 − z0∥2

≤ ∥Mn − z0∥2

= ∥αn(u− z0) + (1− αn)(Gxn − z0)∥2

≤ (1− αn)∥Gxn − z0∥2 + 2αn⟨u− z0,Mn − z0⟩
≤ (1− αn)∥xn − z0∥2 + 2αn⟨u− z0,Mn − z0⟩.

From (13), condition 1) and Lemma 4, we can conclude
that the sequence {xn} converges strongly to z0 = PFu.
This completes the proof.

IV. Application
In this section, applying our main result Theorem 1,

we prove strong convergence theorems involving the set
of fixed point of a nonspreading mapping. Recall the
definition of such mapping. A mapping T : C → C is
called nonspreading if

2∥Tx− Ty∥2 ≤ ∥Tx− y∥2 + ∥Ty − x∥2, ∀x, y ∈ C.

Clearly, if F (T ) ̸= ∅ then a nonspreading is quasi-
nonexpansive mapping. The above mapping is defined
by F. Kohsaka and W. Takahashi [25].

The following lemma is needed to prove in application.

Lemma 9. [25]. Let H be a Hilbert space, let C be a
nonempty closed convex subset of H and let S be a
nonspreading mapping of C into itself. Then F (S) is
closed and convex.

Let {Ti}Ni=1 be a finite family of (nonlinear) map-
pings of C into itself. For each j = 1, 2, ..., N, let
αj = (αj

1, α
j
2, α

j
3) ∈ I × I × I where I ∈ [0, 1] and

αj
1 + αj

2 + αj
3 = 1. Define the mapping S : C → C

as follows

U0 = I,

U1 = α1
1T1U0 + α1

2U0 + α1
3I,

U2 = α2
1T2U1 + α2

2U1 + α2
3I,

U3 = α3
1T3U2 + α3

2U3 + α3
3I,

.

.

.

UN−1 = αN−1
1 TN−1UN−2 + αN−1

2 UN−2 + αN−1
3 I,

S = UN = αN
1 TNUN−1 + αN

2 UN−1 + αN
3 I.

This mapping is called S-mapping generated by
T1, T2, ..., TN and α1, α2, . . . , αN . If αi

3 = 0 for all
i = 1, 2, . . . , N , then S-mapping reduced to K-mapping.
S-mapping and K-mapping introduced by A. Kangtun-
yakarn and S. Suantai [26].

A. Kangtunyakarn proved the following result using
S-mapping

Lemma 10. [27] Let H be a Hilbert space, let C be a
nonempty closed convex subset of H and let {Ti}Ni=1 be a
finite family of nonspreading mappings of C into C with∩N

i=1 F (Ti) ̸= ∅, and let αj = (αj
1, α

j
2, α

j
3) ∈ I × I × I

where I ∈ [0, 1], αj
1 + αj

2 + αj
3 = 1, αj

1, α
j
3 ∈ (0, 1) for

all j = 1, 2, . . . , N − 1 and αN
1 ∈ [0, 1), αN

2 ∈ [0, 1),
αN
3 ∈ [0, 1) for all j = 1, 2, . . . , N.

Let S be the mapping generated by T1, T2, ..., TN and
α1, α2, . . . , αN . Then F (S) =

∩N
i=1 F (Ti) and S is a

quasi-nonexpansive mapping.

Lemma 11 is a spacial case of Lemma 10.

Lemma 11. [28] Let H be a Hilbert space, let C
be a nonempty closed convex subset of H and let
{Ti}Ni=1 be a finite family of nonspreading mappings of
C into C with

∩N
i=1 F (Ti) ̸= ∅, and let λ1, λ2, . . . , λN

be real numbers such that 0 < λi < 1 for every
i = 1, 2, . . . , N − 1 and 0 < λN ≤ 1. Let K be the K-
mapping generated by T1, T2, ..., TN and λ1, λ2, . . . , λN .
Then F (K) =

∩N
i=1 F (Ti) and K is a quasi-nonexpansive

mapping.

Remark 2. By using Lemma 10 and 11, we have the
following theorem.

Theorem 2. Let C be a nonempty closed convex subset
of a real Hilbert space H. Let {Ti}Ni=1 be a finite
family of nonspreading mappings of C into C with∩N

i=1 F (Ti) ̸= ∅, and let αj = (αj
1, α

j
2, α

j
3) ∈ I × I × I

where I ∈ [0, 1], αj
1 + αj

2 + αj
3 = 1, αj

1, α
j
3 ∈ (0, 1) for

all j = 1, 2, . . . , N − 1 and αN
1 ∈ [0, 1), αN

2 ∈ [0, 1),
αN
3 ∈ [0, 1) for all j = 1, 2, . . . , N. Let S be the mapping

generated by T1, T2, ..., TN and α1, α2, . . . , αN . Let
D1, D2, D3 : C → H be d1, d2, d3-inverse strongly
monotone mappings and a ∈ [0, 1]. For every
λ1, λ2, λ3 > 0 defined the mapping G : C → C
by

G(x) = PC(I − λ1D1)(ax + (1 − a)PC(I − λ2D2)(ax +
(1− a)PC(I − λ3D3)x)), ∀x ∈ C.

Assume F =
∩N

i=1 F (Ti)
∩

F (G) ̸= ∅. Suppose
that x1, u ∈ C and let {xn} be a sequence generated by

xn+1 = PC(I − λn(I − S))(αnu+ (1− αn)Gxn),

where λ1 ∈ (0, 2d1), λ2 ∈ (0, 2d2), λ3 ∈ (0, 2d3).
Suppose the following condition holds:
1) limn→∞ αn = 0 and

∑∞
n=1 αn = ∞,

2)
∑∞

n=1 λn < ∞ and 0 < λn < 1,
3)

∑∞
n=1 |αn+1 − αn| < ∞.

Then {xn} converges strongly to z0 = PFu.

Proof: By using Theorem 1 and Lemma 10, we
obtain the conclusion.

Theorem 3. Let C be a nonempty closed convex
subset of a real Hilbert space H and let {Ti}Ni=1

be a finite family of nonspreading mappings of C
into C with

∩N
i=1 F (Ti) ̸= ∅, and let λ1, λ2, . . . , λN

be real numbers such that 0 < λi < 1 for every
i = 1, 2, . . . , N − 1 and 0 < λN ≤ 1. Let K
be the K-mapping generated by T1, T2, ..., TN and
λ1, λ2, . . . , λN . Let D1, D2, D3 : C → H be d1, d2, d3-
inverse strongly monotone mappings and a ∈ [0, 1]. For
every λ1, λ2, λ3 > 0 defined the mapping G : C → C by

G(x) = PC(I − λ1D1)(ax + (1 − a)PC(I − λ2D2)(ax +
(1− a)PC(I − λ3D3)x)), ∀x ∈ C.
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Assume F = ∩N
i=1F (Ti) ∩ F (G) ̸= ∅. Suppose that

x1, u ∈ C and let {xn} be a sequence generated by

xn+1 = PC(I − λn(I −K))(αnu+ (1− αn)Gxn),

where λ1 ∈ (0, 2d1), λ2 ∈ (0, 2d2), λ3 ∈ (0, 2d3).
Suppose the following condition holds:
1) limn→∞ αn = 0 and

∑∞
n=1 αn = ∞,

2)
∑∞

n=1 λn < ∞ and 0 < λn < 1,
3)

∑∞
n=1 |αn+1 − αn| < ∞.

Then {xn} converges strongly to z0 = PFu.

Proof: By using Theorem 1 and Lemma 11, we
obtain the conclusion.
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