
 

  

Abstract— The Whale optimization algorithm (WOA) is 

adopted to solve the non-convex optimal power flow (OPF) 

problem in this paper. To balance the exploration and 

exploitation of standard WOA algorithm in solving the OPF 

problem, the multi-objective novel improved whale 

optimization algorithm (MONIWOA) is proposed. In the 

MONIWOA approach, the piecewise non-linear strategy and 

dual dynamic weights mode are applied to balance the global 

exploration and local development capabilities, the Lévy flight 

mechanism can increase the solutions’ diversity with its random 

step pattern, which plays a vital role in the global exploration. 

Moreover, a constrains-prior Pareto-dominant rule (CPDR) 

strategy is proposed to ensure the non-violation of state 

variables’ inequality constraints concurrently. To obtain 

better-distributed Pareto optimal solution sets (POS), a sorting 

method with crowding distance and rank strategy (CDRS) is 

adopted. What’s more, an effective fuzzy sorting method is 

presented to obtain the best compromise solution (BCs) in 

solving multi-objective optimal power flow (MOOPF) problems. 

Eight test cases are carried on the standard IEEE 30-bus, IEEE 

57-bus and IEEE 118-bus systems. The Pareto front sets (PFs) 

and BCs obtained by the MONIWOA are more superior to the 

ones of multi-objective Particle Swarm Optimization (MOPSO) 

and multi-objective Differential Evolution algorithm (MODE). 

Furthermore, the analyses of the obtained solutions using GD 

and SP show that the MONIWOA has significant advantages to 

gain more uniform distribution and better convergence. 

 
Index Terms— multi-objective novel improved whale 

optimization algorithm; optimal power flow; constrains-prior 

Pareto-dominant rule; crowding distance and rank strategy 
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I. INTRODUCTION 

he concept of OPF is proposed by Carpentier in 1962 and 

the study of OPF has attracted the attention of scholars in 

the field of power system for many decades. The aim of OPF 

program is to achieve optimal distribution of the real power 

or the reactive power by satisfying equality and inequality 

physical constraints [1-5]. The optimizing of single-objective 

such as fuel cost, emission, real power loss or transmission 

loss can’t meet the practical demands of users. Hence, the 

OPF problem has developed into a study of multi-objective 

optimal power flow (MOOPF) problem. 

In the MOOPF problems, the optimizing process must 

consider more than one conflicting objectives, and all the 

various should own no violations of constraints concurrently. 

The highly constrained, large-scale and nonlinear MOOPF 

problem is to obtain the Pareto optimal solution set (POS) 

and get a best compromise solution (BCs) ultimately [6,7]. 

Over the recent years, a great number of intelligent 

algorithms have been applied to tackle the MOOPF problems 

successfully. Some intelligent algorithms like Gaussian 

bare-bones imperialist competitive algorithm [8], 

self-adaptive particle swarm optimization and differential 

evolution algorithms [9], multi-objective modified pigeon 

algorithm [10], evolutionary algorithm [11], and the 

differential search algorithm [12], are shown excellent 

performance when solving multi-objective problems. 

Proposed in 2016, the whale optimization algorithm 

(WOA) is put forward by mimicking the hunting strategy of 

humpback whales [13]. The standard whale optimization 

algorithm owns competitive advantages in solving complex 

engineering problems and can get solutions of better 

accuracy when compared with many other meta-heuristic 

optimization algorithms. The WOA has been successfully 

adopted to solve the wind speed prediction problem [14], 

quadratic assignment problem [15], feature selection problem 

[16], data clustering problem [17], environment economic 

power dispatch problem [18], and multilevel thresholding 

image segmentation problem [19]. However, the basic whale 

optimization algorithm is easy to trap in local optima and 

premature convergence when dealing with MOOPF [20]. In 

order to overcome these weaknesses, this paper adopts the 

piecewise non-linear strategy, dual dynamic weights mode 

and Lévy flight mechanism to enhance the outperformance of 

the WOA algorithm. The piecewise non-linear strategy and 

dual dynamic weights mode are used to improve the 

exploration and exploitation, and the Lévy flight mechanism 

is used to improve the exploitation phase. In order to obtain 

high-quality POS sets and evenly-distributed Pareto fronts 

(PF), a sorting method with crowding-distance 
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rank-calculation strategy (CDRS) and a constrains-prior 

Pareto-dominant rule (CPDR) are proposed in this paper. To 

verify the superiority and feasibility of aforementioned 

improvement strategies, a large number of simulation cases 

are executed in the IEEE 30-bus, IEEE 57-bus and IEEE 

118-bus systems. In addition, the generational distance (GD) 

and spacing (SP) indicators are employed to calculate the 

stability and diversity. The simulation results and 

comprehensive analysis validate the better performance of 

the MONIWOA as compared to multi-objective Particle 

Swarm Optimization (MOPSO) and multi-objective 

Differential Evolution algorithm (MODE). 

The rest of this paper is arranged as follows: Section Ⅱ 

gives the mathematical model of MOOPF problems. Section 

III describes the basic WOA algorithm, the MONIWOA 

algorithm, the CPDR rule and the novel CDRS strategy. 

Section IV displays eight simulation results and comparisons 

with other algorithms. Eventually, Section V provides the 

summary of all the former contents.  

II. MATHEMATICAL MODEL 

Generally speaking, the aim of solving MOOPF problem is 

to optimize more than two objective and all the variables 

must satisfy several equality constraints and inequality 

constraints [21]. The mathematical model can be expressed 

as follows: 

 1min  ( , ) min(( ( , ), , ( , ), , ( , ))ob i MF x u f x u f x u f x u=     (1) 

Subject to: 

 ( , ) 0,   h 1, 2, , khE x u = =   (2) 

 ( , ) 0,    1, 2, , gjI x u j =   (3)  

where fi(x,u) represents the ith objective function and M(M≥2) 

is the number of optimal objectives. The x indicates the state 

variables and u indicates the control variables. Eh(x,u) 

indicate inequality constraints (ICs), Ij(x,u) indicate equality 

constraints (ECs).  

A. Objective functions  

The aim of MOOPF research is to realize the best 

operating state of the power system by adjusting discrete and 

continuous control variables. The active power loss Pl, the 

basic fuel cost Fc, the emission Em, the fuel cost with 

value-point loadings F_v and the voltage stability index L_in, 

are involved in this paper. 

1) minimization of Pl 

 2 2

1

min = min  ( 2 cos ) 
EN

l k i j i j ij

k

P g V V V V MW

=

+ −   (4) 

where NE is the total number of branches. gk(i,j) is the 

conductance of the kth branch between node i and node j. Vi 

and Vj are the voltage magnitude of node i and node j. δij 

represents the voltage angle between node i and node j.  

2) minimization of Fc 

 2

1

min min ( ) $ /
GN

c i i Gi i Gi

i

F a b P c P h

=

 = + +   (5) 

where ai, bi, ci are the fuel cost coefficients of the ith 

generator. PGi is the active power of the ith generator. NG 

indicates the amount of generators. 

3) minimization of Em 

 

2

1

min min [

exp( )] /

GN

m i Gi i Gi i

i

i i Gi

E P P

P ton h

  

 

=

 = + +

+


  (6) 

where αi, βi, γi, ηi and λi are the emission coefficients of the ith 

generator. 

4) minimization of F_v 

 

2

1

min

min min (

sin( ( )) )  $ /

GN

v i i Gi i Gi

i

i i Gi Gi

F a b P c P

d e P P h

=

 = + +

+   −


  (7) 

where di and ei are the fuel cost coefficients of the ith 

generator. 

5) minimization of L_in 

 min( - )= min[max( )]jL in L   (8) 

 
1

1 , 1, 2, N
PVN

i
j ji PQ

ji

V
L F j

V=

= − =   (9) 

where NPV and NPQ are the number of PV nodes and the 

number of PQ nodes. Fji can be estimated from the Y bus 

matrix. Vi and Vj are the voltages of the ith PV node and the 

voltages of the jth PQ node. 

B. Constraint strategies of MOOPF 

The MOOPF problem is a highly constrained non-linear 

problem where all the variables must own no violations of 

ECs and ICs [22]. The best compromise solutions should 

meet all the ECs and ICs. 

1) ECs 

The ECs illustrate the relation of active and reactive power 

balance in the standard power system, which can be 

expressed as follows: 

 ( cos sin ),

i

Gi Di i j ij ij ij ij

j N

P P V V G B i N 



− = +    (10) 

 
( sin cos ),

                                                     

i

Gi Di i j ij ij ij ij

j N

PQ

Q Q V V G B

i N

 



− = −




  (11) 

where Ni is the number of nodes connected to node i 

(excluding node i). N is the number of system nodes but 

except the slack node. PLi and QLi represent the active and 

reactive power of load node i. Gij and Bij are the mutual 

conductance and the mutual susceptance. 

2) ICs  

The ICs involve state variables and control variables, 

which are defined as follows. 

a) state variables 

⚫ active power PGref  

 ref ,min ref ref ,maxG G GP P P    (12) 

⚫ voltage limits  

 ,min ,max ,  Li Li Li PQV V V i N      (13) 

⚫ reactive power limits  

 ,min ,max ,  Gi Gi Gi GQ Q Q i N      (14) 

⚫ apparent power flow limits of all branches 

 ,max 0,  ij ij LS S ij N−     (15) 

b) control variables 

⚫ active output PGi 

 ,min ,max ,  Gi Gi Gi GP P P i N     (16) 

⚫ generator terminal voltage VGi 

 ,min ,max ,  Gi Gi Gi GV V V i N     (17) 

⚫ transformer tap-settings Ti 
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 ,min ,max ,  i i i TT T T i N     (18) 

⚫ reactive power injection QC 

 ,min ,max ,  Ci Ci Ci CQ Q Q i N     (19) 

where NT and NC indicate the amount of transformers and 

compensators. 

III. MONIWOA FOR MOOPF PROBLEM 

The basic whale optimization algorithm owns many 

drawbacks which make the optimization of MOOPF 

problems inefficient. The novel improved WOA algorithm is 

proposed to overcome drawbacks and improve the efficiency 

and accuracy of solving the Multi-objective optimal 

constrained MOOPF problems.  

A. Overview of the basic WOA 

The whale optimization algorithm is a new meta-heuristic 

algorithm inspired by imitating the hunting behavior of 

humpback whales [13]. The basic WOA algorithm completes 

the foraging process through three operators: encircling prey, 

spiral bubble-net attacking and searching for prey randomly. 

The mathematical model of WOA algorithm is described as 

follows: 

1) Encircling prey strategy 

In this phase, the prey represents the best candidate 

solution. The best candidate solution will be updated in each 

iteration and humpback whales can update their location 

according to the best candidate solution. This behavior can be 

modeled as follows: 

 | ( ) ( ) |bestD C X t X t=  −   (20) 

 ( 1) ( )bestX t X t A D+ = −    (21) 

 12A a r a=  −   (22) 

 22C r=    (23) 

where t indicates the current iteration. X(t) represents the 

current position of the humpback whales. Xbest(t) represents 

the best candidate acquired in the current iteration. A and C 

are auxiliary coefficient vectors. r1 and r2 are random 

numbers in [0,1], a is a constant which is linearly decreasing 

from 2 to 0 with the increase of iterations, and it is described 

as follows: 

 
max

2 2
t

a
t

= −    (24) 

where tmax represents the preset maximum number of 

iterations. 

2) Bubble-net attacking strategy 

In this phase, two main approaches are designed to imitate 

the bubble-net attacking strategy, which include shrinking 

encircling mechanism and spiral updating mechanism. 

Shrinking encircling mechanism is achieved through the 

decreasing value of a. The value of auxiliary coefficient 

vector A is in the interval [-a, a]. Spiral updating mechanism 

can be modeled as follows: 

 | ( ) ( ) | cos(2 )
bl

p bestX X t X t e l= −     (25) 

 ( 1) ( )p bestX t X X t+ = +   (26) 

where b is a constant number and l is a random number in the 

interval [-1, 1]. 

In the WOA algorithm, the two mentioned approaches of 

the bubble-net attack strategy can be performed 

simultaneously. The model can be expressed as follows: 

 
,   0.( ) 5

( 1)
,   ( ) 0.5

best

p best

X t A D if p
X t

if pX X t

− 

+


+ = 



  (27) 

3) Searching randomly strategy 

In order to improve the quality of the optimal solution and 

avoid the local optimal solution, the strategy of searching for 

the prey randomly is designed. The model can be expressed 

as follows: 

 | ( ) ( ) |randD C X t X t=  −   (28) 

 ( 1) ( )randX t X t A D+ = −    (29) 

where Xrand is a random individual which is selected from the 

current candidate solutions. 

B. Multi-objective solution strategy 

In the MOOPF problem, all the objectives conflict and 

compete with each other in the power system, and 

zero-violation of constraints is the premise of ensuring the 

accuracy of the solutions. Therefore, the quality of candidate 

solutions should be checked by the Newton-Raphson load 

flow calculation [23]. In the WOA algorithm, each humpback 

whales must observe strict rules to the update its position. 

Based on constrains-prior Pareto-dominant rule, all the 

candidate whales can be divided into different levels, then the 

whales in the same level are sorted by the crowding distance 

and rank value of each whale. 

1) CPDR rule 

The optimal solution sets are updated with the increase of 

iterations, each solution should satisfy the ECs and ensure 

zero-violation. In addition, the handling method of ICs about 

control variables can be expressed as (30). 

 

_ max _ max

_ min _ max

_ min _ min

,

,

,

ith ith ith

ith ith ith ith ith

ith ith ith

u u u

u u u u u

u u u

 



=  





  (30) 

For the ICs on state variables of each individual whale, the 

Constrains-prior Pareto-dominant rule (CPDR) is proposed 

to deal with the problem. The total sum of violations can be 

expressed as (31). 

 

1

( ) max( ( , ), 0)

Nu

ith j ith

j

Sv u h x u

=

=    (31) 

where Nu is the number of ICs. Sv(uith) represents the total 

violations of ICs on state variables. 

Then, the individuals up and uq are selected from candidate 

solutions set randomly. Based on the CPDR rule, a smaller 

Sv(u) value means higher priority, and the kth fitness value is 

expressed as fk (u). The process of CPDR rule to find a 

dominant individual is shown as follows: 

Constrains-prior Pareto-dominant Rule: 

1. if Sv (up) < Sv (uq)  up dominates uq; 

2. if Sv (pp) > Sv (pq)  uq dominates up; 

3. if Sv (pp) = Sv (pq) 

4. 

if fi (up) ≤ fi (uq) for all i∈{1, 2, …, M} and fj (up) < fj (uq) for any j∈

{1, 2, …, M} 

pp dominates pq; 

5. else uq dominates up. 

 

According to the CPDR rule, all Candidate solutions set 

can be divided into m levels: Lev1, Lev2, Lev3…, Levm, and 

rank represents the hierarchical level value. The ith 

individual with the smaller rank(i) value means a higher 

priority. 
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2) CDRS strategy 

All the candidate solutions are divided into different 

hierarchy by the CPDR strategy. Furthermore, a sorting 

method based on crowding distance and rank strategy (CDRS) 

is employed to obtain a high-quality solution [24,25]. 

According to the CDRS strategy, if the rank values of 

different whales are equal, their priority statue needs to be 

determined by the crowding distance. The crowding distance 

of whale i can be defined as C-dis(i), which is used to 

estimate the density of whales’ distribution in the feasible 

region. With the innovative CDRS strategy, the smaller rank 

means a better priority. Otherwise, if both solutions obtain 

the same rank value, then we prefer the solutions with larger 

C-dis(i) value. For any whale i and whale j, the novel CDRS 

strategy will be shown as follows: 

A Sorting Method With Crowding Distance And Rank Strategy: 

1. if rank(xi) < rank(xj)  whale i is stronger than whale j.; 

2. if rank(xi) > rank(xj)  whale j dominates whale i.; 

3. if rank(xi) = rank(xj) 

4. if C-dis (xi) > C-dis (xj)  whale i is superior to whale j; 

5. else whale j dominates whale i. 

 

3) BCs based on Fuzzy Theory  

Taking advantage of the CDRS strategy, the optimal 

solutions set (POS) obtained by the improved whale 

optimization algorithm are able to achieve a better quality. 

The fuzzy theory adopted in this paper can pick out the best 

compromise solution (BCs) from the POS. The satisfaction 

degree of pth objective for the kth whale can be defined as 

(33), and the total satisfaction degree can be defined as (34). 

 

_ min

_ max

_ min _ max

_ max _ min

_ max

1

0

1, 2,

p p

p i

p p p p

p p

p p

t

f f

f f
k f f f

f f

f f

p M

 

 −

=  
−




=

  (32) 

 
1

1 1

1, 2,

t

t t

M

pp

p tN M

pj p

k

Fst j N

k

=

= =

= =


 
，   (33) 

where kp is the standardized satisfaction degree. Fstp 

represents the total satisfaction degree. 

C. MONIWOA algorithm 

1) Piecewise non-linear strategy 

In the basic whale optimization algorithm, A is coefficient 

vector to balance the global exploration and local 

development capabilities. The optimization process is 

determined by the value of convergence factor a. The larger 

value of a indicates stronger global search ability, and the 

smaller value of a indicates stronger local development 

capabilities inversely. The algorithm is easy to fall into local 

optimum in the middle and late iterations. Hence, the 

piecewise non-linear strategy is proposed to prevent falling 

into the local optimum in the optimization process, and the 

strategy is described as follows: 

 
( ) max
2 / 2

 

1.8
2 0.75

1
( )

3 1  otherwise 

max max

max

max

r t t t

t t

t

t t

e
a t

− −

−

−
+

 +
= 


 −

  (34) 

where r is regulatory factor and the value can be set as 20.  

In the piecewise non-linear strategy, the convergence 

factor a can maintain a larger value to increase the global 

search ability of the WOA algorithm and convergence speed 

at the beginning. Theoretically, if the iterations reach 0.75tmax, 

the value of convergence factor a can decrease quickly, 

which helps to realize a rapid transmation into local search. In 

the end of iteration, a small value is used to ensure the 

efficiency of local search. 

2) Dual dynamic weights mode 
The dual dynamic weight mode is able to balance the local 

and global ability of the whale optimization algorithm. 

Weight w1 is used to improve the global search ability, and 

the weight w2 is used to improve the local search ability. The 

mathematical model of special strategy can be expressed as 

follows: 

 max1 tan( ( 1 0.5) / )
1 max(1 / )

pi rand sm t
w t t

−  − 
= −   (35) 

 max1 tan( ( 1 0.5) / )
2 max(2 2 / )

pi rand sm t
w t t

−  − 
= −    (36) 

where pi is a constant number and can be set as π. sm is 

changed with the increasing number of iterations. sm will be 

automatically added if the position of optimal solution is 

updated, otherwise it will remain unchanged. The update 

process of sm is given as follows: 

 

max2 :

( )

1

cur last

for i

if OP OP

sm sm

e d

end

t

n

=



= +   (37) 

where the quality of optimal solution obtained by the 

calculation of current iterative is defined as OPcur, and the 

quality of the optimal solution that retained by the previous 

generation is defined as OPlast. In the updating strategy of 

weight w1, the mathematical model can be given by the 

formula as follows: 

 1( 1) ( )bestX t w X t A D+ =  −    (38) 

 1( 1) ( )p bestX t X w X t+ = +    (39) 

 1( 1) ( )randX t w X t A D+ =  −    (40) 

In the updating strategy of weight w1, the mathematical 

model can be expressed as follows: 

 2( 1) ( )bestX t X t w A D+ = −     (41) 

 2( 1) ( )p bestX t w X X t+ =  +   (42) 

 2( 1) ( )randX t X t w A D+ = −     (43) 

3) Lévy flight mechanism 

With the characteristics of power-law distribution, Lévy 

flight is a special mechanism which can realize random walk 

by using Lévy flight distribution [26]. Larger step length can 

occur by the addition of Lévy flight methodology, and it can 

escape from local optional solutions and improve the 

convergence performance [27]. The Lévy flight mechanism 

can be expressed as follows: 

 
1/

Le ( ) ~ , 0 2
| |

vy
v




     (44) 

 
2 2

~N(0, ),  ~N(0, )       (45) 

 
( ) ( )

( )
( ) 

1/

1 /2

1 sin / 2
, 1

1 / 2 2



 


  
 

 
−

 
 +   

= = 
  +    
 

  (46) 
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where μ and υ are random numbers, which are obtained from 

the distribution of Gaussian. Г represents the standard 

Gamma function. β is a constant number. 

 ( )
1/

( 1) ( ) ( ) ( )
| |

bestX t X t X t X t r
v





+ = +   −    (47) 

where r represents a random number in [0, 1]. α is a constant 

whose value is usually taken as 0.01. 

D. Examining the performance of MONIWOA 

In order to evaluate the performance of the proposed 

MONIWOA algorithm, six benchmark test functions are 

applied to take examination. The comprehensive parameters 

of the six test functions are set in TABLE I. The convergence 

curves of the six test functions are displayed in Fig. 1, which 

demonstrate that the MONIWOA algorithm significantly 

outperforms the WOA algorithm in convergence accuracy 

and convergence speed. What’s more, the experimental 

results of those test functions are listed in TABLE II, and the 

comparison of the experimental results shows that the 

MONIWOA algorithm is able to obtain better solution than 

the WOA algorithm in all cases. In summary, the 

comprehensive performance of the MONIWOA algorithm is 

better than the WOA algorithm. 

E. Application of the MONIWOA to the MOOPF problem 

In order to verify the effectiveness of the proposed 

MONIWOA algorithm, CPDR rule and CDRS strategy, eight 

test cases were executed in IEEE 30-bus, IEEE 57-bus and 

IEEE 118-bus systems in Section IV. The POS and BCs 

obtained by the MONIWOA, MODE and MOPSO 

algorithms are shown in detail. The main flow chart of 

MONIWOA algorithm for the MOOPF problem is shown in 

Fig. 2. The objective combinations of the eight cases are 

shown in TABLE III. 

TABLE I  

DESCRIPTION OF THE SIX TEST FUNCTIONS 

Name Functions Dim Range of search fmin Iterations Running times 

Sphere 2
1 0
( )

D

ii
f X x

=
=    30 [−100, 100] 0 1500 30 

Rosenbrock 
-1 2 2 2

2 11
( ) 100( ) ( 1)

D

i i ii
f X x x x

+=
= − + − 

    30 [−30, 30] 0 5000 30 

Rastrigin ( ) ( )
2

3 1
10 cos 2 10

D

i ii
f X x x

=
= − + 

    30 [−5.12, 5.12] 0 3000 30 

Alpine ( )
4 1

sin 0.1
D

i i ii
f X x x x

=
= +   30 [−10, 10] 0 1500 30 

Goldstein-Price 

( ) ( ) ( )

( ) ( )

2 2 2

5 1 2 1 1 2 1 2 2

2 2 2

1 2 1 1 1 2 2

1 1 19 14 3 14 6

  2 3 18 32 12 48 36 27 302

3f X x x x x x x x x

x x x x x x xx

= + + + − + − +

 − − + + + +

 


 


+

−

  2 [−2, 2] 3 5000 30 

Shekel’s Family ( ) ( ) ( )
1

10

6 1

T

i i ii
f X X a X a c

−

=
= − − − + 

    4 [0, 10] -10.5363 8000 30 

 
TABLE II  

PERFORMANCE EVALUATION OF THE BENCHMARK TEST FUNCTIONS IN TABLE I 

F 

WOA MONWOA 

Best Worst Mean Deviation Best Worst Mean Deviation 

f1 2.2012E+01 1.0742E+02 5.4819E+01 2.0265E+01 8.6873E-47 4.7568E-44 6.1928E-45 1.0994E-44 

f2 3.6414E+01 1.4721E+02 7.0394E+01 1.4964E+01 9.7863E-10 7.8662E-06 4.1287E-07 1.6862E-06 

f3 9.8334E+01 2.2785E+02 1.5557E+02 2.8023E+01 1.6914E+01 6.8652E+01 3.7875E+01 1.2743E+01 

f4 1.4446E+01 2.3956E+01 1.9057E+01 2.2052E+00 6.6613E-16 1.0936E-14 3.2474E-15 2.7989E-15 

f5 3.0000E+00 3.0141E+00 3.0012E+00 9.1472E-05 3.0000E+00 3.0000E+00 3.0000E+00 1.0408E-16 

f6 -1.0526E+01 -1.0482E+01 -1.0510E+01 7.8628E-03 -1.0536E+01 -1.0536E+01 -1.0536E+01 1.8373E-12 
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Fig. 1. Convergence graphs of WOA and MONIWOA for six representative test functions 

 
TABLE III  

THE OBJECTIVE COMBINATION OF THE THREE ALGORITHMS 

The objective combination Fc Pl F-v Em L-in Test system 

CASE 1 ✔   ✔  IEEE 30 

CASE 2  ✔   ✔ IEEE 30 

CASE 3  ✔ ✔   IEEE 30 

CASE 4 ✔ ✔  ✔  IEEE 30 

CASE 5 ✔ ✔    IEEE 57 

CASE 6 ✔   ✔  IEEE 57 

CASE 7 ✔ ✔    IEEE 118 

CASE 8 ✔   ✔  IEEE 118 
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Start

Input the initial parameters of MONIWOA algorithm, maximum iterations 

and the detailed data set of the standard power system

Calculate the fitness of each whale; pick out the best search whale Xbest as the prey, 

set the iteration of MONIWOA as t=1, set the searching model parameter sm=1

Update the auxiliary coefficient vector A, 

convergence factor a

Generate a random number p in [0,1]

Searching for prey randomly, 

execute Lévy flight mechanism

P<0.5

Bubble-net attack strategy

No Yes

Encircling prey strategy, execute 

Lévy flight mechanism

|A|<1
YesNo

sm/tmax<0.5 sm/tmax<0.5 sm/tmax<0.5

Update the position 

according to 

formula (39)

Update the position 

according to 

formula (42)

Update the position 

according to 

formula (43)

Update the position 

according to 

formula (40)

Update the position 

according to 

formula (41)

Update the position 

according to 

formula (38)

YesYesYes No NoNo

Based on the CPDR rule and CDRS strategy, calculate the optimal objective functions 

and choose the current best search whale Xbest1  of  the current population

sm=sm+1

 Xbest1 is superior to Xbest

Yes

t=tmax(the maximum iteration

 of MONIWOA )

End

Output the final POS and BCs 

solutions

No

t=t+1 No

Yes

 
Fig. 2. The flow chart of MONIWOA for the MOOPF problem  

 

IV. SIMULATION AND RESULT 

To substantiate the performance of WONIWOA algorithm, 

MOPSO and MODE algorithms are employeed as 

comparisons, and the three algorithms are all applied to solve 

the MOOPF problem in the simulation trials. Eight 

simulation trials which include seven bi-objectives and one 

tri-objectives have been tested in IEEE 30-bus system 

(system1), IEEE 57-bus system (system2) and IEEE 118-bus 

system(system3). All the experimental programs are coded in 

the MATLAB 2017b and run on a Microsoft Windows 7 PC 

with Intel(R) Core (TM) i5-7400 CPU @ 3.4GHZ with 8GB 

RAM. 

A. Parameters setting 

1) System parameters 

The wiring diagram of the IEEE 30-bus system includes 

24-dimensional control variables and is shown in Fig. 3. In 

system1, the value of transformer taps are set in [0.9 1.1] p.u 

and the value of voltage of generator buses and load buses are 

set in [0.95 1.1] p.u. The detail data of system1 are given in 

[28], and the coefficients of Fcost and Em in IEEE 30-bus 

system can been seen in [29]. 

The wiring diagram of the IEEE 57-bus system is shown in 

Fig. 4, and it has 33-dimensional control variables. In 

system2, the value of  transformer taps are set in [0.9 1.1] p.u, 

and the value of voltage magnitude for PQ and PV bus are set 

in [0.95 1.1] p.u. The detail data of system2 are given in [30]. 
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Fig. 3. The wiring diagram of the IEEE 30-bus system 
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Fig. 4. The wiring diagram of the IEEE 57-bus system 

The structure of the IEEE 118-bus system includes 

128-dimensional control variables and is shown in Fig. 5. The 

value of voltage magnitude for PV bus are set in [0.95 1.1] 

p.u. The detail data of system3 are given in [30]. 
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Fig. 5. The wiring diagram of the IEEE 118-bus system 

 

 

Fig. 6. PFs with different iterations of the IEEE 30-bus system 

 

2) Algorithm parameters 

The effectiveness and accuracy of the MONIWOA 

algorithm are mainly determined by the maxinum iterations 

and population size. Then repeated simulation experiments of 

the three standard test systems are carried out in different 

iterations. As is shown in Fig. 6- Fig. 7, the PFs obtained in 

400 iterations and 500 iterations have no obvious superority 

over PFs obtained in 300 iterations in the IEEE 30-bus and 

IEEE 57-bus systems. As is shown in Fig. 8, the PFs obtained 

in 500 iterations are relatively better in the IEEE 118-bus 

systems. Therefore, the maxinum iterations are set as 300 in 

the IEEE 30-bus and IEEE 57-bus systems, the maxinum 

iterations are set as 500 in the IEEE 118-bus system. The 

population size is set as 100. The parameters of the three 

algorithms are shown in TABLE IV. After a set of repeated 

trials, the MONIWOA algorithm can pick up the uniform PFs 

finally. 

 
Fig. 7. PFs with different iterations of the IEEE 57-bus system 

 

 
Fig. 8. PFs with different iterations of the IEEE 118-bus system 

B. Trials on IEEE 30-bus system 

1) CASE 1: Optimizing Fc and Em simultaneously 

In CASE 1, Fc and Em are optimized by the MONIWOA, 

MODE and MOPSO algorithms in the system1 

simultaneously. Fig. 9 shows the distribution of PFs obtained 

by the MONIWOA, MODE and MOPSO algorithms, and it 
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can be found intuitively that MONIWOA’s POS is more 

widely distributed and has better distribution uniformity. 

Two boundary solutions (the minimum Fc and minimum Em) 

and the BCs are given in Fig. 10 by using the MONIWOA 

approach. The detailed data of control variables of the BCs 

obtained by the MONIWOA algorithm can be seen in 

TABLE V, and it is clearly seen that 834.1110 $/h of Fc and 

0.2311 ton/h of Em. The bi-objective function values and PFs 

obtained in CASE 1 clearly demonstrates that the proposed 

novel approach dominates the BCs of MOPSO and MODE 

algorithms. Additionally, in order to prove the superiority of 

the MONIWOA, comparison results of BCs obtained by 

other reported algorithms are shown in TABLE VI. 

 
TABLE IV  

THE PARAMETERS OF THE THREE ALGORITHMS 

Algorithms Parameters Values 

General parameters 

Population 100 

Repository 100 

tmax 
300(CASE 1-CASE 6)       
500(CASE 7-CASE 8) 

MONIWOA 

σ 

μ 
b 

RR 
sm 

1 

0 
1 

0.6 
1 

MODE b 1 

MOPSO 
C1 
C2 
  

2 
2 

0.85 

 

 

Fig. 9. The PFs of MONIWOA, MODE and MOPSO for CASE 1 

 

 

Fig. 10. The PFs of MONIWOA in CASE 1 

 

2) CASE 2: Optimizing L_in and Pl simultaneously 

L_in is an important indicator to measure voltage stability 

in the actual power system. The smaller value of L_in means 

the stronger stability and better operating status of the power 

system. 

In CASE 2, L_in and Pl are optimized by the MONIWOA, 

MODE and MOPSO algorithms in the system1 

simultaneously. Fig. 11 gives the optimal PFs obtained by 

different algorithms, and the comparisons of PFs among the 

three algorithms clearly demonstrate that POS of 

MONIWOA is more widely distributed and has better 

distribution uniformity. Two boundary solutions (the 

minimum L_in and minimum Pl) and the BCs obtained by the 

MONIWOA approach are given in Fig. 12. The detail data of 

control variables and BCs are shown in TABLE VII. The BCs 

of MONIWOA are 0.1244p.u. of L_in and 2.8620 MW of Pl, 

and they are smaller than those obtained by MODE and 

MOPSO respectively. Therefore, the results show that the 

performance of MONIWOA algorithm is better than MODE 

and MOPSO algorithms when dealing with the MOOPF 

problem.  
 

TABLE V  

CONTROL VARIABLES OF BCS FOR CASE 1 

control variables MOPSO MODE MONIWOA 

P2(MW) 59.7749 58.9058 61.4488 
P5(MW) 26.8345 27.3974 27.2159 

P8(MW) 34.7677 34.7373 35.0000 
P11(MW) 29.0368 27.3819 27.0870 

P13(MW) 25.1815 25.8972 24.3510 

V1(p.u) 1.1000 1.0990 1.1000 
V2(p.u) 1.0827 1.089 1.0831 

V5(p.u) 1.0561 1.0560 1.0566 
V8(p.u) 1.0870 1.0795 1.0772 

V11(p.u) 1.0708 1.0936 1.0471 

V13(p.u) 1.0865 1.0760 1.0796 
T11(p.u) 1.0671 1.0651 1.0181 

T12(p.u) 0.9440 0.9448 0.9832 
T15(p.u) 0.9419 1.0103 1.0407 

T36(p.u) 1.0314 0.9767 0.9893 

Q10(p.u) 0.0500 0.0098 0.0431 
Q12(p.u) 0.0000 0.0419 0.0277 

Q15(p.u) 0.0378 0.0407 0.0224 
Q17(p.u) 0.0326 0.0283 0.0265 

Q20(p.u) 0.0222 0.0111 0.0205 

Q21(p.u) 0.0212 0.0238 0.0496 
Q23(p.u) 0.0500 0.0235 0.0257 

Q24(p.u) 0.0235 0.05 0.0331 
Q29(p.u) 0.0003 0.0249 0.0359 

Obj1 ($/h) 836.2408 834.9988 834.1110 

Obj2(ton/h) 0.2489 0.2431 0.2311 

 
TABLE VI  

COMPARISON RESULTS FOR CASE 1 

Algorithm Fc ($/h) Em (ton/h) 

NSGA-II [1] 837.7028 0.2434 

NSGA-III [23] 836.4405 0.2423 

PSO [32] 883.2800 0.2388 

GSO [32] 852.8900 0.2446 

ASGO [33] 843.5473 0.2539 

 

3) CASE 3: Optimizing F_v and Pl simultaneously 

In CASE 3, due to the typical non-convexity of value-point 

effect, it is more difficult to optimize F_v and Pl 

simultaneously to solve the MOOPF problem. The optimal 

PFs obtained by different algorithms are shown in Fig. 13, it 

is evidently proved that the MONIWOA approach has the 

ability to pick up the more appropriate PFs as compared to 

MODE and MOPSO algorithms. Two boundary solutions 

(the minimum F_v and minimum Pl)and the BCs are given in 

Fig. 14 by using the MONIWOA approach. The detail results 
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are shown in TABLE VIII. It is clearly seen that 858.7143 $/h 

of F_v and 5.9125 MW of Pl for the MONIWOA’s BCs, 

which is narrowly smaller than the BCs of MODE and 

MOPSO concurrently. In summary, the results prove that 

MONIWOA approach can seek out the better quality of BCs. 

 

 

Fig. 11. The PFs of MONIWOA, MODE and MOPSO for CASE 2 

 

 

Fig. 12. The PFs of MONIWOA in CASE 2 
 

 
Fig. 13. The PFs of MONIWOA, MODE and MOPSO for CASE 3 

 

4) CASE 4: Optimizing Fc, Pl and Em simultaneously 

In CASE 4, a tri-objective optimization simulation which 

includes objective functions of Fc, Pl and Em are tested in 

system1 simultaneously, so it is difficult to obtain the 

appropriate PFs and BCs. The optimal PFs of the 

MONIWOA, MODE and MOPSO algorithms are shown in 

Fig. 15, it is obviously demonstrated that the quality of PFs 

obtained by MONIWOA method is better than others. The 

BCs of MONIWOA method is given in Fig. 16.  

 
TABLE VII  

CONTROL VARIABLES OF BCS FOR CASE 2 

control variables MOPSO MODE MONIWOA 

P2(MW) 79.8749 79.9903 79.9821 
P5(MW) 50.0000 49.9951 49.9927 

P8(MW) 35.0000 35.0001 35.0000 

P11(MW) 30.0000 29.9879 29.9938 
P13(MW) 40.0000 39.9998 39.9954 

V1(p.u) 1.1000 1.0907 1.1000 
V2(p.u) 1.1000 1.1000 1.0992 

V5(p.u) 1.1000 1.0952 1.0848 

V8(p.u) 1.0900 1.1000 1.0930 
V11(p.u) 1.1000 1.0987 1.0998 

V13(p.u) 1.1000 1.0941 1.0998 
T11(p.u) 1.0673 1.0722 1.0434 

T12(p.u) 0.9000 0.9000 0.9001 

T15(p.u) 0.9963 0.9852 0.9946 
T36(p.u) 0.9770 0.9718 0.9641 

Q10(p.u) 0.0500 0.0500 0.0392 
Q12(p.u) 0.0500 0.0000 0.0473 

Q15(p.u) 0.0356 0.0482 0.0498 

Q17(p.u) 0.0500 0.0500 0.0500 
Q20(p.u) 0.0331 0.0500 0.0400 

Q21(p.u) 0.0500 0.0490 0.0500 
Q23(p.u) 0.0245 0.0419 0.0190 

Q24(p.u) 0.0500 0.0200 0.0424 

Q29(p.u) 0.0203 0.0182 0.0047 
Obj1 (MW) 2.9284 2.9278 2.8620 

Obj2(p.u.) 0.1245 0.1247 0.1244 

 

 

Fig. 14. The PFs of MONIWOA in CASE 3 

 

 

Fig. 15. The PFs of MONIWOA, MODE and MOPSO for CASE 4 

IAENG International Journal of Applied Mathematics, 51:3, IJAM_51_3_36

Volume 51, Issue 3: September 2021

 
______________________________________________________________________________________ 



 

Additionally, the detail results of CASE 4 are shown in 

TABLE IX, it is intuitively found that Fc, Pl and Em are 

869.6487 $/h, 4.0972 MW and 0.2099 ton/h correspondingly 

by using the proposed method. The BCs solution of MODE 

algorithm includes 879.8652 $/h of Fc, 4.1630 MW of Pl and 

0.2129 ton/h of Em. The BCs solutions of MOPSO algorithm 

includes 881.6949 $/h of Fc, 4.1408 MW of Pl and 0.2161 

ton/h of Em. The detail results clearly show that the 

MONIWOA algorithm can pick up the minimum Fc, Pl and 

Em at the same time, and it proves that the MONIWOA 

method has competitive advantages to seek out better optimal 

solution as compared to other algorithms. 

 
TABLE VIII  

CONTROL VARIABLES OF BCS FOR CASE 3 

control variables MOPSO MODE MONIWOA 

P2(MW) 53.5011 46.5733 54.0425 
P5(MW) 31.5425 30.9953 30.2594 

P8(MW) 35.0000 34.0947 35.0000 

P11(MW) 24.2590 23.5005 21.0240 
P13(MW) 12.0000 18.2117 14.5985 

V1(p.u) 1.1000 1.0997 1.1000 
V2(p.u) 1.0852 1.0900 1.0911 

V5(p.u) 1.0626 1.0712 1.0614 

V8(p.u) 1.0656 1.0835 1.0766 
V11(p.u) 1.1000 1.0927 1.0973 

V13(p.u) 1.0771 1.0902 1.0965 
T11(p.u) 1.0016 0.9482 0.9654 

T12(p.u) 0.9313 1.0274 0.9900 

T15(p.u) 1.0143 0.9898 0.9855 
T36(p.u) 0.9677 0.9743 0.9569 

Q10(p.u) 0.0445 0.0223 0.0052 
Q12(p.u) 0.0219 0.0396 0.0399 

Q15(p.u) 0.0351 0.0429 0.0378 

Q17(p.u) 0.0363 0.0380 0.0406 
Q20(p.u) 0.0500 0.0490 0.0341 

Q21(p.u) 0.0500 0.0348 0.0500 
Q23(p.u) 0.0267 0.0178 0.0092 

Q24(p.u) 0.0310 0.0489 0.0234 

Q29(p.u) 0.0067 0.0218 0.0013 
Obj1 ($/h) 863.6488 862.6993 858.7143 

Obj2(MW) 6.1162 5.9186 5.9125 

 

TABLE IX  
CONTROL VARIABLES OF BCS FOR CASE 4 

control variables MOPSO MODE MONIWOA 

P2(MW) 64.2681 64.2492 63.9709 

P5(MW) 40.3384 39.0327 36.8832 
P8(MW) 34.9543 34.9183 34.8272 

P11(MW) 29.8791 29.4127 29.0692 
P13(MW) 39.6487 33.5994 31.2443 

V1(p.u) 1.1000 1.0989 1.0977 

V2(p.u) 1.0965 1.0913 1.0936 
V5(p.u) 1.0891 1.0713 1.0713 

V8(p.u) 1.0932 1.0833 1.0779 
V11(p.u) 1.1000 1.0900 1.0970 

V13(p.u) 1.1000 1.0959 1.0977 

T11(p.u) 1.0991 1.0129 1.0329 
T12(p.u) 0.9000 0.9289 0.9191 

T15(p.u) 0.9689 1.0042 1.0188 
T36(p.u) 0.9600 0.9966 0.9652 

Q10(p.u) 0.0500 0.0300 0.0472 

Q12(p.u) 0.0000 0.0500 0.0497 
Q15(p.u) 0.0461 0.0041 0.0493 

Q17(p.u) 0.0500 0.0431 0.0154 
Q20(p.u) 0.0023 0.0216 0.0282 

Q21(p.u) 0.0031 0.0500 0.0240 

Q23(p.u) 0.0425 0.0174 0.0016 
Q24(p.u) 0.0500 0.0047 0.0499 

Q29(p.u) 0.0001 0.0451 0.0208 
Obj1 ($/h) 881.6949 879.8652 869.6487 

Obj2(MW) 4.1408 4.1630 4.0972 

Obj3(ton/h) 0.2161 0.2129 0.2099 

C. Trials on IEEE 57-bus system 

1) CASE 5: Optimizing Pl and Fc simultaneously 

The system2 has 33-dimensional control variables, 

seventeen transformers and seven generators. Due to the 

structure of system2 is more complicated when compared 

with system1, it is more difficult to solve the MOOPF 

problem in system2. 
 

 
Fig. 16. The PFs of MONIWOA in CASE 4 
 

TABLE X  

CONTROL VARIABLES OF BCS FOR CASE 5 

control variables MOPSO MODE MONIWOA 

P2(MW) 88.76678 54.4425 72.4938 
P3(MW) 54.2749 60.4878 56.0316 

P6(MW) 90.4244 74.2930 79.6583 
P8(MW) 379.2661 400.8032 385.8774 

P9(MW) 99.3766 99.8446 100.0000 

P12(MW) 409.5642 410.0000 410.0000 
V1(p.u.) 1.1000 1.0992 1.1000 

V2(p.u.) 1.1000 1.0954 1.0977 
V3(p.u.) 1.1000 1.0911 1.0940 

V6(p.u.) 1.1000 1.0965 1.0938 

V8(p.u.) 1.1000 1.0992 1.0993 
V9(p.u.) 1.1000 1.0876 1.0999 

V12(p.u.) 1.1000 1.0817 1.0950 
T19(p.u.) 0.9919 1.0570 1.0878 

T20(p.u.) 1.1000 0.9806 1.0754 

T31(p.u.) 0.9848 0.9741 1.0276 
T35(p.u.) 1.0753 1.0983 0.9851 

T36(p.u.) 1.0240 0.9921 1.0794 
T37(p.u.) 0.9555 1.0641 1.0762 

T41(p.u.) 1.0090 1.0337 1.0220 

T46(p.u.) 0.9842 0.9684 0.9246 
T54(p.u.) 0.938 0.9707 0.9973 

T58(p.u.) 1.1000 0.9805 0.9825 
T59(p.u.) 1.1000 0.9580 0.9744 

T65(p.u.) 1.1000 0.9747 1.0000 

T66(p.u.) 1.0138 0.9416 0.9637 
T71(p.u.) 0.9814 0.9845 0.9848 

T73(p.u.) 1.0441 0.9431 1.0417 
T76(p.u.) 0.9000 1.0493 0.9987 

T80(p.u.) 1.0093 1.0135 1.0417 

Q18(p.u.) 0.0740 0.167 0.2494 
Q25(p.u.) 0.2788 0.1508 0.1931 

Q53(p.u.) 0.1307 0.1748 0.2425 
Obj1 ($/h) 41970.3869 41964.2468 41934.6701 

Obj2(MW) 11.8702 11.1124 10.8410 

 

In CASE 5, a bi-objective optimization simulation which 

includes Fc and Pl are tested in system2 simultaneously. Fig. 

17 shows the comparative curves of optimal PFs obtained by 

the MONIWOA, MODE and MOPSO algorithms, it is 

obviously shown that PFs of MONIWOA approach is more 

superior as compared to MODE and MOPSO algorithms. The 

boundary solutions and the BCs are shown in Fig. 18. The 

detail results of CASE 5 are shown in TABLE X. The 

MONIWOA algorithm can seek out the BCs which includes 

41934.6701 $/h of Fc and 10.8410 MW of Pl. The BCs of 
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MODE algorithm includes 41964.2468 $/h of Fc and 

11.1124 MW of Pl. The BCs of MOPSO algorithm includes 

41970.3869 $/h of Fc and 11.8702 MW of Pl. Therefore, it 

proves that the MONIWOA approach owns better ability to 

pick up the BCs. 

 

 

Fig. 17. The PFs of MONIWOA, MODE and MOPSO for CASE 5 

 

 

Fig. 18. The PFs of MONIWOA in CASE 5 

 

2) CASE 6: Optimizing Fc and Em simultaneously 

In CASE 6, a bi-objective optimization simulation which 

includes Fc and Em are tested in system2 simultaneously. 

The optimal PFs of the MONIWOA, MODE and MOPSO 

algorithms are shown in Fig. 19. It is clearly shown that PFs 

of MONIWOA approach owns better performance, and 

MONIWOA has the superior ability to seek out high-caliber 

PFs as compared to others. The boundary solutions  and the 

BCs are shown in Fig. 20. 

Detail results of CASE 6 are shown in TABLE XI. The 

BCs of the MONIWOA approach which includes 

43265.8262 $/h of Fc and 1.2096 ton/h of Em are smaller 

than the ones of MODE and MOPSO algorithms respectively, 

and it is worth paying attention to the superior performance 

of MONIWOA approach to find the minimum Fc. Therefore, 

the BCs of the MONIWOA approach can completely 

dominate the ones of other methods.  

D. Trials on IEEE 118-bus system 

1) CASE 7: Optimizing Fc and Pl simultaneously 

The structure of system3 is more complicated than 

system2. In order to verify the effectiveness of MONIWOA 

to seek out better PFs in system3, then a bi-objective 

optimization simulation which includes Fc and Pl are carried 

on in system3. It should be noted that the MOPSO algorithm 

cannot seek out a set of well distributed solutions, so no 

effective PFs is obtained. The optimal PFs obtained by 

MONIWOA and MODE methods are illustrated in Fig. 21. It 

is intuitively shown that the evenly-distribute PFs of 

MONIWOA algorithm is better. As well, MODE algorithm 

has a competitive advantage over obtaining 

densely-distribute PFs. The boundary solutions and the BCs 

are shown in Fig. 22. BCs obtained by the MONIWOA and 

MODE methods are shown in TABLE XIII, the BCs of the 

MONIWOA algorithm includes 58586.8759 $/h of Fc and 

56.1994 MW of Pl. The BCs of the MODE algorithm 

includes 59433.2483 $/h of Fc and 58.1511 MW of Pl. In 

general, the MONIWOA algorithm owns evident ability to 

obtain better PFs and smaller BCs as compared to MODE 

algorithm. Additionally, in order to prove the superiority of 

the MONIWOA algorithm, comparison results of BCs 

obtained by other reported algorithms are shown in TABLE 

XII. 

 

 

Fig. 19. The PFs of MONIWOA, MODE and MOPSO for CASE 6 
 

 

Fig. 20. The PFs of MONIWOA for CASE 6 

 

2) CASE 8: Optimizing Fc and Em simultaneously 

In CASE 8, a bi-objective optimization simulation which 

includes Fc and Em are tested in system3. Due to the more 

complicated structure of system3, no effective PFs is 

obtained by the MOPSO algorithm. The optimal PFs 

obtained by MONIWOA and MODE methods are shown in 

Fig. 23. It is obviously demonstrated that the quality of PFs 
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obtained by MONIWOA method is better. The boundary 

solutions and the BCs are given in Fig. 24. 

TABLE XI  

CONTROL VARIABLES OF BCS FOR CASE 6 

control variables MOPSO MODE MONIWOA 

P2(MW) 100.0000 99.5394 99.9534 
P3(MW) 84.0305 96.9918 95.6767 

P6(MW) 97.7124 99.2096 99.9345 
P8(MW) 337.6508 355.2533 354.0411 

P9(MW) 100.0000 100.0000 99.9022 

P12(MW) 323.7972 280.6742 295.9330 
V1(p.u) 1.1000 1.0998 1.0992 

V2(p.u) 1.1000 1.0988 1.0985 
V3(p.u) 1.0999 1.0954 1.0964 

V6(p.u) 1.1000 1.0992 1.0994 

V8(p.u) 1.1000 1.0983 1.0983 
V9(p.u) 1.1000 1.0984 1.0988 

V12(p.u) 1.1000 1.0884 1.0857 
T19(p.u) 1.0669 0.9711 1.0795 

T20(p.u) 1.0168 1.0192 1.0208 

T31(p.u) 1.0123 1.0300 0.9811 

T35(p.u) 1.0721 1.0271 0.9934 

T36(p.u) 1.0963 1.0014 1.0251 
T37(p.u) 1.0311 1.0832 0.9811 

T41(p.u) 1.1000 1.0419 1.0247 

T46(p.u) 0.9116 1.0202 0.9997 
T54(p.u) 0.9341 0.9129 1.0721 

T58(p.u) 1.1000 1.0010 1.0060 
T59(p.u) 1.0574 1.0191 1.0093 

T65(p.u) 1.0784 0.9979 1.0346 

T66(p.u) 0.9748 0.9561 0.9815 
T71(p.u) 1.0174 1.0214 0.9703 

T73(p.u) 1.0170 1.0236 0.9502 
T76(p.u) 0.9000 0.9145 1.0048 

T80(p.u) 1.0264 1.0839 1.0201 

Q18(p.u) 0.0591 0.1247 0.2470 
Q25(p.u) 0.2527 0.0986 0.1761 

Q53(p.u) 0.0705 0.1598 0.1185 
Obj1 ($/h) 43303.9195 43332.2408 43265.8262 

Obj2(ton/h) 1.2748 1.2141 1.2096 

 

 

 
Fig. 21. The PFs of MONIWOA and MODE for CASE 7 

 

BCs obtained by the by MONIWOA and MODE methods 

are shown in TABLE XIV, the BCs of the MONIWOA 

algorithm includes 60567.8210 $/h of Fc and 2.5066 ton/h of 

Em. The BCs of the MODE algorithm includes 60928.7800 

$/h of Fc and 2.5886 ton/h of Em. Therefore, it proves that 

the MONIWOA algorithm owns superior ability to obtain 

better PFs and smaller BCs as compared to MODE algorithm.  

E. Comprehensive evaluation 

In order to evaluate the algorithm’s efficiency, the average 

running time in each iteration is utilized to represent the 

computation complexity. The average running time of the 

TABLE XII  
COMPARISON RESULTS FOR CASE 7 

Algorithm Fc ($/h) Pl (MW) 

NSGA-II [30] 59900.3741 58.8192 

NSGA-III [20] 59474.4030 58.4603 

HFBA-COFS [30] 59624.0613 61.0362 

MOPSO [20] 59133.1054 57.0368 

 

 
Fig. 22. The PFs of MONIWOA in CASE 7 
 

 
Fig. 23. The PFs of MONIWOA and MODE for CASE 8 
 

 
Fig. 24. The PFs of MONIWOA in CASE 8 

IAENG International Journal of Applied Mathematics, 51:3, IJAM_51_3_36

Volume 51, Issue 3: September 2021

 
______________________________________________________________________________________ 



 

three algorithms for CASE 1- CASE 8 are shown in TABLE 

XV. The more complicated the structure of power system is, 

the longer average running time is by using the same 

algorithm. Meanwhile, it can be clearly seen that the average 

running time of the MONIWOA algorithm is smaller than 

MODE and MOPSO algorithms. Therefore, the proposed 

algorithm has lower computation complexity. 

Performance criteria has a significant role in evaluating the 

quality of the POS sets for the MOOPF problem. In order to 

verify the efficiency of the MONIWOA, MODE and 

MOPSO algorithms intuitively, GD and SP are adopted in 

this paper. The two different metrics of performance criteria 

are used to evaluate the distribution and convergence of the 

POS sets. 

 
TABLE XIII  

CONTROL VARIABLES OF BCS FOR CASE 7 

control variables MONIWOA MODE control variables MONIWOA MODE 

P4(MW) 11.0992 21.2278 V26(p.u) 1.0301 1.0327 

P6(MW) 5.0000 11.4538 V27(p.u) 1.0345 1.0087 
P8(MW) 5.0000 9.4703 V31(p.u) 1.0258 1.0197 

P10(MW) 192.5740 230.0814 V32(p.u) 1.0146 0.9852 
P12(MW) 175.4719 208.5465 V34(p.u) 1.0107 0.9802 

P15(MW) 17.5566 20.6453 V36(p.u) 0.9966 0.9998 

P18(MW) 36.9224 30.9857 V40(p.u) 0.9858 1.0143 
P19(MW) 6.5167 8.1455 V42(p.u) 1.0149 0.9868 

P24(MW) 10.2234 13.0185 V46(p.u) 1.0404 1.0092 

P25(MW) 115.0520 113.8402 V49(p.u) 1.0232 1.0127 

P26(MW) 350.0000 262.2970 V54(p.u) 1.0142 1.0146 

P27(MW) 8.0000 8.5651 V55(p.u) 1.0212 1.0125 
P31(MW) 8.0000 21.6234 V56(p.u) 1.0420 0.9777 

P32(MW) 58.1022 38.2305 V59(p.u) 1.0289 1.0034 
P34(MW) 16.5776 11.8665 V61(p.u) 1.0255 1.0262 

P36(MW) 34.3270 59.6118 V62(p.u) 1.0206 1.0186 

P40(MW) 8.9091 9.9605 V65(p.u) 1.0268 1.01242 
P42(MW) 8.0000 25.6918 V66(p.u) 1.0507 1.0397 

P46(MW) 55.5290 65.7009 V69(p.u) 1.0351 1.0149 
P49(MW) 169.2688 176.7237 V70(p.u) 1.0035 1.0488 

P54(MW) 193.4618 193.0659 V72(p.u) 1.0416 0.9870 

P55(MW) 49.1474 35.6814 V73(p.u) 1.0249 1.0168 
P56(MW) 25.0000 48.3199 V74(p.u) 1.0008 0.9831 

P59(MW) 161.9553 50.1732 V76(p.u) 1.0298 1.0156 
P61(MW) 121.5224 166.7341 V77(p.u) 1.04727 1.0174 

P62(MW) 25.0000 59.7383 V80(p.u) 1.02969 1.0125 

P65(MW) 266.2736 231.5880 V85(p.u) 0.9875 0.9796 
P66(MW) 275.9027 292.4735 V87(p.u) 0.9413 0.9608 

P69(MW) 67.8916 44.9405 V89(p.u) 1.0329 1.0068 

P70(MW) 12.4386 10.0152 V90(p.u) 0.9995 0.9509 
P72(MW) 13.4576 13.0250 V91(p.u) 0.9958 0.9938 

P73(MW) 12.0199 5.0483 V92(p.u) 1.0521 1.0007 
P74(MW) 34.1097 74.9481 V99(p.u) 1.0676 0.9996 

P76(MW) 52.5534 28.0063 V100(p.u) 1.0531 0.9967 

P77(MW) 174.8105 150.0390 V103(p.u) 1.0432 1.0017 
P80(MW) 50.7584 34.9725 V104(p.u) 1.0328 0.9847 

P85(MW) 10.0000 10.0278 V105(p.u) 1.0385 0.9895 
P87(MW) 100.0000 112.3313 V107(p.u) 1.0123 0.9590 

P89(MW) 91.7276 101.9808 V110(p.u) 1.0297 1.0355 

P90(MW) 10.0273 9.3861 V111(p.u) 1.0328 1.0541 
P91(MW) 20.8679 20.0043 V112(p.u) 1.0103 1.0413 

P92(MW) 113.0012 118.1029 V113(p.u) 1.0111 1.0060 
P99(MW) 119.0691 110.8054 V116(p.u) 1.0338 1.0107 

P100(MW) 113.5530 124.1981 T8(p.u) 0.9813 0.9990 

P103(MW) 8.8465 9.2071 T32(p.u) 1.0105 1.0433 
P104(MW) 28.9389 25.0154 T36(p.u) 1.0339 0.9182 

P105(MW) 52.4616 30.5751 T51(p.u) 1.0042 0.9832 

P107(MW) 13.6336 8.0846 T93(p.u) 0.9475 1.0235 

P110(MW) 32.2034 37.8142 T95(p.u) 1.0686 1.0119 

P111(MW) 25.8114 28.6605 T102(p.u) 0.9628 0.9784 
P112(MW) 51.2158 41.8487 T107(p.u) 0.9640 0.9416 

P113(MW) 36.4916 32.7998 T127(p.u) 0.9778 0.9391 
P116(MW) 37.1284 35.1674 Q34(p.u) 0.1977 0.0414 

V1(p.u) 1.0443 1.0138 Q44(p.u) 0.1085 0.1705 

V4(p.u) 1.0399 1.0419 Q45(p.u) 0.1457 0.0702 
V6(p.u) 1.0133 1.0027 Q46(p.u) 0.0162 0.0651 

V8(p.u) 1.0463 1.0641 Q48(p.u) 0.2163 0.1750 
V10(p.u) 1.0286 1.0226 Q74(p.u) 0.1127 0.1208 

V12(p.u) 0.9972 0.9875 Q79(p.u) 0.1513 0.0642 

V15(p.u) 0.9989 0.9994 Q82(p.u) 0.0000 0.0842 
V18(p.u) 1.0035 0.9994 Q83(p.u) 0.1814 0.0319 

V19(p.u) 1.0384 1.0158 Q105(p.u) 0.0866 0.1768 
V24(p.u) 1.0285 1.0040 Q107(p.u) 0.1544 0.0065 

V25(p.u) 1.0432 1.0170 Q110(p.u) 0.1612 0.0498 

   Obj1 ($/h) 58586.8759 59433.2483 
   Obj2(MW) 56.1994 58.1511 
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TABLE XIV  
CONTROL VARIABLES OF BCS FOR CASE 8 

control variables MONIWOA MODE control variables MONIWOA MODE 

P4(MW) 5.0372 5.4778 V26(p.u) 0.9745 1.0372 

P6(MW) 7.4956 9.8336 V27(p.u) 1.0250 1.0026 

P8(MW) 5.9673 5.2622 V31(p.u) 1.0131 1.0086 

P10(MW) 235.4062 221.7530 V32(p.u) 1.0349 0.9920 

P12(MW) 182.4747 185.3345 V34(p.u) 1.0234 0.9927 

P15(MW) 21.0675 20.2062 V36(p.u) 1.0282 0.9871 

P18(MW) 69.8603 57.1962 V40(p.u) 1.0189 0.9366 

P19(MW) 6.0096 5.43385 V42(p.u) 1.0184 1.0360 

P24(MW) 10.6072 6.4226 V46(p.u) 1.0093 1.0342 

P25(MW) 104.5857 101.0000 V49(p.u) 1.0036 0.9970 

P26(MW) 100.0000 100.0000 V54(p.u) 0.9918 1.0038 

P27(MW) 8.1538 23.3969 V55(p.u) 0.9948 0.9834 

P31(MW) 19.8880 11.9824 V56(p.u) 0.9891 0.9841 

P32(MW) 41.9303 98.5838 V59(p.u) 1.0212 0.9990 

P34(MW) 14.4233 11.9148 V61(p.u) 1.0008 0.9948 

P36(MW) 25.7039 25.0000 V62(p.u) 1.0106 0.9860 

P40(MW) 9.0574 17.4710 V65(p.u) 0.9859 1.0166 

P42(MW) 8.7728 13.0751 V66(p.u) 1.02670 1.0310 

P46(MW) 36.5289 59.2273 V69(p.u) 1.0108 1.0368 

P49(MW) 227.1384 222.3265 V70(p.u) 1.0305 1.0157 

P54(MW) 129.5572 72.9188 V72(p.u) 0.9673 1.0233 

P55(MW) 28.9941 31.5064 V73(p.u) 0.9832 1.0411 

P56(MW) 39.2090 36.6307 V74(p.u) 0.9638 0.9983 

P59(MW) 50.0000 52.0443 V76(p.u) 1.0283 1.0293 

P61(MW) 117.1979 192.1330 V77(p.u) 1.0313 1.0126 

P62(MW) 80.3951 69.9425 V80(p.u) 1.0211 1.0065 

P65(MW) 420.0000 334.9753 V85(p.u) 0.9770 1.0003 

P66(MW) 278.4056 173.1385 V87(p.u) 0.9743 0.9816 

P69(MW) 30.8531 50.3196 V89(p.u) 1.0320 0.9877 

P70(MW) 21.1261 20.4516 V90(p.u) 1.0116 0.9909 

P72(MW) 6.3411 7.3582 V91(p.u) 1.0101 1.0251 

P73(MW) 9.1643 11.0914 V92(p.u) 1.0280 1.0278 

P74(MW) 26.1935 37.8101 V99(p.u) 1.0328 1.0442 

P76(MW) 34.6505 45.3501 V100(p.u) 1.0411 1.0199 

P77(MW) 213.3085 232.4308 V103(p.u) 1.0098 1.0184 

P80(MW) 59.4893 37.3059 V104(p.u) 1.0124 1.0426 

P85(MW) 21.4155 21.7041 V105(p.u) 1.0053 1.0591 

P87(MW) 158.7767 201.2808 V107(p.u) 0.9968 1.0193 

P89(MW) 73.1502 129.8749 V110(p.u) 1.0180 0.9826 

P90(MW) 10.3102 9.8739 V111(p.u) 1.0204 0.9661 

P91(MW) 29.3140 36.4363 V112(p.u) 1.0191 0.9827 

P92(MW) 141.2528 108.9703 V113(p.u) 1.0221 1.0554 

P99(MW) 123.2524 200.5219 V116(p.u) 1.0613 1.0020 

P100(MW) 216.5197 151.0350 T8(p.u) 0.9645 0.9956 

P103(MW) 11.54846 9.4878 T32(p.u) 1.0017 0.9591 

P104(MW) 28.6152 40.2780 T36(p.u) 0.9947 0.9927 

P105(MW) 28.2431 29.6691 T51(p.u) 0.9409 0.9419 

P107(MW) 13.8267 8.0052 T93(p.u) 0.9572 1.0350 

P110(MW) 33.3349 25.7384 T95(p.u) 1.0133 1.0010 

P111(MW) 37.9122 42.9920 T102(p.u) 0.9180 0.926 

P112(MW) 33.9259 65.8258 T107(p.u) 0.9006 0.9336 

P113(MW) 58.2439 37.0346 T127(p.u) 1.0231 1.0298 

P116(MW) 37.0737 42.1695 Q34(p.u) 0.1363 0.2152 

V1(p.u) 1.0090 0.9902 Q44(p.u) 0.0737 0.1365 

V4(p.u) 1.0312 1.0193 Q45(p.u) 0.1317 0.0501 

V6(p.u) 0.9896 1.0215 Q46(p.u) 0.2298 0.0323 

V8(p.u) 1.0388 0.9934 Q48(p.u) 0.0450 0.3000 

V10(p.u) 0.9945 1.0201 Q74(p.u) 0.2156 0.1641 

V12(p.u) 0.9843 0.9808 Q79(p.u) 0.1937 0.1798 

V15(p.u) 1.0423 1.0172 Q82(p.u) 0.1125 0.0572 

V18(p.u) 0.9767 1.0095 Q83(p.u) 0.1597 0.2054 

V19(p.u) 1.0489 0.9809 Q105(p.u) 0.2596 0.2396 

V24(p.u) 1.0513 1.0282 Q107(p.u) 0.2736 0.0776 

V25(p.u) 0.9836 1.0091 Q110(p.u) 0.0226 0.1743 

   Obj1 ($/h) 60567.8210 60928.7800 

   Obj2(MW) 2.5066 2.5886 

 
1) GD 

The GD factor is used to calculate the distance between 

PFs sets of MONIWOA method and the real PFs. The real 

 

PFs represents the best one among the obtained PFs solutions, 

and a value of GD=0 represents that all the candidate 

solutions are in line with the real PFs[29]. Consequently, the  
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TABLE XV  
AVERAGE RUNNING TIME 

Algorithm CASE 1 CASE 2 CASE 3 CASE 4 CASE 5 CASE 6 CASE 7 CASE 8 

MONIWOA 237.645 251.5658 259.5532 341.9074 384.11215 559.3032 1477.9135 1503.6842 

MODE 239.9258 257.0107 264.2912 349.8874 402.2325 568.0086 1509.7569 1507.3793 

MOPSO 241.8017 260.6698 362.916 350.61015 411.0507 564.2995   

TABLE XVI  

THE RESULTS OF GD FOR MONIWOA, MODE, MOPSO ALGORITHMS 

Indicator Test CASE 
MONIWOA MODE MOPSO 

Mean Deviation Mean Deviation Mean Deviation 

GD 

CASE 1 0.0654  0.0125  0.0710  0.0137  0.0841  0.0361  

CASE 2 0.0136  0.0048  0.0253  0.0062  0.0224  0.0118  

CASE 3 0.0580  0.0018  0.0757  0.0140  0.0878  0.0162  

CASE 4 0.0766  0.0034  0.0806  0.0094  0.0898  0.0183  

CASE 5 0.2548  0.0216  0.4084  0.1306  3.3276  1.3364  

CASE 6 0.4524  0.0884  0.4790  0.1359  0.5300  0.1250  

CASE 7 0.2554  0.0600  0.7745  0.3062    

CASE 8 0.5060 0.2293 1.1839 0.6098   

 

TABLE XVII  
THE RESULTS OF SP FOR MONIWOA, MODE, MOPSO ALGORITHMS 

Indicator Test CASE 
MONIWOA MODE MOPSO 

Mean Deviation Mean Deviation Mean Deviation 

SP 

CASE 1 0.6822  0.0344  0.7323  0.0534  0.9691  0.0662  

CASE 2 0.0005  0.0003  0.0009  0.0012  0.0025  0.0007  

CASE 3 0.8997  0.0674  1.0154  0.0505  0.8979  0.2784  

CASE 4 1.0527  0.1089  1.2039  0.0967  0.8723  0.3115  

CASE 5 13.0477  2.2445  46.1916  23.3778  15.1420  8.0880  

CASE 6 28.8606  1.5797  46.5911  26.9392  95.1347  53.2685  

CASE 7 10.4228  2.4473  9.9762  3.3746    

CASE 8 18.4330 2.2514 25.9783 15.6398   

 

smaller the GD is, the better convergence of the current 

obtained PFs solutions is to the real PFs. The GD can be 

expressed as follows: 
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where m indicates the total number of all the candidat 

solutions. disj represents the Euclidean distance between the 

PFs of jth solution and the real one. 

2) SP 

The SP factor is used to evaluate the uniformity of the 

optimal POS set through measuring the standard variance 

range of the adjacent candidate solutions, and a value of 

SP=0 represents that all the candidate solutions are evenly 

distributed. Consequently, the smaller the SP is, the better 

distribution uniformity of the current PFs is. The SP can be 

expressed as follows: 
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  (49) 

where Ns represents the total number of ds. 

3) Statistical analysis  

Boxplot, a predominant tool to analyze the GD and HV, 

can display a intuitive comparison of the statistical data, 

which is obtained by the MONIWOA, MODE and MOPSO 

algorithms. Especially, we can evaluate convergence and 

stability through the comparison of the boxplot’s maximum, 

minimum, median, outlier, upper quartile and lower 

quartile[29]. 

Boxplots of GD for CASE 1- CASE 8 are intuitively 

shown in Fig. 25. The MONIWOA algorithm has dominant 

ability to seek out smaller mean values and fewer outliers in 

all cases, and the results clearly demonstrates that the 

MONIWOA method is better than MODE and MOPSO 

algorithms, Therefore, it proves that the obtained PFs of 

MONIWOA method is more closer to the real PFs when 

compared with other algorithms. 

Boxplots of SP for CASE 1- CASE 8 are intuitively shown 

in Fig. 26. As compared to MODE and MOPSO algorithms, 

it can be clearly seen that the MONIWOA method has 

competitive advantages to pick up  smaller median value with 

fewer outlier. Obviously, the SP obtained by MONIWOA 

method have superior advantages to obtain better POS sets 

than other algorithms. 

The mean and deviation of GD for CASE 1- CASE 8 are 

shown in TABLE XVI, and the mean and deviation of SP for 

CASE 1- CASE 8 are shown in TABLE XVII. It is worth 

noting that the novel MONIWOA algorithm has strong 

ability to obtain minimal values of mean and deviation for 

GD simultaneously in most cases, and it also can obtain 

minimal values of mean and deviation for SP simultaneously 

in most cases. Consequently, it clearly shows that the 

MONIWOA algorithm can obtain more uniform distribution 

and better convergence of PFs than MODE and MOPSO 

algorithms when dealing with the MOOPF problem in all 

cases. 

4) Wilcoxon signed-rank test  

Wilcoxon signed-rank test is chosen to evaluate the 

performance of the MONIWOA algorithm in different power 

systems through testing the null hypothesis. In CASE 1, The 

BCs of Fc and Em and comparison results are chosen to 

calculate by the Wilcoxon signed-rank test approach in the 

system1, and the outcomes are shown in TABLE XVIII. In 

CASE 7, The BCs of Fc and Pl and comparison results are 
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Fig. 25. Boxplots of GD for MONIWOA, MODE and MOPSO  
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Fig. 26. Boxplots of SP for MONIWOA, MODE and MOPSO
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chosen to calculate by the Wilcoxon signed-rank test 

approach in the system3, and the results are shown in TABLE 

XIX. 

As is shown in TABLE XVIII, the values of p (p=0.0179 

and 0.0179 in system1-CASE 1) are all obviously less than 

the significance level (α=0.05), so the MONIWOA algorithm 

has a competitive advantage over obtaining the more optimal 

BCs of Fc and Em as compared to other algorithms in 

system1. As is shown in TABLE XIX, the values of p 

(p=0.0431 and 0.431 in system3-CASE 7) are less than the 

significance level (α=0.05), and the results demonstrates that 

the MONIWOA algorithm has a considerable advantage over 

obtaining the optimal BCs of Fc and Pl as compared to other 

algorithms in a more complicated power system. 

TABLE XVIII  

WILCOXON TEST OUTCOMES OF SYSTEM1 - CASE 1(REF=MONIWOA(Fc =834.1110, Em =0.2311)) 

Algorithm Fc ($/h) T Em (ton/h) T 

MOPSO 836.2408 + 0.2489 + 

MODE 834.9988 + 0.2431 + 

NSGA-II [1] 837.7028 + 0.2434 + 

NSGA-III [23] 836.4405 + 0.2423 + 

PSO [32] 883.2800 + 0.2388 + 

GSO [32] 852.8900 + 0.2446 + 

ASGO [33] 843.5473 + 0.2539 + 

  R+=28.0000 R-=0.00000  R+=28.0000 R-=0.0000 

  p=0.0179  p=0.0179 

 
TABLE XIX  

WILCOXON TEST OUTCOMES OF SYSTEM3 - CASE 7(REF=MONIWOA(Fc =58586.8759, Pl =56.1994)) 

Algorithm Fc ($/h) T Pl (MW) T 

MODE 59433.2483 + 58.1511 + 

NSGA-II [30] 59900.3741 + 58.8192 + 

NSGA-III [20] 59474.4030 + 58.4603 + 

HFBA-COFS [30] 59624.0613 + 61.0362 + 

MOPSO [20] 59133.1054 + 57.0368 + 

  R+=15.0000 R-=0.0000  R+=15.0000 R-=0.0000 

  p=0.0431  p=0.0431 

 

V. CONCLUSION 

In this paper, the standard WOA algorithm has some 

drawbacks with respect to the research of non-convex 

MOOPF problem. Here, some improved strategies which 

include piecewise non-linear strategy, dual dynamic weights 

mode and Lévy flight mechanism are employed to improve 

the performance of the WOA. Additionally, CPDR rule and 

CDRS strategy are adopted to deal with the MOOPF problem. 

In order to verify the effectiveness of the improved strategies, 

eight experiments which includes seven bi-objective 

functions and one tri-objective functions are tested in IEEE 

30-bus, 57-bus and 118-bus systems. In CASE 1- CASE 8, all 

the objective functions of the BCs obtained by MONIWOA 

approach are smaller than the ones of MODE and MOPSO 

algorithms correspondingly, and the MONIWOA’s average 

running time is smaller than others. In CASE 1 and CASE 7, 

it is clearly seen that the MONIWOA approach can find 

smaller objective functions of the BCs when compared with 

the results of other reported algorithms. High-quality POS 

and ideal BCs solutions obtained by MONIWOA approach 

prove that the novel approach owns outstanding superiority. 

In addition, the results of GD and SP factors prove that the 

MONWOA approach has better ability of obtaining 

highly-convergent and evenly-distributed PFs than MODE 

and MOPSO algorithms. In summary, it can be concluded 

that the MONIWOA approach can tackle the complicated 

MOOPF problem more effectively. 
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