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Abstract—In this paper, a stochastic SIQR epidemic model 

with vaccination effect is investigated. Our purpose is to study 
the dynamical behaviors of the model. First, the existence and 
uniqueness of the positive solution of the model is proved. Then, 
the dynamic properties of the model, such as extinction and 
persistence, are analyzed by regarding certain conditions on the 
parameters. Some sufficient conditions for extinction and 
persistence are given by using Itô’s formula and martingale 
methods. The results show that low-intensity white noise may 
cause disease to spread, while high-intensity white noise may 
drive infective, quarantined individuals to extinction. Finally, 
numerical simulations are illustrated to support the theoretical 
analysis.   

Index Terms—Stochastic SIQR epidemic model; Vaccination 
effect; Extinction; Persistence; Itô’s formula      
 

I. INTRODUCTION 

NFECTIOUS diseases have ranked with wars and famine 
as major challenges to human and society for centuries, 

affecting the social stability and economic development. 
COVID-19 has spread widely around the world since 2020, 
causing huge economic losses to countries around the world. 
Therefore, studying the spreading laws of infectious diseases 
has important practical significance. Dynamics of infectious 
diseases is mainly engaged in theoretical research on the 
spread and development of diseases with the purpose to trace 
factors that are contribute to their occurrence, so as to more 
effectively control epidemic of the disease.  

Since the concept of component model of infectious 
disease was proposed, more and more scholars have been 
interested in the dynamics of the infectious disease model. In 
the past decades, many epidemic models such as SIR model 
[1-4], SIRS model [5-10],SIRI model [11], SIS model 
[12-13], SEIS model [14], SIQS model [15-16] and SEIRS 
model [17-18]characterizing the spread law of infectious 
diseases in the real environment  were investigated by many 
scholars. In addition, some mathematical models of 
HIV/AIDS have also been extensively studied [30-33]. On 
the other hand, vaccination is one of the important means to 
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control the spread of epidemics, so it is also necessary to add 
vaccination effect to infectious disease models[19-25]. 
Vaccination can enable the vaccinated person to obtain a 
permanent or temporary immunity. If the immunity is 
permanent, it means that the susceptible population is 
restored to health. Literature [26] studied the following 
infectious disease model with vaccination effect: 
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(1.1)                    where ܵ(ݐ), (ݐ)ܳ ,(ݐ)ܫ, and ܴ(ݐ) represent the numbers of 
susceptible, infective, quarantined and recovered individuals 
at time t, respectively. A is the recruitment rate of the 
population. q is the vaccination rate and 0 1q< < , which 

means that q  is the proportion of susceptible people who 

recover to health and become R class. b  is the constant 

contact rate between  I  and  S. m is the natural death rate . 

1e and 
2e  are the death rates due to the disease of infective 

and quarantined individuals, respectively. g and l are the 

natural recovery rates of the infective and quarantined 
individuals, respectively. d is the removal rate from infective 
individuals to quarantined individuals. The system (1.1) 
assumes that the parameters are all positive constants.  

System (1.1) is a deterministic model, and its stability was 
discussed in [26]. In fact, in the real environment, random 
interference is everywhere, and random factors have an 
important impact on the outbreak of infectious diseases. May 
[27] pointed out that the birth rate, the death rate and other 
parameter involved in the biological system always exhibit 
stochastic fluctuations due to environmental noise. Therefore, 
it is necessary to add random disturbance to the deterministic 
model. In this paper, we construct a stochastic epidemic 
model by introducing noise term. Essentially the 
transmission rate can be rewritten as an average transmission 
rate plus an error term, and the error term follows a Gaussian 
distribution by the central limit theorem[28]. Based on the 
above consideration, we suppose the parameter b is 

disturbed with   
( )dt dt dB tb b s® + , 

where 2s  is a continuous bounded function on   standing 
for the intensity of the white noise at time t, and ( )B t  is a  
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standard Brownian motion. Then corresponding to the 
deterministic epidemic system (1.1), the stochastic SIQR 
epidemic model takes the following form: 
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The rest of this paper is organized as follows. In the next 

section, existence and uniqueness of global positive solution 
are obtained by stochastic analysis. In Sect. 3, we present 
extinction of the model (1.2) under certain assumption. Next, 
we show sufficient condition for persistence of the system. 
To verify the theoretical analysis in this paper, some 
numerical simulations are also presented in Sect. 5.  

In this paper, we always set ( , , )F PW be a complete 

probability space with a filtration 
0{ }t tF ³
 satisfying the usual 

conditions. Let ( )B t be the one-dimensional Brownian 

motion defined on this probability space. 

II. EXISTENCE OF UNIQUE GLOBAL POSITIVE SOLUTION 

Our purpose is to study the disease dynamic of the 
stochastic model (1.2), and whether there is a unique global 
solution is the basis for studying dynamic properties. The 
following result shows that the solution of model (1.2) is 
positive and global. 
Theorem 1 For any initial value ( (0), (0), (0), (0))S I Q R , 

then model (1.2) has a unique solution ( ( ), ( ), ( ),S t I t Q t  

( ))R t defined on [0, )t Î +¥  and the solution will remain in 
4 +

 with probability one. 

Proof:  Since the coefficients of model (1.2) satisfy locally 
Lipschitz  condition, then for any given initial value 
( (0), (0),S I 4(0), (0))Q R  +Î , there is a unique local 

solution ( ( ), ( ), ( ), ( ))S t I t Q t R t on [0, ]et tÎ , where
et is 

the explosion time of the solution. To show the 
solution ( ( ), ( ), ( ), ( ))S t I t Q t R t is global, we need to show 

that 
et = ¥  a.s.  

Let 
0 1k ³  be sufficiently large so that for (0)S , (0)I , 

(0)Q and (0)R given, they all lie within the interval 

0
0

1
[ , ]k
k

. For each integer 
0k k³ ,define the stopping time 

1
inf{ [0, ] : min( ( ), ( ), ( ), ( ))k et S t I t Q t R t

k
t t= Î £  

or max( ( ), ( ), ( ), ( )) }S t I t Q t R t k³ , 

where in this paper, let inf Æ = ¥ . From the stopping time 

definition, we know that kt  is a monotonically increasing 

function  as k ® ¥ . Set lim k
k

t t¥
®¥

= ,whence 
et t¥ £ a.s.  

If we can show thatt ¥ = ¥ , then 
et = ¥  and ( ( ), ( ),S t I t  

4( ), ( ))Q t R t  +Î a.s. for all [0, )t Î +¥ . In other words, to 

complete the proof, we need to show thatt ¥ = ¥ .If this 

statement is false, then there is a pair of constants 0T > and 

(0,1)e Î such that 

{ }P Tt e¥ £ > . 

Hence there is an integer
1 0k k³ such that 

{ }kP Tt e£ >                            (2.1) 

for all 
1k k³ . 

Besides, for 
kt t£ , we can obtain   
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Define a 2C -function 4:V  + +® by 

( , , , ) ( 1 ln ) ( 1 ln )V S I Q R S S I I= - - + - -  

( 1 ln ) ( 1 ln )Q Q R R+ - - + - - . 

The non-negativity of this function can be seen from 1u - -  

ln 0, 0u u³ " > .By using Itô’s formula, we get 

2
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Next, substituting (2.3) into (2.2), we have  
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( ) ( )dV Kdt I S dB ts£ + - .                               (2.4) 

Integrating both sides of (2.4) from 0 to
k Tt Ù and then 

taking the expectations , we have 
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Let { }k k TtW = £ for all 
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Note that for every { }k Tw tÎ £ , At least one of ( , )kS t w ,  

( , )kI t w , ( , )kQ t w and ( , )kR t w  equals k  or 1

k
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It then follows from (2.1) and (2.5) that 
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where 1 ( )
k
wW

 is the indicator function of
kW .Letting 

k ® ¥ , leads to the contradiction 

( (0), (0), (0), (0))V S I Q R KT¥ > + = ¥ . 

So we have  
. .e a st = ¥  

This completes the proof. 
Remark 1  Theorem 1 shows that for any given initial 

value ( (0), (0), (0), (0))S I Q R ,there exists a unique global 

solution ( ( ), ( ), ( ), ( ))S t I t Q t R t to system(1.2). Noting that 

( ) [ ( )]d S I Q R A S I Q R dtm+ + + £ - + + + , 

we can get 
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(0) (0) (0) (0)
A

S I Q R
m

+ + + £  

holds, then 

                      ( ) ( ) ( ) ( )
A

S t I t Q t R t
m

+ + + £ . 

Thus, the region 
 {( , , , ) : 0, 0, 0, 0,S I Q R S I Q R*G = > > > >  

( ) ( ) ( ) ( ) }
A

S t I t Q t R t
m

+ + + £          (2.6) 

is a positively invariant set with respect to system (1.2). 
  

III. EXTINCTION OF THE SYSTEM 

In the previous section, we have obtained some results on 
the existence, uniqueness and boundedness of the positive 
solution. In this section, we investigate certain sufficient 
conditions that may drive infective and quarantined 
individuals to extinction. 
Theorem 2  Let ( ( ), ( ), ( ), ( ))S t I t Q t R t be the solution of 

model (1.2) with initial value ( (0), (0), (0), (0))S I Q R .Then 
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Proof: Applying Itô’s formula to the I component of 
system(1.2),  we obtain that 
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Thus, by the strong law of large numbers, we have 
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If condition (a) is met,  we take the superior limit on both 
sides of (3.2), and obtain 
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lim ( ) 0
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Now integrating both sides of model (1.2) from 0 to t and 
dividing  t, one can show that 
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From (3.6) we can get  
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If condition (b) is met, by  taking  the superior limit on both 
sides of (3.7), we see 
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From the third equation of model (1.2) and (3.3), we can 

get 
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By using  (3.3) and  (3.8), one can show in the same way 
that 
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Also from system (1.2) we can obtain 

1 2( ) [ ( ) ]d S I Q R A S I Q R I Q dtm e e+ + + = - + + + - - . 

 By a simple computation, we can get 
      ( ) ( ) ( ) ( )S t I t Q t R t+ + +  

[ (0) (0) (0) (0)]te S I Q Rm-= + + +  

1 20
( ( ) ( ))

tt re A I r Q r e drm me e-+ - -ò . 

Using the well-known  L’Hospital’s  rule , we have 
lim ( ( ) ( ) ( ) ( ))
t

S t I t Q t R t
®¥

+ + +  

(0) (0) (0) (0)
lim

tt

S I Q R

e m®¥

+ + +
=  

1 20
( ( ) ( ))

lim

t r

tt

A I r Q r e dr

e

m

m

e e

®¥

- -
+

ò  

1 2( ) ( )
lim
t

A I t Q te e

m®¥

- -
= .                                   (3.10) 

Finally, substituting  the limit results of  I(t), Q(t) and R(t) 
into (3.10), we have  

(1 )
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t
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
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The proof is now completed. 
Remark 2  Theorem2 show that if the white noise is large 

enough to satisfy the condition 
2

2

12( )


   


  

, the 

disease will be extinct. At the same time, quarantined 
individuals will also die out. On the other hand, if the 
intensity of the white noise is not large and the model 
parameters meet certain conditions, the disease will also be 
extinct. 

IV. PERSISTENCE OF THE SYSTEM 

In this section, we discuss the strong persistence in the 
mean of system (1.2) under certain conditions on the 
parameters. First we recall the concept of persistent in time 
average. 

Definition 1  The system (1.2) is said to be persistent in time 
average if 

0

1
lim inf ( ) 0

t

t
I r dr

t
   a.s. 

For simplicity, we define 
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0
( )

( )

t
f s ds

f t
t

=
ò . 

The lemma below is used to prove persistence in the mean. 
Lemma 1  Let [[0, ) , (0, )]f CÎ ¥ ´W ¥  and ( )F t Î  

([0, ) , R)C ¥ ´W . If there exist positive constants 
0l and λ 

such that 

0 0
ln ( ) ( ) ( )

t
f t t f s ds F tl l< - +ò  a.s., 

and 

 ( )
lim 0
t

F t

t
     a.s., 

then  

 
0

0

1
lim sup ( )

t

t
f s ds

t




   a.s. 

Theorem 3  Assume that 
2 2

12 (1 ) 2 ( )q A A             

and  
2

(1 )q A

 


 

hold. If ( ( ), ( ), ( ), ( ))S t I t Q t R t is a solution of system (1.2), 

then 
lim inf ( ) lim sup ( )

t t

I I t I t I *
*

®¥ ®¥

£ £ £  a.s., 

*
lim inf ( ) lim sup ( )

t t
Q Q t Q t Q*

®¥ ®¥

£ £ £   a.s., 

and  
*

lim inf ( ) lim sup ( )
t t

R R t R t R*
®¥ ®¥

£ £ £   a.s., 

where  
2 2

1

1

2 (1 ) 2 ( )

2 ( )

q A A
I

      
    

     


  
,     

2 2
1

2
1

(1 ) [2 (1 ) ] 2 ( )

2( )[ (1 ) ]

q A q A
I

q A

      
     

       


    
, 

2

Q I
d

m e l ** =
+ +

, 

*

2

Q I
d

m e l
*=

+ +
, 

qA
R I Q

g l

m m m
* * *= + + , 

* *qA
R I Q

g l

m m m
*= + + . 

Proof   From (3.7) yields  
ln ( ) ln (0)I t I

t

-  

2 2 2

1 2

(1 ) (1 )
( )

2

q A q Ab s
m e g d

m m

- -
£ - + + + -  

2
1 (1 )

( ) ( )
q A

I t
    

 
   

   

( )
( )

M t
t

t
+ + F .                                                             (4.1) 

Next we can rearrange (4.1) to the following inequality 
2 2 2

1 2

1 (1 ) (1 )
( ) [ ( )

2

q A q A
I t

m

    
 
 

       

                     ( ) ln ( ) ln (0)
( ) ]

M t I t I
t

t t

-
+ + F - , 

where  
2

1 (1 )
( )

q A
m

    
 

   
  . 

Combining Lemma1 and conditions of Theorem3, it is not 
difficult to derive that 
lim sup ( )

t
I t

®¥

 

2 2 2

1 2

2
1

(1 ) (1 )
( )

2
(1 )

( )

q A q A

q A

    
 
    

 

 
    


   

 

2 2
1

2
1

(1 ) [2 (1 ) ] 2 ( )

2( )[ (1 ) ]

q A q A

q A

      
     

      


    
 

I  . 
On the other hand, substituting (3.5) into the first equation of 
(3.1) , one can see 
ln ( ) ln (0)I t I

t

-  

2 2
1

1 ( )
( ) ( ) ( )

2

M t
S t S t

t
b m e g d s= - + + + - +  

2 2
1

(1 ) 1
( ) ( )

2

q A
S t

b
m e g d s

m

-
= - + + + -  

1( ) ( )
( ) ( )

M t
I t t

t

b m e g d
bj

m

+ + +
- + +  

2 2
1

(1 ) 1
( ) ( )

2

q A Ab
m e g d s

m m

-
³ - + + + -  

1( ) ( )
( ) ( )

M t
I t t

t

b m e g d
bj

m

+ + +
- + + . 

Rearrange the above inequality and we get 

1
1

(1 )
( ) [ ( )

( )

q A
I t

     
     


    

  
 

                     
2 2

2

( ) ln ( ) ln (0)
( ) ]

2

A M t I t I
t

t t

s
bj

m

-
- + + - . 

It can be concluded that  
lim inf ( )

t
I t

®¥

 

2 2

1 2

1

(1 )
( )

2
q A A    

 
    



     


  
 

2 2
1

1

2 (1 ) 2 ( )

2 ( )

q A A      
    

     


  
 

I . 

From the third equation of (3.4), we can see 

2 2

( ) (0)
( ) ( )

( )

Q t Q
Q t I t

t

d

m e l m e l

-
= -

+ + + +
. 

It follows that  

2

lim inf ( ) lim inf ( )
t t

Q t I t
d

m e l®¥ ®¥
=

+ +
  

2

Id

m e l
*³

+ +
 

Q *= , 

and 

2

lim sup ( ) lim sup ( )
t t

Q t I t
d

m e l®¥ ®¥

=
+ +
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2

Id

m e l

*

£
+ +

 

*
Q= . 

Similarly, applying the same method to the last equation of 
(3.4), we have 

( ) (0)
( ) ( ) ( )

qA R t R
R t I t Q t

t

g l

m m m m

-
= + + - . 

Then, we obtain from the above equation that  

lim inf ( ) lim inf ( ) lim inf ( )
t t t

qA
R t I t Q t

g l

m m m®¥ ®¥ ®¥
= + +  

qA
I Q

g l

m m m* *³ + +  

R*= , 
and 

lim sup ( ) lim sup ( ) lim sup ( )
t t t

qA
R t I t Q t

g l

m m m®¥ ®¥ ®¥

= + +  

*qA
I Q

g l

m m m
*£ + +  

*
R= . 

Therefore we get the desired assertion. 
Remark 3  Theorem 2 and Theorem 3 give the sufficient 
conditions for extinction and persistence of model (1.2) 
respectively. Let 2

1 (1 ) [2 (1 ) ]R q A q A      and 
2

2 2 (1 )R q A A    . From the above result we can 

conclude  that under the premise of satisfying condition, 
2

(1 )q A

 


, 2
1 12 ( )R          will make the 

disease extinct, and 2
2 12 ( )R          will lead to 

the epidemic of the disease. It is easy to see 
1 2R R . 

V. NUMERICAL SIMULATION 

In order to verify the theoretical analysis in Sect. 3 and 
Sect. 4, we will present some numerical results in this section. 
By using Milsteins method described in [29], we consider the 
following discretization system : 

1

2 2

1 1

2 2

1 2

1

[(1 ) ]

1
( 1) ,

2

[ ( ) ]

1
( 1) ,

2
[ ( ) ] ,

[ ] ,

k k k k k k k k

k k k

k k k k k k k k

k k k

k k k k

k k k k k

S S q A S I S t S I t

S I t

I I S I I t S I t

S I t

Q Q I Q t

R R qA I Q R t

b m s x

s x

b m e g d s x

s x

d m e l

g l m

+

+

+

+

ì - = - - - D - Dï
ï
ï + - D
ï
ï
ï - = - + + + D + D
í
ï

+ - Dï
ï
ï - = - + + Dï
ï - = + + - Dî  

where tD is time increment and 
kx is a Gaussian random 

variable which follows (0,1)N .Without loss of generality, 

we choose initial value ( (0), (0), (0), (0))S I Q R = (0.8, 0.4,  

 0.4, 0.5) .The parameters of system  are selected as follows: 

1 20.5, 0.5, 1.0, 0.1, 0.4, 0.1,A q b m e e= = = = = =  

0.4, 0.4, 0.2.g d l= = =  

According to the above parameters, we have 

0.4
(1 )q A





, 

and 

2
12 ( ) 0.026        . 

Case 1.  First, we investigate the extinction of model (1.2).  

Assume 0.62s = . Obviously, 2

(1 )q A

 


. Through 

simple calculations, we can get 
2(1 ) [2 (1 ) ] 0.025975q A q A      

2
12 ( )        , 

which means that condition (b) of Theorem 2 hold. 
Therefore, the disease will be extinct. Numerical simulation 
can be displayed  in Figure 1. It can be seen from Figure 1 
that under the interference of white noise, ܵ(ݐ) and (ݐ)ܫ are 
strongly oscillated in the initial stage. As time t increases, 

disease gradually disappears, and ܵ(ݐ) tends to (1 )q A


 .   

 Case 2. We set 0.15s =  under the same parameter 
conditions. It is easy to see that  

2 2
12 (1 ) 2 ( )q A A            , 

which shows that conditions of Theorem3 are satisfied. 
Therefore, we can conclude that the system is persistent, 
which is illustrated in Figure 2. Next, we set 0s = .That is, 
we get the deterministic model corresponding to the random 
model. Figure 3 implies that the corresponding deterministic 
system is asymptotically stable. From Figure 2 and Figure 3, 
it can be seen that under the effect of stochastic disturbance, 
although the model does not have an endemic equilibrium 
point, it has similar stability to the deterministic model.  
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Fig.1. Numerical simulation of system (1.2) for 
0.62s =  with initial value (0.8, 0.4, 0.4, 0.5). 

 
Case 3. Finally, we consider the case where the intensity of 
white noise is relatively large.  Let 1.0s = and we have  

2
2

12( )


   


  

. 

This means that the condition  (a)  of Theorem 2 is satisfied. 
Therefore, the disease will also be disappear. This property 
can be shown in Figure 4. Comparing Figure 1 with Figure 4, 
we can see that when the intensity of white noise increases, it 
will cause the disease to disappear quickly. 
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Fig.2. Numerical simulation of system (1.2) for 
0.15s =  with initial value (0.8, 0.4, 0.4, 0.5). 
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Fig.3. the corresponding deterministic system is 

asymptotically stable 

0 100 200 300
0

1

2

3

t

S
(t
)

0 100 200 300
0

0.5

1

1.5

2

t

I(
t)

0 100 200 300
0

0.5

1

1.5

2

t

Q
(t
)

0 100 200 300
0

1

2

3

4

t

R
(t
)

 
Fig.4. Numerical simulation of system (1.2) for 
1.0s = with initial value (0.8, 0.4, 0.4, 0.5). 

 
 

VI. CONCLUSION 

In the present paper, a stochastic SIQR epidemic model 
with vaccination effect is studied. Compared with the 
corresponding deterministic epidemic system considered in 
[26] , the stochastic system in this paper considers that the 
parameter β are affected by environmental perturbation. We 
incorporate a noise term into the system and investigate the 
effects of the white noise on the dynamics of the system. By 
taking the tricks in random calculations, some results on the 
existence, uniqueness and boundedness of the positive 
solution are obtained. It has been shown certain sufficient 
conditions that may drive infective and quarantined 
individuals to extinction. Further, the properties of system 
persistence are determined. Finally, we present some 
numerical results. From the simulations we can conclude that 
white noise can not only make the disease disappear, but also 
keep the system in a permanent state. 

The effects of environmental disturbances in nature are 
everywhere, and ergodic property is an important element to 
characterize the dynamics of biological systems. we regret to 
point out that we only consider the extinction and persistence 
of the system in the present paper. In future studies, we will 
try to discuss other properties of the model, such as ergodic 
property and the existence of an invariant distribution. Also 
we would build some models with age structure and time 
delay, which are interesting for their biological significance. 
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