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Abstract—In this work, a design and implementation of a
modified PID for tracking time-varying references are designed.
The modified PID structure allows the reduction of the zeros
added by the classical PID structure. The design of the
controller is performed by considering time features such as
settling time and maximum overshoot. The proposed controller
is implemented and evaluated over a Hardware-in-the-Loop
structure for real-time control performance. The controller is
designed around an operational point and is evaluated for initial
conditions, constant references, and time-varying references in
terms of settling time and maximum overshoot. As a result,
the modified PID structure shows advantages over the classical
PID structure in terms of settling-time, maximum overshoot,
and fidelity to the designed features.

Index Terms—Real-time, PID control, Magnetic Levitation,
Time-varying reference.

I. INTRODUCTION

THE design of PID controllers over nonlinear systems is
usually performed by using the transfer function H(s)

of the system computed by a linear approximation of the
nonlinear system around an operational point [1]. Several
controllers can also be applied over nonlinear systems,
such as variable structure controllers [2], adaptive robust
controllers [3] or intelligent controller [4]. It is worth noting
that a key factor in the design of controllers over real
systems is the evaluation of the controller over simulated
and real prototypes [5]. These prototypes are usually
build-up by using Hardware-In-the-Loop (HIL) strategies
or Software-In-the-Loop (SIL) structures, being the HIL
structure the most common implementation to evaluate the
effectiveness of the controller [6].

The common equation for a PID controller is defined as

u(t) = Kpe(t) +Ki

∫
e(τ)dτ +Kd

de

dt
(1)

being Kp, Ki and Kd, the controller parameters, and e(t)
the tracking error computed as

e(t) = r(t)− y(t) (2)

being r(t) the reference of desired output signal and y(t) the
output of the system to be controlled [7].

The transfer function of the error-based PID controller
of (1), defined as C(s) is obtained by applying the Laplace
transform over (1) as:

C(s) = Kp +
Ki

s
+Kds (3)
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being U(s) = C(s)E(s) and considering that the tracking
error is computed by

E(s) = R(s)− Y (s) (4)

where the linearized plant to be controlled H(s) around an
operational point is defined as:

Y (s) = H(s)U(s) (5)

The resulting block diagram of the closed-loop system
considering (3), (5) and (4) is presented in Fig. 1.

Fig. 1. Closed Loop controller

The success of the controller is highly dependant of the
variability of the nonlinear function around the operational
point where the system is operating [8]. The closed-loop
transfer function can be obtained from the block diagram
of Fig. 1, as follows:

Y (s) = HCLR(s) (6)

being HCL defined as

HCL =
H(s)C(s)

1 +H(s)C(s)
(7)

Two design criteria are usually applied to design the
controller [9]. The first one is based on the closed-loop
characteristic equation pLC(s) which is the denominator
of the closed-loop transfer function. This design criteria
considers a desired equation for the closed-loop dynamics
as pd(s) where the following relation is defined

pCL(s) = pd(s) (8)

The second criteria considers the steady-state error ess by
applying the Final Value Theorem computed as follows

ess = lim
t→∞

e(t) = lim
s→0

sE(s) (9)

This design criteria considers that the absolute value of the
steady-state error must achieve the following condition

|ess| ≤ ε (10)

being ε > 0 a threshold defined as the maximum permissible
error for steady-state.

A methodology to design a PID controller for nonlinear
systems around an operational point is presented in this
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work. The methodology is obtained by combining (8)
and (10) to design the controller, which results in a PID
with time-varying tracking capabilities. A modified structure
of the PID is used to reduce the effect of the zeros
added by the controller structure. The proposed approach
is validated by using a Magnetic Levitation nonlinear
system around an operational point. The tracking capabilities
are evaluated for initial conditions, constant references,
and time-varying references. A HIL implementation of
the Magnetic Levitation is used to evaluate the controller
performance over a real system. This paper is organized as
follows: section II describes the mathematical methods for
modeling the magnetic levitation system and PID design.
In section III the discrete equations used for real-time
implementation of the controller and the HIL model of
the magnetic levitation system are presented, and finally, in
section IV the results and discussion are shown.

II. MATHEMATICAL MODEL

Consider the Magnetic Levitation model of Fig. 2 with
current u(t) as an input, and output y(t) the displacement of
mass M .

Fig. 2. Magnetic Levitation system

The system of Fig. 2 can be modeled by the following
dynamical equation

Mg −Ku(t)

y(t)
= Mÿ (11)

By considering the operational point y0 a constant, an
equilibrium equation can be obtained

Mg −Ku0

y0
= 0 (12)

where u0 is obtained as

u0 =
Mgy0

K
(13)

The linear approximation of (11) by using Taylor series
approximation is obtained as

−Ky0

M
∆u(t) +

Ku0

My2
0

∆y(t) = ∆ÿ (14)

By defining the parameters of the Magnetic Levitation system
of (11) as M = 0.05, K = 1, g = 9.8 and y0 = 0.01, the
following linear equation is obtained:

−2000∆u(t) + 980∆y(t) = ∆ÿ (15)

By applying the Laplace transform over (15) the transfer
function of the Magnetic Levitation system of Fig. 2 is
obtained

∆Y (s) =
−2000

s2 − 980
∆U(s) (16)

In Fig. 3, is presented the resulting linear closed-loop
block diagram.

Fig. 3. Linear closed-loop block diagram

The steady-state error by using the Final Value theorem
around an operational point is re-defined for the linear model
as follows:

∆ess = lim
s→0

s∆E(s) (17)

where ∆E(s) is obtained from the block diagram of Fig. 3
as follows:

∆E(s) =
s3 − 980s

s3 − 2000Kds2 − (2000Kp + 980)s− 2000Ki

∆R(s) (18)

where the closed-loop characteristic equation pCL(s) is

pCL(s) = s3 − 2000Kds
2 − (2000Kp+ 980)s− 2000Ki

(19)

The first criteria for desired poles suggest that the
dynamical behaviour of the closed-loop system must be
determined by the following closed-loop complex poles:

s1,2 = −2± j
√

2

However, since pCL(s) is a third order equation, an
additional pole is required for the desired closed-loop
equation pd(s). Therefore, the pd(s) is defined as

pd(s) = (s+ 2 + j
√

2)(s+ 2− j
√

2)(s+ p) (20)

being s = −p with p > 0, the additional closed-loop pole.
From (20), the pd(s) can be obtained as

pd(s) = s3 + (4 + p)s2 + (4p+ 6)s+ 6p (21)

By defining pd(s) = pCL(s) the following relationships
can be obtained

−2000Ki = 6p (22)
−(2000Kp + 980) = 4p+ 6 (23)

−2000Kd = 4 + p (24)

where is remarkable that, since p > 0 then Ki must be
negative. It is noticeable the equations (22), (23) and (24)
describe a system of three equations and four unknown
quantities. In order to obtain an additional constraint and
solve the system, the second criteria for steady-state error is
used.

The second criteria considers the steady-state error of (17),
where ∆ess is equal to zero for ∆R(s) of type impulse
and step. For time-varying references ∆R(s) of type ramp,
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∆ess is not equal to zero. For this case, the steady-state error
of (17) around and operational point is defined as

∆ess =
980

2000Ki
(25)

where a ∆R(s) = 1
s2 is used. By considering an ε = 0.05

for the second criteria, the resulting constraint is

|∆ess| ≤ 0.05 (26)

and therefore

|Ki| ≥ 98 (27)

By choosing Ki = −100 the resulting p is p = 200000
6

and therefore, Kp and Kd are

Kp = −67.15 (28)
Kd = −16.66 (29)

It is worth noting that the dominant response of the
closed-loop system is approximated by the transfer function

Y (s) ≈ ω2
n

s2 + 2ρωns+ ω2
n

R(s) (30)

being the damping coefficient ρ = 0.816 and ωn = 2.45,
which is presented in Fig. 4.

Fig. 4. Dominant response of the closed-loop system

It can be seen that the maximum overshot is around 1.18%
of the unitary step, and the settling time is around 2 seconds.

The resulting closed-loop transfer function is given by

∆Y (s) =
−2000(Kds

2 + Kps + Ki)

s3 − 2000Kds2 − (2000Kp + 980)s− 2000Ki

∆R(s) (31)

It is worth noting that the closed-loop transfer function has
two zeros related directly to the controller, in comparison
with the system that has no zeros. This phenomenon is due
to the structure of the PID controller, where the derivative
and proportional actions are related directly to the error. If
the structure of Fig. 3 is modified as shown in Fig. 5 the
resulting closed-loop has no zeros.

Fig. 5. Linear closed-loop with modified PID structure

By considering Fig. 5 the resulting closed-loop transfer
function is now given by

∆Y (s) =
−2000Ki

s3 − 2000Kds2 − (2000Kp + 980)s− 2000Ki

∆R(s) (32)

where the closed-loop characteristic equation is hold, and
where the transfer function for the error is now defined as

∆E(s) =
s3 − 2000Kds

2 − (2000Kp + 980)s

s3 − 2000Kds2 − (2000Kp + 980)s− 2000Ki

∆R(s) (33)

which has the same dynamics but for the selected values
of the controller, the steady-state error for a ramp reference
signal, is computed as

|∆ess| = 0.66 (34)

Therefore, in order to reduce the steady-state error, and
according to the stability criteria, the controller parameters
must be recalculated. For time-varying references ∆R(s) of
type ramp, ∆ess is not equal to zero. For this case, the
steady-state error of (17) around and operational point is
defined as

∆ess =
2000Kp + 980

2000Ki
(35)

where a ∆R(s) = 1
s2 is used. By considering an ε = 0.05

for the second criteria, the resulting constraint is

|∆ess| ≤ 0.05 (36)

III. REAL-TIME CONTROL EVALUATION

The real time implementation of the magnetic levitation
system of (11) is performed by an approximation of the
nonlinear model by using the backwards operator. The
resulting nonlinear difference equation is defined as

y[k] = gh2 − Kh2u[k − 2]

My[k − 2]
+ 2y[k − 1]− y[k − 2] (37)

The discrete implementation of the PID controller in its
classical or modified structure is based on the approximation
by backward differences of derivative and integrative
operators. The classical structure of the PID is implemented
by using the following set of difference equations:

ei[k] = ei[k − 1] + he[k] (38)

ed[k] =
e[k]− e[k − 1]

h
(39)

u[k] = Kpe[k] +Kded[k] +Kiei[k] (40)

being ei[k] the integral of the error e[k] and ed[k] the
derivative of the error e[k], and h the sample time, where
the error e[k] = r[k]− y[k].

The block diagram of the Hardware-In-the-Loop (HIL)
implementation of the classical PID controller over a
Magnetic Levitation (MagLev) model is presented in Fig. 6.
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Fig. 6. Block diagram of the HIL implementation of the MagLev model
for the classical PID controller

On the other hand, the modified structure of the PID
is implemented by using the following set of difference
equations:

ei[k] = ei[k − 1] + he[k] (41)

yd[k] =
y[k]− y[k − 1]

h
(42)

u[k] = −Kpy[k]−Kdyd[k] +Kiei[k] (43)

being yd[k] the derivative of the output y[k], ei[k] the integral
of the error e[k].

The block diagram of the HIL implementation of the
modified PID controller over a MagLev model is presented
in Fig. 7.

Fig. 7. Block diagram of the HIL implementation of the MagLev model
for the modified PID controller

It is worth noting that the HIL implementation is
performed over an ARDUINO DUE embedded system at
74MHz clock frequency, and the real-time controller is
implemented in C++ by using a real-time clock with priority
and a Data-AcQuisition system USB-6009 from National
Instruments with a sample time h = 10 milliseconds.

IV. RESULTS AND DISCUSSIONS

The designed control system is evaluated under unitary
impulse, response, and ramp signals for the continuous
closed-loop transfer functions to validate the design
conditions. These reference signals are selected to validate
the response of the closed-loop system to initial conditions,
constant reference tracking, and time-varying reference
tracking.

The response to a unitary impulse by using a classical PID
structure is presented in Fig. 8.

Fig. 8. Unitary impulse response by using a classical PID structure

The response to unitary step reference by using a classical
PID structure is presented in Fig. 9.

Fig. 9. Unitary step response by using a classical PID structure

It is noticeable that the tracking response of the
closed-loop system obtained by using the classical PID
structure, shown in Fig. 9, is not adequate since this response
is not similar to the tracking response presented in Fig. 4 in
terms of the settling-time. This effect is due to the zeros of
the closed-loop system added by the PID classical structure.

The response to unitary ramp reference by using a classical
PID structure is presented in Fig. 10.
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Fig. 10. Unitary ramp response by using a classical PID structure

The response to a unitary impulse by using a modified
PID structure is presented in Fig. 11.

Fig. 11. Unitary impulse response by using a modified PID structure

The response to unitary step reference by using a modified
PID structure is presented in Fig. 9.

Fig. 12. Unitary step response by using a modified PID structure

The response to unitary ramp reference by using a
modified PID structure is presented in Fig. 10.

Fig. 13. Unitary ramp response by using a modified PID structure

It is noticeable that the tracking response of the
closed-loop system obtained by using the modified PID
structure, shown in Fig. 12, is quite similar to the tracking
response presented in Fig. 4.

In Fig. 14 it is shown the real reference r(t) and output
y(t) signals, considering a 5 seconds constant reference
signal, by considering the modified PID structure. Two
signals are presented by using the Digital-Analog -Converters
of the micro-controller: y(t) and r(t). The signals are
acquired by using an Uni-T, two channel, 100 MHz
bandwidth, 1GS/s Oscilloscope.
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Fig. 14. Real-time 5 seconds constant reference tracking performance

It is worth noting that the output signal y(t) in Fig. 14
tends to the reference r(t) with zero steady-state error.

In Fig. 15 it is shown the real reference r(t) and output
y(t) signals, considering a 4 seconds constant reference
signal, by considering the modified PID structure.

Fig. 15. Real-time 4 seconds constant reference tracking performance

In Fig. 16 it is shown the real reference r(t) and output
y(t) signals, considering a 3 seconds time-varying reference
signal. It can be seen that the output signal y(t) tends to
the reference r(t) with a constant steady-state error, which
is directly related to the slope of the reference.

Fig. 16. Real-time time-varying reference tracking performance

In Fig. 17 it is shown the real reference r(t) and output
y(t) signals, considering a 15 seconds time-varying reference
signal, where is clear that y(t) tends to the reference r(t)
with a constant steady-state error directly related to the
change-rate of the reference.

Fig. 17. Real-time time-varying reference tracking performance for 15
seconds segment

V. CONCLUSIONS

A methodology to design a PID controller for nonlinear
systems around an operational point is presented in this work.
The method is obtained by combining (8) and (10) to design
the controller, which results in a PID with time-varying
tracking capabilities. A modified structure of the PID is used
to reduce the effect of the zeros added by the controller
structure. As shown in the results, the proposed modified
PID structure effectively reduces the impact of the zeros
of the system compared to the classical PID structure. The
Magnetic Levitation nonlinear system is implemented in a
HIL structure with the real-time modified PID designed
around an operational point. The tracking capabilities are
evaluated for initial conditions, constant references, and
time-varying references. The proposed approach increases

IAENG International Journal of Applied Mathematics, 51:3, IJAM_51_3_39

Volume 51, Issue 3: September 2021

 
______________________________________________________________________________________ 



the performance of the classical control approach in terms
of design fidelity for settling-time and maximum overshoot.
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