
 

 

 Abstract—The purpose of this study is to identify the best 

model of the length-of-stay (LoS) hospitalized for patients with 

COVID-19 in West Sumatra, Indonesia. The LoS data is 

skewed to the right or violates linear model assumptions; thus, 

a quantile approach is employed. The asymptotic variance of 

quantile regression is estimated by constructing the confidence 

interval for the parameter of interest. This study will compare 

the result based on five different methods in resampling 

bootstrap. This study proves that wild bootstrap quantile tends 

to produce the shortest confidence interval.  This study found 

that Diagnosis and Final outcome are statistically significant to 

give impact to the LoS hospitalized COVID-19 patients. 

 
Index Terms—Length-of-stay (LoS) hospitalized, quantile 

regression, wild bootstrap 

 

I.   INTRODUCTION 

The Covid 19 pandemic has spread across the world since 

the beginning of 2020. In Indonesia, the COVID-19 

confirmed cases had been reported rapidly increasing. The 

COVID-19 pandemic has also placed an unprecedented 

strain on health systems, with rapidly escalating healthcare 

demand in hospitals. As the pandemic increase, determining 

or predicting demand for hospital services (beds, staff, 

equipment) has become a key priority anywhere. Predicting 

demand for hospital services requires estimating how long 

each person will require hospital care and estimate the 

number of patients requiring hospitalization [1]. Therefore, 

it is important to determine the factors that affect the length-

of-stay (LoS) hospitalized for patients with COVID-19. The 

most common approach for determining these causal effect 

is multivariate linear regression [2], [3]. However, this 

method is not the optimal approach due to some limitations 

such as requiring the normality assumption or homogeneity 

of data variance and inability to properly managed the outlier 

values [4], [5]. 
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Quantile regression is one of the methods that can 

overcome these limitations. The statistical procedure in this 

modeling technique is based on minimizing sums of 

asymmetrically weighted absolute residuals [6]. This 

method can be utilized to explore the relationship between 

quantiles of the response distribution and available 

covariates. Comparing such quantiles for a range of τ values 

enables researchers to obtain a more complete picture of the 

conditional distribution than mean regression [7]–[9]. 

Quantile regression allows researchers to explore a range 

of conditional quantile functions, thereby exposing 

various forms of conditional heterogeneity, and 

controlling for unobserved individual characteristics [10].  

Many studies have been done to develop the asymptotic 

properties of these estimators. In particular, the asymptotic 

variance of quantile regression estimators depends on the 

density of a term which is not easy to compute in practice 

[7], [11], [12]. Several studies then considered to employ the 

Bootstrapping resampling methods to estimate the 

asymptotic variance for quantile regression that is easier to 

use. Yanuar et al [9]  used the pairwise bootstrap to model 

the low birth weight based on a quantile approach. Parzen, 

Wei, and Ying [13] proposed a general and simple 

resampling method for inferences  based on pivotal 

estimating functions for quantile regression estimator. The 

quantile bootstrap using the Markov chain marginal 

bootstrap (MCMB) was proposed by He and Hu [14]. 

Meanwhile, Kocherginsky, He and Mu [15] did a 

modification of the Markov chain marginal bootstrap 

(MCMB) to construct confidence intervals in quantile 

regression. Bose and Chatterjee [16] proposed a generalized 

bootstrap technique for estimators obtained by minimizing 

functions that are convex in the parameter. They established 

the consistency of these schemes via representation 

theorems. Feng, He and Hu [17] proposes an adaptation wild 

bootstrap methods for quantile regression to achieve the best 

model. 

 In a preliminary analysis, we obtained that the distribution 

of error is not normal and not homogeneous due to any 

outliers in the data [18]. Therefore, we consider to 

implement the quantile regression method to describe some 

relationships between independent variables on selected 

quantiles of the response variable [5]–[7]. The asymptotic 

variance of the quantile regression estimator is estimated 

based on bootstrap resampling methods [20]. The smallest 

confidence interval for parameter estimated will be 

determined based on different five methods in bootstrap 

resampling methods. Accordingly, this study focuses on 
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modeling the LoS hospitalized for patient with COVID-19 

using a comparison of the resampling bootstrap method 

based on quantile regression.  

The rest of the paper is organized as follows. In Section 2, 

we present model formulation, data and methods 

implemented in this study. Section 3 contains the modeling 

of the LoS hospitalized for patients with COVID-19 in West 

Sumatera by employing five different methods of bootstrap 

quantile approaches. Finally, brief conclusions are given in 

Section 4.   

 

II.   MATERIALS AND METHODS 

A. Materials 

The indicators for the LoS hospitalized are constructed 

based on previous studies. Epidemiological studies have 

shown that mortalities are higher in the elderly population, 

and the incidence is much lower in children [19], [20]. Yuki 

et al. [21] identified that elderly patients were more 

susceptible to longer LoS than younger. Many studies also 

investigated that the presence of hypertension, diabetes, and 

coronary artery disease were considered as hazard factors for 

confirmed COVID-19 patients [22], [23]. While, Gebhard et 

al. demonstrated that Covid-19 is deadlier for infected men 

than women [24]. Study by Cheda et al, [25] considered that 

gender, age and final outcome were keys for accurately 

forecasting the LoS in a case study in Galicia (Spain). 

Besides, Thai et al. [26] proved that patients with positive 

COVID-19 results tent to have longer length of hospital stay 

than patients had no symptoms. 

Based on previous researchers, this present study assumes 

Age, Gender, Comorbidities, Diagnosis, and Final outcome 

as indicators for affecting the LoS hospitalized for patients 

with COVID-19. The response variable is LoS recorded in 

days. Age is a continuous type recorded in years. 

Comorbidities are how many diseases that each patient has 

represented in a continuous variable. Gender is recorded in 

males and females. Diagnosis is categorized into four types, 

i.e., Asymptomatic Person (denoted as Asymp), Person 

Under Supervision (denoted as PerUS), Patience Under 

Supervision (denoted as PaUS), and Confirmed.  Meanwhile, 

the categories for Final outcome are Recovered, Died, Force 

discharge, Referred to other hospitals, and Outpatients. 

This study uses the documented data obtained from 

several hospitals in West Sumatra, Indonesia, from March to 

October 2020. All 688 patients who were hospitalized which 

various Diagnosis-related COVID-19 were involved. The 

patients were diagnosed as Asymptomatic Person (10 

patients or 1.5%), Person Under Supervision or PerUS (16 

patients or 2.3%), Patience Under Supervision or PaUS (584 

patients or 84.8%), and Confirmed (77 patients or 11.2%).   

Based on gender, 347 patients, or 50.4%, are Male and 

342 patients, or 49.6%, are Female. Based on the residential 

address, 218 of them (31.7%) are from a district in West 

Sumatera, 410 patients (59.6%) are living in a city in West 

Sumatera, and 60 patients (8.7%) among them came from 

West Sumatera but at the survey hold they stay not in West 

Sumatera. Characteristic patients based on occupation are 

Housewife (25.7%), Kids (18.2%), Entrepreneur (14.1%), 

Others (10.9%), Private and Students each are 10.5%, and 

10.2% among patients are Civil servant. For Final outcome, 

73.3% among them are Recovered, about 20.5% are Died, 

around 4.4% are Forced discharge, 1.3% are Referred to 

other hospital and 0.6% or four patients are Outpatients 

(controlled from home). 

In our data set, the age of each patient is also documented. 

The average age is 36.14 years old, with under one year old 

as the youngest and 88 years old as the oldest patient. The 

information about comorbidities of each patient is recorded. 

The average comorbidities that they had is 2.79 or 3 diseases 

with the maximum comorbidities are ten diseases. 

 

Table I.  Summary statistics for continuous 

independent variables of LoS of COVID-19 

Patients 

Variable Mean 
Standard 

Deviation 

Min Max 

Age 36.14 24.142 0 88 

Comorbidities 2.79 1.723 0 10 

 
 

Meanwhile, the response variable, LoS, is provided in 

Figure 1 (a) histogram of 688 patients. The distribution of 

data is skewed to the right. Figure 1 (b) demonstrates a 

normal Q-Q plot of the LoS data, indicating a violation of 

the normality assumption.  

 

 
(a) 

 

 
(b) 

 

Fig 1. Length of hospital stay of COVID-19 patient in (a) 

Histogram and (b) normal QQ plot. 
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This study also did the heteroscedasticity test to the 

residuals of the regression model using the Durbin Watson 

test. After fitting the data based on the hypothesis model, this 

study resulted that the value of Durbin Watson test statistic 

is 1.834419 and the corresponding p-value is 0.032. Since 

this p-value is less than 0.05, it can be concluded that the 

residuals in this regression model are autocorrelated. 
 

B. Quantile Regression 

Quantile regression is often used to explore the 

comprehensive relationship between response variable y and 

the explanatory variables x. Consider this following linear 

quantile regression model : 

𝑦𝑖 = 𝑥𝑖
𝑇𝜷+𝑒𝑖 ,   𝑖 = 1,2, . . . , 𝑛,   (1)     

where yi  is a response variable of interest which may 

represent the timing of the occurrence of some events such 

as disease recurrence or death, or some transformation of the 

time to the event, 𝑥𝑖
𝑇 = (𝑥1𝑖 , 𝑥2𝑖 , . . . , 𝑥𝑝𝑖  ) is the ith covariate 

in , and  is an independent error terms. The error 𝑒𝑖  is 

restricted to have the τth  quantile equal to zero, that is  

∫ 𝑓𝜏(𝑒𝑖)𝑑
0

−∞
𝑒𝑖  =.  For 0 <   < 1, let 𝑄𝜏(𝑦𝑖|𝑥𝑖) denote the -

th quantile regression function of 𝑦𝑖 with associated p 

dimensional vector of covariates 𝑥𝑖. The quantile regression 

function is in the form of 𝑄𝜏(𝑦𝑖|𝑥𝑖) = 𝑥𝑖
𝑇𝜷 , for 𝑖 =

1,2, . . . , 𝑛  , where 𝜷  is a 𝑝 × 1  vector of coefficients for 

indicator variables that depend on . Then, quantile 

regression estimation 𝜷 is obtained by minimizing 

 min ∑ 𝜌τ(𝑦𝑖 − 𝑥𝑖
𝑇𝜷)i ,                     (2)               

where 𝜌τ(𝑢)  is the check function defined by 

𝜌τ(𝑢) = 𝑢(τ − 𝐼(𝑢 < 0))        (3) 

Here I(.) is an indicator function that takes unity when I(.) is 

true and zeroes otherwise. However, this indicator function 

is not differentiable at zero, and explicit minimization 

problems are unobtainable [17], [31].  

 The goodness of fit for the quantile regression is measured 

using Pseudo-R2 [9], [36]. The formula for Pseudo-R2 is as 

follows: 

 

Pseudo − R2 = 1 −
𝑅𝐴𝑆𝑊τ

𝑇𝐴𝑆𝑊𝜏

,                (4) 

 

where 𝑅𝐴𝑆𝑊τ is the residual absolute sum of weighted 

differences between the observed dependent variable and the 

estimated quantile of conditional distribution in the more 

complex model. 𝑇𝐴𝑆𝑊τ  is the total absolute sum of 

weighted differences between the observed dependent 

variable and the estimated quantile of conditional 

distribution in the simplest model. 

 

C. Bootstrap Methods 

The bootstrap resampling methods are designed to be 

employed when the innovations of a regression are not 

identically distributed. This method is fully nonparametric 

procedure and can be applied to a wide variety of models. 

The procedures in bootstrapping are based on XY pairs. In 

the pairs’ bootstrap, the errors are not limited to iid in 

regression models, unlike resampling residuals. Instead of 

resampling the response, or residuals, bootstrapping possible 

to rescaled or centered. It bootstraps pairs consisting of an 

observation of the response along with the vector of indicator 

variables for that same observation. It is assumed implicitly 

that the pairs (𝑦𝑖 , 𝑥𝑖) are independent. Although this is still a 

restrictive assumption, ruling out any form of dependence 

among observations, it does allow for arbitrary forms of 

heteroscedasticity of 𝑦𝑖  conditional on 𝑥𝑖 . The object 

resampled are iid drawings from the joint distribution of 𝑦𝑖 

and 𝑥𝑖 . Each bootstrap sampling consists of some the 

original pairs once, some of them more than once and some 

of them not at all [37]. 

 

D. Quantile Bootstrap Regression Methods 

In particular, the asymptotic variance of quantile 

regression estimators depends on the density of the 

innovation term. The inference procedures and confidence 

interval can be greatly simplified by using bootstrap 

methods.  

In general, the bootstrap resampling schemes for cross 

sectional data are as follows. Resampling Y and X with 

replacement from the cross-sectional dimension with 

probability 1/n. Therefore, let 𝑌∗ = (𝑦1, 𝑦2, … , 𝑦𝑛 )  where 

each element is obtained by drawing with replacement from 

i = 1, ..., n. The same vector of i is used to obtained 𝑋∗. Then 

fitting Eq. (1) to the data to obtain the parameter vector of  

and the residual �̂�𝑖 for i = 1, …, n. Calculate the bootstrap 

sample as 𝑦𝑖
∗ = 𝑥𝑖

𝑇𝜷+𝑒𝑖
∗
. Then refit Eq. (1) to the bootstrap 

sample and denote the bootstrap estimated by �̂�∗ . Repeat 

Steps 2 to 4 until B times and estimate the mean and the 

variance of the B copies of  �̂�∗, denoted by �̂�𝑏 and Var (�̂�𝑏). 

This present study evaluates bootstrapping procedures for 

cross sectional quantile regression estimators. Five options 

of different bootstrap methods are implemented in this study.  

First is the pairwise bootstrap, which many studies use, 

such as Yanuar et al. [9], also known as the XY-pair method. 

Then we implement a method based on a study by Parzen, 

Wei, and Ying [13], named is the PWY method. The PWY 

method proposed a general and simple resampling method 

for inferences  based on pivotal estimating functions. This 

study also compares the quantile bootstrap using the Markov 

chain marginal bootstrap (MCMB) based on the study of He 

and Hu [14] and Kocherginsky, He and Mu [15]. The 

difference between MCMB method from the usual bootstrap 

methods are in two important aspects: it involves solving 

only one-dimensional equations for parameters of any 

dimension and produces a Markov chain rather than a 

(conditionally) independent sequence. The fourth option 

uses WXY method based on the generalized bootstrap, a 

study proposed by Bose and Chatterjee [16]. Bose and 

Chatterjee proposed a generalized bootstrap technique for 
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estimators obtained by minimizing functions that are convex 

in the parameter. They established the consistency of these 

schemes via representation theorems. This study also 

employed the Wild bootstrap method which proposed by 

Feng, He and Hu [17].  

 

III.   RESULT AND DISCUSSION 

In this stage, firstly we did a comparison on several 

hypothesis model to obtain the reduced model. The reduced 

model means here is a model with significant variables only. 

The reduced model considers the simplicity of a model. 

After comparing, we found the significant indicator 

variables are Diagnosis and Final outcome.  

We use 5000 Monte Carlo samples to estimate the 

parameter estimates' standard errors as the benchmark for 

comparison. We further compare the efficient method which 

is based on the smallest standard error. We also test the 

performance of 95% confidence intervals for each estimated 

parameter, i.e., the parameters for category Diagnosis are  

𝛽1(PerUS), 𝛽2(PaUS), 𝛽3 (Positive), and the parameter for 

category Final outcome are 𝛽4 (Recovered), 𝛽5 (Died), 

𝛽6(Outpatient) and 𝛽7 (Referred). The estimated mean, the 

width of 95% confidence interval and standard errors for 

each parameter are presented in Table II for quantile τ = 0.10, 

Table III for quantile τ = 0.25, Table IV for quantile τ = 0.50, 

Table V for quantile τ = 0.75 and Table VI for quantile τ = 

0.90. 
 

 

 

 

 

 

Table II. Bootstrap quantile methods at quantile 𝜏 = 0.10 

 

Categories 
Bootstrap Quantile Method (𝜏 = 0.10) 

XY PWY MCMB WXY Wild 

PerUS (𝛽1)      

Estimate mean 

Width of 95% CI 

Standard error 

-2.000 

5.570 

(1.421) 

-2.000 

 

(NA) 

-2.000 

40.548 

(10.344) 

-2.000*** 

1.964 

(0.501) 

-2.000*** 

1.854 

(0.473) 

Estimate mean 

Width of 95% CI 

Standard error 

-1.000 

4.304 

(0.775) 

-1.000 

 

(NA) 

-1.000 

37.490 

(9.564) 

-1.000*** 

0.548 

(0.140) 

-1.000*** 

1.128 

(0.288) 

Positive  (𝛽3)      

Estimate mean 

Width of 95% CI 

Standard error 

0.000 

3.822 

(0.975) 

0.000 

 

(NA) 

0.000 

37.361 

(9.531) 

0.000 

2.042 

(0.521) 

0.000 

1.971 

(0.503) 

Recovered  (𝛽4)      

Estimate mean 

Width of 95% CI 

Standard error 

2.000 

0.611 

(0.156) 

2.000 

0.388 

(0.099) 

2.000 

4.558 

(1.163) 

2.000*** 

0.548 

(0.140) 

2.000*** 

0.709 

(0.181) 

Died  (𝛽5)      

Estimate mean 

Width of 95% CI 

Standard error 

0.000 

0.388 

(0.099) 

0.000 

 

(NA) 

0.000 

4.558 

(1.163) 

0.000 

 

(NA) 

0.000 

0.666 

(0.170) 

Outpatient  (𝛽6)      

Estimate mean 

Width of 95% CI 

Standard error 

0.000 

8.165 

(2.083) 

0.000 

4.496 

(1.147) 

0.000 

7.063 

(1.802) 

0.000 

7.020 

(1.791) 

0.000 

2.842 

(0.725) 

Referred  (𝛽7)      

Estimate mean 

Width of 95% CI 

Standard error 

0.000 

7.122 

(1.817) 

0.000 

0.474 

(0.121) 

0.000 

8.106 

(2.068) 

0.000 

1.050 

(0.268) 

0.000 

5.311 

(1.355) 

***significant at level 1%,  

**  significant at level 5%,  

*    significant at level 10% 

The smallest values are written in boldface. 
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Table II informs us that the estimated mean based on 

different methods result in similar value. The PWX method 

results in many NA (Not Available) values than others. The 

Wild method tends to result in the smallest standard errors 

among others. For this empirical case, at the 10th quantile, 

the wild method tends to yield shorter width of 95% CI and 

smaller standard  error  than  other methods. Hold   all   else  

constant, at the 10th quantile of LoS for PerUS is shorter two 

days than at the 10th quantile of LoS for Asymptotic Person. 

Based on Table III, holding all else constant, the 25th 

quantile of LoS for Positive is 3 days longer than the 25th 

quantile of LoS for Asymptomatic Person. The 25th quantile 

of LoS for Recovered is 3 days longer than the 25th quantile 

of LoS for Forced discharge, hold the other variables 

constant. The 25th quantile of LoS for outpatient is 4 days 

longer than the 25th quantile of LoS for Forced discharge, 

assume else constant. Table III informs us that the wild 

method is still the best method since it results in the shortest 

95% confidence interval and the smallest standard error 

among others. 

 

 

 

Table III. Bootstrap quantile methods at quantile 𝜏 = 0.25 

 

Categories 
Bootstrap Quantile Method (𝜏 = 0.25) 

XY PWY MCMB WXY Wild 

PerUS (𝛽1)      

Estimate mean 

Width of 95% CI 

Standard error 

-1.000 

5.535 

(1.412) 

-1.000 

 

(NA) 

-1.000 

28.592 

(7.294) 

-1.000 

3.684 

(0.940) 

-1.000 

4.978 

(1.270) 

Estimate mean 

Width of 95% CI 

Standard error 

0.000 

4.480 

(1.143) 

0.000 

 

(NA) 

0.000 

19.854 

(5.065) 

0.000 

1.611 

(0.411) 

0.000 

2.371 

(0.605) 

Positive  (𝛽3)      

Estimate mean 

Width of 95% CI 

Standard error 

3.000** 

6.032 

(1.539) 

3.000 

 

(NA) 

3.000 

19.883 

(5.072) 

3.000*** 

4.370 

(1.115) 

3.000*** 

4.186 

(1.068) 

Recovered  (𝛽4)      

Estimate mean 

Width of 95% CI 

Standard error 

3.000*** 

2.108 

(0.538) 

3.000*** 

2.061 

(0.526) 

3.000 

12.920 

(3.296) 

3.000*** 

2.242 

(0.572) 

3.000*** 

0.752 

(0.192) 

Died  (𝛽5)      

Estimate mean 

Width of 95% CI 

Standard error 

0.000 

1.399 

(0.357) 

0.000 

1.438 

(0.367) 

0.000 

12.877 

(3.285) 

0.000 

1.458 

(0.372) 

0.000 

0.752 

(0.192) 

Outpatient  (𝛽6)      

Estimate mean 

Width of 95% CI 

Standard error 

4.000* 

9.670 

(2.467) 

4.000** 

7.973 

(2.034) 

4.000 

14.719 

(3.755) 

4.000** 

9.137 

(2.331) 

4.000*** 

4.731 

(1.207) 

Referred  (𝛽7)      

Estimate mean 

Width of 95% CI 

Standard error 

0.000 

6.601 

(1.684) 

0.000 

2.524 

(0.644) 

0.000 

35.354 

(9.019) 

0.000 

3.504 

(0.894) 

0.000 

1.834 

(0.468) 

***significant at level 1%,  

**  significant at level 5%,  

*    significant at level 10% 

The smallest values are written in boldface. 
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Moreover, for bootstrap quantile methods at quantile 𝜏 = 

0.50, as provided by Table IV, WXY method tends to result 

the smallest standard error with the shortest confidence 

interval than others; mainly for estimated coefficient of 

PerUS, PaUS and Positive. Meanwhile, Wild method results 

the smallest estimated standard error for coefficient of 

Outpatient and Referred only. At this 50th quantile of LoS 

for Positive is 7 days longer than the 50th quantile of LoS 

for Asymptomatic Person, holding all else constant.   

Table V presents the mean, width of 95% confidence 

interval and standard error of all five methods of Bootstrap 

quantile approach at quantile 𝜏 = 0.75. This table shows 

that the Wild method tends to result the shortest 95% 

confidence interval among others. Hold all else constant, the 

75th quantile of LoS for Positive is 12 days longer than the 

75th quantile of LoS for Asymptomatic Person.  

Table VI mainly informs us that the WXY method is the 

best method for the Bootstrap quantile approach at quantile 

𝜏  = 0.90. This table shows that the shortest confidence 

interval is resulted based on the WXY method. Hold all else 

constant, at this 90th quantile, the LoS for Positive is 28 days 

longer than the 90th quantile of LoS for Forced discharge. 

This value is increasing as the sequence of quantiles 

increases as well. 

 The analysis above informs us that the PWY and 

MCMB often result in NA (not available) estimated standard 

error values; hence, confidence intervals can’t be estimated. 

The WXY resulted in a NA value at quantile 0.10, whereas 

this method tended to result in better-estimated values at 

higher quantiles. The XY method yielded a wider 95% 

confidence interval than others. In general, this study proved 

that Wild bootstrap quantile tends to be the best method 

since it produces the smallest estimated standard errors and 

the shortest 95% confidence interval.  

The estimated mean values obtained in each selected 

quantile as provided in Table II to Table VI based on the 

Wild bootstrap method are also be presented in a plot. 

Meanwhile, Figure 2 presents plots of quantiles based on this 

Wild bootstrap estimated method only, as the best method 

resulted in this study. 

 

 

 

 

Table IV. Bootstrap quantile methods at quantile 𝜏 = 0.50 

 

Categories 
Bootstrap Quantile Method (𝜏 = 0.50) 

XY PWY MCMB WXY Wild 

PerUS (𝛽1)      

Estimate mean 

Width of 95% CI 

Standard error 

1.000 

11.156 

(2.846) 

1.000 

 

(NA) 

1.000 

9.243 

(2.358) 

1.000 

7.048 

(1.798) 

1.000 

7.671 

(1.957) 

Estimate mean 

Width of 95% CI 

Standard error 

1.000 

11.156 

(2.846) 

1.000 

 

(NA) 

1.000 

6.573 

(1.677) 

1.000*** 

0.811 

(0.207) 

1.000 

6.224 

(1.588) 

Positive  (𝛽3)      

Estimate mean 

Width of 95% CI 

Standard error 

7.000*** 

10.909 

(2.783) 

7.000 

 

(NA) 

7.000*** 

7.228 

(1.844) 

7.000*** 

4.292 

(1.095) 

7.000*** 

7.071 

(1.804) 

Recovered  (𝛽4)      

Estimate mean 

Width of 95% CI 

Standard error 

3.000*** 

2.889 

(0.737) 

3.000*** 

2.889 

(0.737) 

3.000*** 

0.493 

(0.126) 

3.000*** 

2.622 

(0.669) 

3.000*** 

2.242 

(0.572) 

Died  (𝛽5)      

Estimate mean 

Width of 95% CI 

Standard error 

-1.000 

2.779 

(0.709) 

-1.000 

2.826 

(0.721) 

-1.000*** 

0.486 

(0.124) 

-1.000 

2.512 

(0.641) 

-1.000* 

2.242 

(0.572) 

Outpatient  (𝛽6)      

Estimate mean 

Width of 95% CI 

Standard error 

3.000 

8.201 

(2.092) 

3.000* 

6.518 

(1.663) 

3.000** 

4.135 

(1.055) 

3.000 

7.742 

(1.975) 

3.000*** 

3.477 

(0.887) 

Referred  (𝛽7)      

Estimate mean 

Width of 95% CI 

Standard error 

0.000 

10.337 

(2.637) 

0.000 

4.390 

(1.120) 

0.000 

3.092 

(0.789) 

0.000 

6.844 

(1.746) 

0.000 

4.076 

(1.040) 

***significant at level 1%,  

**  significant at level 5%,  

*    significant at level 10% 

The smallest values are written in boldface. 
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Table V. Bootstrap quantile methods at quantile 𝜏 = 0.75  

 

Categories 
Bootstrap Quantile Method (𝜏 = 0.75)  

XY PWY MCMB WXY Wild 

PerUS (𝛽1)      

Estimate mean 

Width of 95% CI 

Standard error 

5.000 

21.364 

(5.450) 

5.000 

 

(NA) 

5.000 

 

(NA) 

5.000** 

9.556 

(2.438) 

5.000 

25.519 

(6.510) 

Estimate mean 

Width of 95% CI 

Standard error 

2.000 

23.175 

(5.912) 

2.000 

 

(NA) 

2.000 

 

(NA) 

2.000*** 

1.764 

(0.450) 

2.000 

21.912 

(5.590) 

Positive  (𝛽3)      

Estimate mean 

Width of 95% CI 

Standard error 

12.000** 

23.915 

(6.101) 

12.000 

 

(NA) 

12.000 

 

(NA) 

12.000*** 

11.450 

(2.921) 

12.000** 

23.633 

(6.029) 

Recovered  (𝛽4)      

Estimate mean 

Width of 95% CI 

Standard error 

2.000*** 

2.367 

(0.604) 

2.000*** 

2.336 

(0.596) 

2.000** 

2.614 

(0.667) 

2.000*** 

2.759 

(0.704) 

2.000*** 

1.803 

(0.460) 

Died  (𝛽5)      

Estimate mean 

Width of 95% CI 

Standard error 

-2.000*** 

2.085 

(0.532) 

-2.000*** 

2.007 

(0.512) 

-2.000** 

2.724 

(0.695) 

-2.000*** 

2.222 

(0.567) 

-2.000*** 

1.838 

(0.469) 

Outpatient  (𝛽6)      

Estimate mean 

Width of 95% CI 

Standard error 

1.000 

7.949 

(2.028) 

1.000 

 

(NA) 

1.000 

8.843 

(2.256) 

1.000 

8.067 

(2.058) 

1.000 

7.585 

(1.935) 

Referred  (𝛽7)      

Estimate mean 

Width of 95% CI 

Standard error 

0.000 

14.061 

(3.587) 

0.000 

14.617 

(3.729) 

0.000 

11.164 

(2.848) 

0.000 

14.782 

(3.771) 

0.000 

5.315 

(1.356) 

***significant at level 1%,  

**  significant at level 5%,  

*    significant at level 10% 

The smallest values are written in boldface. 
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Table VI. Bootstrap quantile methods at quantile τ = 0.90 

 

Categories 
Bootstrap Quantile Method (𝜏 = 0.90)  

XY PWY MCMB WXY Wild 

PerUS (𝛽1)      

Estimate mean 

Width of 95% CI 

Standard error 

8.000** 

15.993 

(4.080) 

8.000 

 

(NA) 

8.000 

 

(NA) 

8.000*** 

8.314 

(2.121) 

8.000 

51.791 

(13.212) 

Estimate mean 

Width of 95% CI 

Standard error 

6.000 

14.896 

(3.800) 

6.000 

 

(NA) 

6.000 

 

(NA) 

6.000*** 

3.296 

(0.841) 

6.000 

50.113 

(12.784) 

Positive  (𝛽3)      

Estimate mean 

Width of 95% CI 

Standard error 

28.000*** 

23.990 

(6.120) 

28.000 

 

(NA) 

28.000 

 

(NA) 

28.000*** 

19.396 

(4. 948) 

28.000** 

52.398 

(13.367) 

Recovered  (𝛽4)      

Estimate mean 

Width of 95% CI 

Standard error 

5.000*** 

4.221 

(1.077) 

5.000 

4.300 

(1.097) 

5.000 

28.161 

(7.184) 

5.000*** 

3.916 

(0.999) 

5.000*** 

4.645 

(1.185) 

Died  (𝛽5)      

Estimate mean 

Width of 95% CI 

Standard error 

-2.000 *** 

3.214 

(0.820) 

-2.000 

3.477 

(0.887) 

-2.000 

27.436 

(6.999) 

-2.000** 

3.214 

(0.820) 

-2.000** 

3.555 

(0.907) 

Outpatient  (𝛽6)      

Estimate mean 

Width of 95% CI 

Standard error 

2.000 

9.945 

(2.537) 

2.000 

 

(NA) 

2.000 

 

(NA) 

2.000 

7.557 

(1.928) 

2.000 

14.578 

(3.719) 

Referred  (𝛽7)      

Estimate mean 

Width of 95% CI 

Standard error 

0.000 

11.905 

(3.037) 

0.000 

 

(NA) 

0.000 

 

(NA) 

0.000 

10.540 

(2.689) 

0.000 

10.862 

(2.771) 

 ***significant at level 1%, 

**   significant at level 5%,  

*     significant at level 10% 

The smallest values are written in boldface. 
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Fig 2. Estimate coefficients regression for each indicator of LoS and theirs trends along with the 95% CI over different 

quantiles indicated by grey area. The red straight line presents the OLS’s mean and the red dash lines present the 95% CI for 

OLS 
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Figure 2 presents the OLS (ordinary least square) 

estimated mean indicated by the red straight line with its 

upper bound and lower bound for 95% confidence interval, 

indicated by the red dash line. Meanwhile, the quantile with 

CI estimated at any sequence quantiles is shown with the 

grey area. This figure informs us that the 95% confidence 

interval based on OLS estimated is wider than quantile, 

especially at lower quantiles. Based on the ANOVA test, we 

could conclude that there is no significant coefficient 

difference between OLS and quantiles, especially for lower 

quantile to higher quantile (such as at the 80th quantile). 

These facts could also be seen in Figure 2. The Positive plot 

shows no significant coefficient difference between OLS 

and quantiles at lower to higher quantile. In addition, 

comparisons among quantiles are also tested based on the 

ANOVA test as well. The quantile   regression   coefficients 

associated with Positive and Recovered are significantly 

different between the 75th quantile and the 25th quantile 

regressions (p < 0.001). 

The next analysis is to measure the goodness of fit for all 

proposed models at all selected quantiles based on the Wild 

bootstrap method. The indicator for the goodness of fit in 

this study is based on the Pseudo-R2 [9], [36].  

Table VII presents the corresponding Pseudo-R2 values 

for each selected quantile. It is informed that the 10th 

quantile is the best model since its Pseudo-R2 value is the 

highest among other quantiles. This result is also in line with 

the values for the width of 95% CI, and standard error 

yielded in this quantile. All values for the width of 95% CI 

and standard error at this quantile are smaller than other 

quantiles for all seven categories (as provided in Table II, 

Table III, Table IV, Table V and Table VI). 

 

 

 

 

 

Table VII. Pseudo-R2 Based on the Wild Bootstrap Method 

 

Quantiles Pseudo-R2 

0.10 0.839* 

0.25 0.789 

0.50 0.795 

0.75 0.774 

0.90 0.708 

*The highest values. 
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IV. CONCLUSIONS 

 

Quantile regression has been utilized as an alternative 

tool to model distributional changes in LoS hospitalized. 

This study explores the heterogeneity in the relationship 

between Diagnosis and Final outcome of patients with 

COVID-19 suspect across the distribution of LoS 

hospitalized. This study found that in general, the patient 

with positive COVID-19 tends to have longer LoS 

hospitalized than other criteria of Diagnosis. While if the 

patient wants to have a Recovered status, they will have 

longer LoS hospitalized than other criteria in Final outcome.  

The observed differences between quantile regression 

coefficients estimated at various percentiles compared with 

mean regression coefficients illustrate the influence 

methodological choices. It might have in the evaluation of 

factors influencing length of hospital stay which could 

impact to cost. Models estimating mean marginal effects 

may disguise significant changes that estimating effects 

across the range of the hospital days provides a more detailed, 

more thorough description of these relationships. This 

information may be useful in predicting the cost of care or 

evaluating interventions to increase appropriate hospital use. 
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