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Abstract—The diffusion-convection equation with variable
coefficients for anisotropic inhomogeneous media is discussed in
this paper. Numerical solutions to problems that are governed
by this equation are sought using a combined Laplace transform
and boundary element method. The variable coefficients equa-
tion is transformed to a constant coefficients equation. The con-
stant coefficients equation is then Laplace-transformed so that
the time variable vanishes. The Laplace-transformed equation
can then be written in a purely boundary integral equation
that involves a time-free fundamental solution. The boundary
integral equation is therefore employed to find numerical
solutions using a standard boundary element method. Finally,
the results obtained are inversely transformed numerically
using the Stehfest formula to get solutions in the time vari-
able. Some unsteady problems of anisotropic trigonometrically
graded media governed by the diffusion convection equation
are considered. The results show that the combined Laplace
transform and boundary element method is easy to implement
and accurate.

Index Terms—variable coefficients, anisotropic trigonometri-
cally graded materials, unsteady diffusion convection equation,
Laplace transform, boundary element method

I. INTRODUCTION

Nowadays, functionally graded materials (FGMs) have
become an important topic, and numerous studies on them
for a variety of applications have been reported. Authors
commonly define an FGM as an inhomogeneous material
having a specific property such as thermal conductivity,
hardness, toughness, ductility, corrosion resistance, etc. that
changes spatially in a continuous fashion. In this study,
the unsteady anisotropic diffusion convection equation of
incompressible flow and space variable coefficients of the
form
∂

∂xi

[
dij (x)

∂c (x, t)

∂xj

]
− vi (x)

∂c (x, t)

∂xi
= α (x)

∂c (x, t)

∂t
(1)

will be considered. Equation (1) is usually used to model
the physical phenomena such as pollutant transport and heat
transfer.

Referred to the Cartesian frame Ox1x2 we will consider
initial boundary value problems governed by (1) where
x = (x1, x2). The coefficient [dij ] (i, j = 1, 2) is a
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real positive definite symmetrical matrix. Also, in (1) the
summation convention for repeated indices holds, so that
explicitly (1) can be respectively written as

∂

∂x1

(
d11

∂c

∂x1

)
+

∂

∂x1

(
d12

∂c

∂x2

)
+

∂

∂x2

(
d12

∂c

∂x1

)
+

∂

∂x2

(
d22

∂c

∂x2

)
− v1

∂c

∂x1
− v2

∂c

∂x2
= α

∂c

∂t

In the last decade investigations on the diffusion-
convection equation had been done for finding its numerical
solutions. The investigations can be classified according to
the anisotropy and inhomogeneity of the media under consid-
eration. For example, Wu et al. [1], Hernandez-Martinez et al.
[2], Wang et al. [3] and Fendoğlu et al. [4] had been working
on problems of isotropic diffusion and homogeneous media,
Yoshida and Nagaoka [5], Meenal and Eldho [6], Azis [7]
(for Helmholtz type governing equation) studied problems of
anisotropic diffusion but homogeneous media. Rap et al. [8],
Ravnik and Škerget [9], [10], Li et al. [11] and Pettres and
Lacerda [12] considered the case of isotropic diffusion and
variable coefficients (inhomogeneous media). Recently Azis
and co-workers had been working on steady state problems
of anisotropic inhomogeneous media for several types of
governing equations, for examples [13], [14] for the modified
Helmholtz equation, [15]–[21] for the diffusion convection
reaction equation, [22]–[25] for the Laplace type equation,
[26]–[30] for the Helmholtz equation. Azis et al. also had
been working on unsteady state problems of anisotropic
inhomogeneous media for some types of governing equations
(see [31]–[34]).

This paper is intended to extend the recently published
works on anisotropic diffusion convection equation with vari-
able coefficients [35]–[39] from the steady state to unsteady
state equation. Equation (1) applies for unsteady problems of
anisotropic and inhomogeneous therefore provides a wider
class of problems. It covers problems of isotropic and ho-
mogeneous media as special cases which occur respectively
when d11 = d22, d12 = 0 and the coefficients dij , vi and α
are constant.

II. THE INITIAL BOUNDARY VALUE PROBLEM

Given the coefficients dij (x) , vi (x) , α (x), solutions
c (x, t) and its derivatives to (1) are sought which are valid
for time interval t ≥ 0 and in a region Ω in R2 with boundary
∂Ω which consists of a finite number of piecewise smooth
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curves. On ∂Ω1 the dependent variable c (x, t) is specified,
and

P (x, t) = dij (x)
∂c (x, t)

∂xi
nj (2)

is specified on ∂Ω2 where ∂Ω = ∂Ω1∪∂Ω2 and n =(n1, n2)
denotes the outward pointing normal to ∂Ω. The initial
condition is taken to be

c (x, 0) = 0 (3)

The method of solution will be to transform the variable
coefficient equation (1) to a constant coefficient equation, and
then taking a Laplace transform of the constant coefficient
equation, and to obtain a boundary integral equation in the
Laplace transform variable s. The boundary integral equation
is then solved using a standard boundary element method
(BEM). An inverse Laplace transform is taken to get the
solution c and its derivatives for all (x, t) in the domain. The
inverse Laplace transform is implemented numerically using
the Stehfest formula. The analysis is specially relevant to an
anisotropic medium but it equally applies to isotropic media.
For isotropy, the coefficients in (1) take the form d11 = d22
and d12 = 0 and use of these equations in the following
analysis immediately yields the corresponding results for an
isotropic medium.

III. THE BOUNDARY INTEGRAL EQUATION

We restrict the coefficients dij , vi, α to be of the form

dij (x) = d̂ij g(x) (4)
vi (x) = v̂i g(x) (5)
α (x) = α̂ g(x) (6)

where d̂ij , v̂i, α̂ are constants. Further we assume that the
coefficients dij (x), vi (x) and α (x) are trigonometrically
graded by taking g(x) as an trigonometric function

g(x) = [cos (β0 + βixi) + sin (β0 + βixi)]
2 (7)

where β0 and βi are constants. Therefore if

d̂ijβiβj + λ = 0 (8)

then (7) satisfies

d̂ij
∂2g1/2

∂xi∂xj
− λg1/2 = 0 (9)

Substitution of (4)-(6) into (1) gives

d̂ij
∂

∂xi

(
g
∂c

∂xj

)
− v̂ig

∂c

∂xi
= α̂g

∂c

∂t
(10)

Assume
c (x, t) = g−1/2 (x)ψ (x, t) (11)

therefore substitution of (4) and (11) into (2) gives

P (x, t) = −Pg (x)ψ (x, t) + g1/2 (x)Pψ (x, t) (12)

where

Pg (x, t) = d̂ij
∂g1/2 (x)

∂xj
ni Pψ (x, t) = d̂ij

∂ψ (x, t)

∂xj
ni

Equation (10) can be written as

d̂ij
∂

∂xi

[
g
∂
(
g−1/2ψ

)
∂xj

]
− v̂ig

∂
(
g−1/2ψ

)
∂xi

= α̂g
∂
(
g−1/2ψ

)
∂t

which can be simplified to

d̂ij
∂

∂xi

(
g1/2

∂ψ

∂xj
+ gψ

∂g−1/2

∂xj

)
−v̂i

(
g1/2

∂ψ

∂xi
+ gψ

∂g−1/2

∂xi

)
= α̂g1/2

∂ψ

∂t

Use of the identity

∂g−1/2

∂xi
= −g−1 ∂g

1/2

∂xi

implies

d̂ij
∂

∂xi

(
g1/2

∂ψ

∂xj
− ψ

∂g1/2

∂xj

)
−v̂i

(
g1/2

∂ψ

∂xi
− ψ

∂g1/2

∂xi

)
= α̂g1/2

∂ψ

∂t

Rearranging and neglecting the zero terms yield

g1/2
(
d̂ij

∂2ψ

∂xi∂xj
− v̂i

∂ψ

∂xj

)
−ψ

(
d̂ij

∂2g1/2

∂xi∂xj
− v̂i

∂g1/2

∂xi

)
+

(
d̂ij

∂ψ

∂xj

∂g1/2

∂xi
− d̂ij

∂ψ

∂xj

∂g1/2

∂xi

)
= α̂g1/2

∂ψ

∂t
(13)

For incompressible flow

∂vi (x)

∂xi
= 2g1/2(x)v̂i

∂g1/2(x)

∂xi
= 0

that is

v̂i
∂g1/2(x)

∂xi
= 0

Thus (13) becomes

g1/2
(
d̂ij

∂2ψ

∂xi∂xj
− v̂i

∂ψ

∂xi

)
− ψd̂ij

∂2g1/2

∂xi∂xj
= α̂g1/2

∂ψ

∂t

Equation (9) then implies

d̂ij
∂2ψ

∂xi∂xj
− v̂i

∂ψ

∂xi
− λψ = α̂

∂ψ

∂t
(14)

Taking a Laplace transform of (11), (12), (14) and applying
the initial condition (3) we obtain

ψ∗ (x, s) = g1/2 (x) c∗ (x, s) (15)

Pψ∗ (x, s) = [P ∗ (x, s) + Pg (x)ψ
∗ (x, s)] g−1/2 (x) (16)

d̂ij
∂2ψ∗

∂xi∂xj
− v̂i

∂ψ∗

∂xi
− (λ+ sα̂)ψ∗ = 0 (17)

where s is the variable of the Laplace-transformed domain.
By using Gauss divergence theorem, equation (17) can be

transformed into a boundary integral equation

η (ξ) ψ∗ (ξ, s) =

∫
∂Ω

{Pψ∗ (x, s) Φ (x, ξ)

− [Pv (x) Φ (x, ξ) + Γ (x, ξ)]ψ∗ (x, s)} dS (x)(18)

where
Pv (x) = v̂i ni (x)
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For 2-D problems the fundamental solutions Φ(x, ξ) and
Γ(x, ξ) for are given as

Φ (x, ξ) =
ρi

2πD
exp

(
− v̇. Ṙ

2D

)
K0

(
µ̇Ṙ
)

Γ (x, ξ) = d̂ij
∂Φ (x, ξ)

∂xj
ni

where
µ̇ =

√
(v̇/2D)

2
+ [(λ+ sα̂) /D]

D =
[
d̂11 + 2d̂12ρr + d̂22

(
ρ2r + ρ2i

)]
/2

Ṙ = ẋ− ξ̇

ẋ = (x1 + ρrx2, ρix2)

ξ̇ = (ξ1 + ρrξ2, ρiξ2)

v̇ = (v̂1 + ρrv̂2, ρiv̂2)

Ṙ =

√
(x1 + ρrx2 − ξ1 − ρrξ2)

2
+ (ρix2 − ρiξ2)

2

v̇ =

√
(v̂1 + ρrv̂2)

2
+ (ρiv̂2)

2

where ρr and ρi are respectively the real and the positive
imaginary parts of the complex root ρ of the quadratic
equation

d̂11 + 2d̂12ρ+ d̂22ρ
2 = 0

and K0 is the modified Bessel function. Use of (15) and (16)
in (18) yields

ηg1/2c∗ =

∫
∂Ω

{(
g−1/2Φ

)
P ∗

+
[(
Pg − Pvg

1/2
)
Φ− g1/2Γ

]
c∗
}
dS (19)

Equation (19) provides a boundary integral equation for
determining the numerical solutions of c∗ and its derivatives
∂c∗/∂x1 and ∂c∗/∂x2 at all points of Ω.

Knowing the solutions c∗ (x, s) and its derivatives
∂c∗/∂x1 and ∂c∗/∂x2 which are obtained from (19), the
numerical Laplace transform inversion technique using the
Stehfest formula is then employed to find the values of
c (x, t) and its derivatives ∂c/∂x1 and ∂c/∂x2. The Stehfest
formula is

c (x, t) ≃ ln 2

t

N∑
m=1

Vmc
∗ (x, sm)

∂c (x, t)

∂x1
≃ ln 2

t

N∑
m=1

Vm
∂c∗ (x, sm)

∂x1
(20)

∂c (x, t)

∂x2
≃ ln 2

t

N∑
m=1

Vm
∂c∗ (x, sm)

∂x2

where

sm =
ln 2

t
m

Vm = (−1)
N
2 +m ×

min(m,N2 )∑
k=[m+1

2 ]

kN/2 (2k)!(
N
2 − k

)
!k! (k − 1)! (m− k)! (2k −m)!

A simple script has been developed to calculate the values
of the coefficients Vm,m = 1, 2, . . . , N for any number N .
Table (I) shows the values of Vm for N = 4, 6, 8, 10.

TABLE I
VALUES OF Vm OF THE STEHFEST FORMULA FOR N = 4, 6, 8, 10

Vm N = 4 N = 6 N = 8 N = 10

V1 −2 1 −1/3 1/12
V2 26 −49 145/3 −385/12
V3 −48 366 −906 1279
V4 24 −858 16394/3 −46871/3
V5 810 −43130/3 505465/6
V6 −270 18730 −236957.5
V7 −35840/3 1127735/3
V8 8960/3 −1020215/3
V9 164062.5
V10 −32812.5

IV. NUMERICAL RESULTS

In order to verify the analysis derived in the previous
sections, we will consider several problems either as test
examples of analytical solutions or problems without simple
analytical solutions.

We assume each problem belongs to a system which
is valid within a given spatial and time domain, governed
by equation (1), satisfying the initial condition (3) and
some boundary conditions as mentioned in Section II. The
characteristics of the system which are represented by the
coefficients dij (x) , vi (x) , α (x) are assumed to be of the
form (4), (5) and (6) in which g(x) is a trigonometric func-
tion of the form (7). The coefficients dij (x) , vi (x) , α (x)
represents respectively the diffusivity or conductivity, the
velocity of flow existing in the system and the change rate
of the unknown c (x, t). The flow is assumed to be incom-
pressible so that the velocity vi (x) satisfies the condition
∂vi (x) /∂xi = 0.

Standard BEM with constant elements is employed to
obtain numerical results. For a simplicity, a unit square
(depicted in Figure 1) will be taken as the geometrical
domain for all problems. A number of 320 elements of equal
length, namely 80 elements on each side of the unit square,
are used. A FORTRAN script is developed to compute the
solutions.

-

6

x1

x2

D(0, 1)

A(0, 0) B(1, 0)

C(1, 1)

Fig. 1. The domain Ω

A. Test problems
Other aspects that will be verified are the accuracy and

consistency (between the scattering and flow) of the numer-
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 0.9

 0.95
 1

g1/2(x1,x2) = cos[(.3*x+.2*y)*pi]+sin[(.3*x+.2*y)*pi]/sqrt(2)

x1 x2

g1/2

Fig. 2. Function g (x)

ical solutions. The analytical solutions are assumed to take
a separable variables form

c (x, t) = g−1/2 (x)h (x) f (t)

where

h (x) = 2.5 exp [− (1 + 0.35x1 + 0.55x2)]

The function g1/2 (x) is

g1/2 (x) = [cos (0.3x1 + 0.2x2) + sin (0.3x1 + 0.2x2)] /
√
2

and depicted in Figure 2. We will consider three forms of
time variation functions f (t) of time domain t = [0 : 10]
which are

f (t) = 1− exp (−0.85t)

f (t) = 0.1t

f (t) = t (10− t) /25

We take a mutual coefficient d̂ij for the problems

d̂ij =

[
0.85 0.35
0.35 1

]
so that from (8) we have

λ = −0.1585

We choose

v̂i = (−0.2, 0.3) , α̂ = 0.794875/s

and a mutual set of boundary conditions (see Figure 1)

P is given on side AB, BC, CD
c is given on side AD

We try to change the value of N in the Stehfest formula
(20) from N = 6 to N = 12 and find out that the optimized
solutions (closest to the analytical solutions) are obtained
when N = 10. Increasing N from N = 10 to N = 12 gives
divergent solutions. According to Hassanzadeh and Pooladi-
Darvish [40] these divergent solutions are induced by round-
off errors. Hence, for all problems considered the value of
N for the Stehfest formula in (20) is chosen to be N = 10.

Problem 1:: First, we suppose that the time variation
function is

f (t) = 1− exp (−0.85t)

Function f (t) is depicted in Figure 3. Figure 4 shows the
accuracy of the BEM solutions. The errors occur in the
fourth decimal place for the c and the derivatives ∂c/∂x1 and
∂c/∂x2 solutions. Figure 5 shows the consistency between
the scattering and the flow solutions which verifies that
the solutions for the derivatives had also been computed

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  2  4  6  8  10

f

t

f(t) = 1-exp(-0.85t)

Fig. 3. Function f (t) for Problem 1
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Fig. 4. The errors of solutions c (top), ∂c/∂x1 (center), ∂c/∂x2 (bottom)
at t = 5 for Problem 1

correctly. Figure 6 shows that the solution c changes with
time t in a similar way the function f (t) = 1−exp (−0.85t)
does (see Figure 3) and tends to approach a steady state
solution as the time goes to infinity, as expected.

Problem 2:: Next, we suppose that the time variation
function is (see Figure 7)

f (t) = 0.1t

Figure 8 shows the accuracy of the BEM solutions. The
errors occur in the fourth decimal place for the c and the
derivatives ∂c/∂x1 and ∂c/∂x2 solutions. Figure 9 shows
the consistency between the scattering and the flow solutions.
Figure 10 shows that the solution c changes with time t in
a manner which is almost similar to as the function f (t) =
0.1t does (see Figure 7), as expected.
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Fig. 5. Solutions c (top) and (∂c/∂x1, ∂c/∂x2) (bottom) at t = 5 for
Problem 1
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Fig. 6. Solutions c for Problem 1

Problem 3:: Now, we suppose that the time variation
function is (see Figure 11)

f (t) = t (10− t) /25

Figure 12 shows the accuracy of the BEM solutions. The
errors occur in the fourth decimal place for the c and the
derivatives ∂c/∂x1 and ∂c/∂x2 solutions. Figure 13 shows
the consistency between the scattering and the flow solutions
which again verifies that the solutions for the derivatives
had also been computed correctly. Figure 14 shows that the
solution c changes with time t in a similar way the function
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Fig. 7. Function f (t) for Problem 2
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Fig. 8. The errors of solutions c (top), ∂c/∂x1 (center), ∂c/∂x2 (bottom)
at t = 5 for Problem 2
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Fig. 9. Solutions c (top) and (∂c/∂x1, ∂c/∂x2) (bottom) at t = 5 for
Problem 2
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Fig. 10. Solutions c for Problem 2
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Fig. 11. Function f (t) for Problem 3

f (t) = t (10− t) /25 does.

B. Examples without analytical solutions
Furthermore, we will show the impact of the anisotropy

and the inhomogeneity of the material under consideration
on the solutions. We choose

v̂i = (−0.2, 0.3) α̂ = 1

Problem 4:: For this problem the medium is sup-
posed to be inhomogeneous or homogeneous, anisotropic or
isotropic with a gradation function g(x), constant coefficients
d̂ij and corresponding λ satisfying (8) and (9) as respectively
follows:

• inhomogeneous and anisotropic case

g1/2(x) = [cos (0.3x1 + 0.2x2)

+ sin (0.3x1 + 0.2x2)] /
√
2

d̂ij =

[
0.85 0.35
0.35 1

]
λ = −0.1585

• inhomogeneous and isotropic case

g1/2(x) = [cos (0.3x1 + 0.2x2)

+ sin (0.3x1 + 0.2x2)] /
√
2

d̂ij =

[
1 0
0 1

]
λ = −0.13

• homogeneous and isotropic case

g1/2(x) = 1

d̂ij =

[
1 0
0 1

]
λ = 0
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Fig. 12. The errors of solutions c (top), ∂c/∂x1 (center), ∂c/∂x2 (bottom)
at t = 5 for Problem 3
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TABLE II
SYMMETRY OF SOLUTIONS c ABOUT x2 = 0.5 FOR PROBLEM 4

t
(0.5, 0.3) (0.5, 0.7) (0.5, 0.3) (0.5, 0.7)

Iso. Hom. Aniso. Hom
0.2 0.1389 0.1389 0.1032 0.1443
0.5 0.2993 0.2993 0.2551 0.3390
1.0 0.3955 0.3955 0.3659 0.4758
1.5 0.4210 0.4210 0.4023 0.5205
2.0 0.4279 0.4279 0.4144 0.5354
2.5 0.4297 0.4297 0.4184 0.5404
3.0 0.4301 0.4302 0.4197 0.5420
3.5 0.4302 0.4302 0.4201 0.5425
4.0 0.4301 0.4301 0.4202 0.5426
4.5 0.4301 0.4301 0.4201 0.5425
5.0 0.4300 0.4301 0.4201 0.5425

Aniso. Inhom. Iso. Inhom.
0.2 0.1483 0.2023 0.2006 0.1931
0.5 0.3455 0.4602 0.4080 0.4014
1.0 0.4732 0.6226 0.5153 0.5098
1.5 0.5094 0.6683 0.5388 0.5336
2.0 0.5198 0.6815 0.5439 0.5388
2.5 0.5227 0.6853 0.5450 0.5399
3.0 0.5235 0.6862 0.5451 0.5400
3.5 0.5236 0.6864 0.5450 0.5399
4.0 0.5235 0.6863 0.5449 0.5398
4.5 0.5235 0.6862 0.5449 0.5398
5.0 0.5234 0.6862 0.5449 0.5398

• homogeneous and anisotropic case

g1/2(x) = 1

d̂ij =

[
0.85 0.35
0.35 1

]
λ = 0

The boundary conditions are that (see Figure 1)

P = 0 on side AB
c = 0 on side BC
P = 0 on side CD
P = 1 on side AD

There is no simple analytical solution for this problem. In
fact the system is geometrically symmetric about the axis
x2 = 0.5. The results in Table II verify that anisotropy and
inhomogeneity give impact to the values of solution c for
being asymmetric about x2 = 0.5. Solutions are symmetric
only for homogeneous isotropic case, as expected. Moreover,
for all cases the results in Figure 15 indicate that the system
has a steady state solution. After all, the results suggest that
it is important to take both aspects of inhomogeneity and
anisotropy into account when doing an experimental study.

Problem 5:: We consider the inhomogeneous and
anisotropic case of Problem 4 again. But we change the set
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Fig. 16. Solutions c at (x1, x2) = (0.5, 0.5) for Problem 5

of the boundary conditions of Problem 4 especially on the
side AD. Now we use three cases of the boundary condition
on the side AD, namely

P = 1− exp (−0.85t) on side AD
P = t/6 on side AD
P = t (6− t) /9 on side AD

The results in Figure 16 are expected. The trends of the
solutions c mimics the trends of the exponential function
1 − exp (−0.85t), the linear function t/6 and the quadratic
function t (6− t) /9 of the boundary condition on side AD.
Specifically, for the exponential function 1 − exp (−0.85t),
as time t goes to infinity, values of this function go to 1.
So for big value of t, Problem 5 is similar to Problem 4
of the anisotropic inhomogeneous case. And the two plots
of solutions c for Problem 4 and Problem 5 in Figure 16
verifies this, they approach a same steady state solution as t
gets bigger.

V. CONCLUSION

A mixed Laplace transform and standard BEM has been
used to find numerical solutions to initial boundary value
problems for anisotropic trigonometrically graded materials
which are governed by the diffusion-convection equation (1)
of incompressible flow. The method is easy to implement and
involves a time variable free fundamental solution therefore it
gives more accurate solutions. It does not generate round-off
error propagation as it solves the boundary integral equation
(19) independently for each specific value of t at which
the solution is computed. Unlikely, the methods with time
variable fundamental solution may produce less accurate
solutions as the fundamental solution sometimes contain time
singular points and also solution for the next time step is
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