
 

  

Abstract—In cardiac clinical trials, appearance of spiral 

waves in myocardium electrical signal is associated with the 

arrhythmia and tachycardia. Spatiotemporal chaos generates 

form breakup of spiral waves, and may lead to ventricular 

fibrillation. Therefore, cancellation of spiral wave and 

spatiotemporal chaos can avoid the emergence of arrhythmia, 

tachycardia and ventricular fibrillation. Kinetic behavior of 

cardiac myocytes is well described by Fitzhugh–Nagumo model. 

In this paper, Fitzhugh–Nagumo model as node for a network. 

Spiral waves or the spatiotemporal chaos of a nodes have been 

canceled by bidirectional feedback, then spiral waves or the 

spatiotemporal chaos of the other node is suppressed through 

synchronization of network. Numerical simulation results 

demonstrate that proposed method can eliminate spiral wave 

and spatiotemporal chaos of the network effectively. Compared 

with previous synchronization tactics such as active-passive 

decomposition method and Lyapunov exponent method, our 

proposed method has better synchronization performance 

within network. 

 
Index Terms—cardiac myocytes, network, synchronization, 

Fitzhugh-Nagumo model 

 

I. INTRODUCTION 

The investigation of pattern is improved quickly 

throughout the development of the nonlinear dynamics in 

recent years. Pattern originates from dynamic process of 

location and interaction of diffusion, it can be found in 

biological, physical, and chemical systems [1-10]. For 

instance, cardiac clinical trials indicate that arrhythmia and 

tachycardia are corresponding to the spiral waves in 

myocardium electrical signal. The breakup of spiral waves 

will develop into spatiotemporal chaos, which is associated 

with ventricular fibrillation, and harms people’s life 

extremely [11-17], therefore how to eliminate spiral waves 

and spatiotemporal chaos is important to watch. At present, 

 
 

the main cardiac therapies are medicines and high voltage 

defibrillator, however, drugs have toxic side effects, and high 

voltage signal is very dangerous to stimulate and inspire the 

heart. 

 

It is exciting that spiral waves and spatiotemporal chaos 

can be eliminated through the dynamical characters of spiral 

waves in cardiac tissues [18-24]. Xu eliminated the spiral 

waves in cardiac tissue by hybrid strategy [25], Guo studied 

the elimination of spiral turbulence based on feedback 

method [26], Yuan controlled the spiral waves by periodic 

pulses [27]. Li investigated the controlled spiral waves and 

spatiotemporal chaos by dislocation coupling method [28]. 

With the deepening of research, it is found that, spiral 

waves and spatiotemporal chaos in many practical systems 

are not isolated and single, they have complex 

interconnections between each other and can form a huge 

complex network. For example, in a neuronal network, 

elimination of spiral wave and spatiotemporal chaos in the 

whole network can be realized through synchronization [29]. 

Spiral wave and turbulence of Fitzhugh–Nagumo system are 

transmit by synchronization in network [29, 30]. In 

myocardium, multiple spiral waves and spatiotemporal chaos 

may appear, when heart is abnormal, thus spiral waves and 

spatiotemporal chaos are regarded as nodes of network. 

Spiral wave and turbulence of are eliminated through 

synchronization of network [31]. 

In this work, we propose a new method to eliminate 

multiple spiral wave and spatiotemporal chaos of 

myocardium by synchronization of network. Compared with 

[29, 30], we realize synchronization of network is based on 

the assignment coupling strengths without controllers, but 

[29, 30] achieve synchronization of network by controllers. 

Compared with [31], the first node of spiral wave and 

spatiotemporal chaos is canceled by bidirectional feedback, 

the other spiral wave and spatiotemporal chaos is canceled 

based on the synchronization of network, but spiral wave and 

spatiotemporal chaos of the first node is canceled by external 

signal in [31]. Simulation results show the effectiveness and 

advantage of the proposed method. In the section of analysis 

and discussion, the synchronization performance of proposed 

method is better than active-passive decomposition method 

and Lyapunov exponent method. 

II. MECHANISM OF ELIMINATION OF SPIRAL WAVES AND 

SPATIOTEMPORAL CHAOS 

A. Mechanism of suppression of spiral waves and 

spatiotemporal chaos 

The Fitzhugh–Nagumo equation with two variables is one 

of the typical theoretical models to describe the spiral wave 
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and turbulence of cardiomyocyte, which is depicted as [32] 

{
 

 
∂𝑢(𝛾,𝑡)

∂𝑡
= 𝜀−1𝑢(𝛾, 𝑡)(1 − 𝑢(𝛾, 𝑡)) (𝑢(𝛾, 𝑡) −

𝑣(𝛾,𝑡)+𝑏

𝑎
)

+𝐷∇2𝑢(𝛾, 𝑡)                                      
∂𝑣(𝛾,𝑡)

∂𝑡
= 𝑓(𝑢(𝛾, 𝑡)) − 𝑣(𝛾, 𝑡)                                        

   (1)                   

𝑓(𝑢(𝛾, 𝑡)) = {

0                               0 ≤ 𝑢(𝛾, 𝑡) < 1/3

1 − 𝑐𝑢(𝑢 − 1)2     
1

3
≤ 𝑢(𝛾, 𝑡) < 1     

1                                𝑢(𝛾, 𝑡) ≥ 1            

         (2)         

where 𝑢(𝛾, 𝑡) and 𝑣(𝛾, 𝑡) represents diffusible activator and 

the indiffusible inhibitor respectively [19]; 𝑎, 𝑏, 𝑐 and 𝜀 are 

system parameters; 𝛾  and 𝑡   represent space position and 

time respectively; 𝐷  is a diffusion coefficient and ∇2=
𝜕2𝑥/𝜕2𝑦. 

 

 
(a) 

 
(b) 

Fig. 1 The map of the spatiotemporal evolution of the state variables 𝑢(𝛾, 𝑡) 
and 𝑣(𝛾, 𝑡) at  𝜀 = 0.07, (a) 𝑢(𝛾, 𝑡), (b) 𝑣(𝛾, 𝑡) 
 

The parameters are fixed as 𝑎 = 0.84, 𝑏 = 0.09, and 𝐷 =
1 . Parameter 𝜀  denotes the excitability of the system. 

Appropriate initial conditions are selected to form a stable 

rotating spiral wave when 0 < 𝜀 < 0.06, the spiral waves 

become unstable when 0.06 ≤ 𝜀 ≤ 0.07 , and the spiral 

waves breakup if the value of 𝜀  is larger than 0.07. The 

spatiotemporal evolution of the state variables 𝑢(𝛾, 𝑡) and 

𝑣(𝛾, 𝑡) are given in Figs. 1 and 2 respectively, where the size 

of system is 100×100.  

Adding bidirectional feedback to the system, and Eq. (1) is 

modified as Eq. (3), where 𝑑1 and 𝑑2 denote feedback 

intensity. Rewrite Eq. (3) as Eq. (4) 

{
 

 
∂𝑢(𝛾,𝑡)

∂𝑡
= 𝜀−1𝑢(𝛾, 𝑡)(1 − 𝑢(𝛾, 𝑡)) (𝑢(𝛾, 𝑡) −

𝑣(𝛾,𝑡)+𝑏

𝑎
)

+𝐷∇2𝑢(𝛾, 𝑡) − 𝑑1𝑢(𝛾, 𝑡)                
∂𝑣(𝛾,𝑡)

∂𝑡
= 𝑓(𝑢(𝛾, 𝑡)) − 𝑣(𝛾, 𝑡) − 𝑑2𝑣(𝛾, 𝑡)                      

 (3) 

{

∂𝑢(𝛾,𝑡)

∂𝑡
= 𝑔(𝑢(𝛾, 𝑡)) − 𝑑1𝑢(𝛾, 𝑡)              

∂𝑣(𝛾,𝑡)

∂𝑡
= 𝑓(𝑣(𝛾, 𝑡)) − (1 + 𝑑2)𝑣(𝛾, 𝑡)    

           (4) 

 
(a) 

 
(b) 

Fig. 2 The map of the spatiotemporal evolution of the state variables 𝑢(𝛾, 𝑡) 
and 𝑣(𝛾, 𝑡) at  𝜀 = 0.09, (a) 𝑢(𝛾, 𝑡), (b) 𝑣(𝛾, 𝑡) 

              

where 𝑔(𝑢(𝛾, 𝑡)) =
 𝑢(𝛾,𝑡)

𝜀
(1 − 𝑢(𝛾, 𝑡)) (𝑢(𝛾, 𝑡) −

𝑣(𝛾,𝑡)+𝑏

𝑎
) 

+𝐷∇2𝑢(𝛾, 𝑡), 𝜏 is assumed as short time interval, and Eq. (4) 

is written as 

{

∂𝑢(𝛾,𝑡+𝜏)

𝜕𝑡
= 𝑔(𝑢(𝛾, 𝑡 + 𝜏)) − 𝑑1𝑢(𝛾, 𝑡 + 𝜏)               

∂𝑣(𝛾,𝑡+𝜏)

𝜕𝑡
= 𝑓(𝑣(𝛾, 𝑡 + 𝜏)) − (1 + 𝑑2)𝑣(𝛾, 𝑡 + 𝜏)    

    (5)                    

Theorem 1. The system (5) will tend to stable, if feedback 

intensity 𝑑1 and 𝑑2 are taken as follows, respectively 

{
𝑑1 > 𝜉1        
𝑑2 > 𝜉2 − 1

                                       (6) 

where 𝜉1, 𝜉2 are non-negative. 

Proof: Defining the temporal variety ∆𝑢(𝛾, 𝑡) and ∆𝑣(𝛾, 𝑡) 
as 

{
∆𝑢(𝛾, 𝑡) = 𝑢(𝛾, 𝑡 + 𝜏) − 𝑢(𝛾, 𝑡)

∆𝑣(𝛾, 𝑡) = 𝑣(𝛾, 𝑡 + 𝜏) − 𝑣(𝛾, 𝑡)
 

The derivative form of ∆𝑢(𝛾, 𝑡)  and ∆𝑣(𝛾, 𝑡)  can be 

described as 

{

∂∆𝑢(𝛾,𝑡)

∂𝑡
= 𝑔(𝑢(𝛾, 𝑡 + 𝜏)) − 𝑔(𝑢(𝛾, 𝑡)) − 𝑑1∆𝑢(𝛾, 𝑡)          

∂∆𝑣(𝛾,𝑡)

∂𝑡
= 𝑓(𝑣(𝛾, 𝑡 + 𝜏)) − 𝑓(𝑣(𝛾, 𝑡)) − (1 + 𝑑2)∆𝑣(𝛾, 𝑡)

                     (7) 

We establishing Lyapunov function as follow: 

𝑉(𝛾, 𝑡) =
1

2
(Δ𝑢(𝛾, 𝑡)TΔ𝑢(𝛾, 𝑡) + Δ𝑣(𝛾, 𝑡)TΔ𝑣(𝛾, 𝑡)) 

The derivative form of 𝑉(𝛾, 𝑡) is described as 

          
∂𝑉(𝛾,𝑡)

∂𝑡
= Δ𝑢(𝛾, 𝑡)T

∂∆𝑢(𝛾,𝑡)

∂𝑡
+ Δ𝑣(𝛾, 𝑡)T

∂∆𝑣(𝛾,𝑡)

∂𝑡
  

              = Δ𝑢(𝛾, 𝑡)T(−𝑑1∆𝑢(𝛾, 𝑡) + ∆𝑔(𝑢(𝛾, 𝑡)))                
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 +Δ𝑣(𝛾, 𝑡)T(𝑓(𝑣(𝛾, 𝑡 + 𝜏)) − 𝑓(𝑣(𝛾, 𝑡))           

−(1 + 𝑑2)∆𝑣(𝛾, 𝑡))                                     (8) 

For two non-negative numbers 𝜉1  and 𝜉2 , the following 

relationship is existed on condition of Lipschitz [33] 

|𝑔(𝑢(𝛾, 𝑡 + 𝜏)) − 𝑔(𝑢(𝛾, 𝑡))| ≤ 𝜉1|𝑢(𝛾, 𝑡 + 𝜏) − 𝑢(𝛾, 𝑡)| 

(9)                 

|𝑓(𝑣(𝛾, 𝑡 + 𝜏)) − 𝑓(𝑣(𝛾, 𝑡))| ≤ 𝜉2|𝑣(𝛾, 𝑡 + 𝜏) − 𝑣(𝛾, 𝑡)| 

(10)        

Substituting the adaptive law Eq. (9) and (10) into the above 

Eq. (8), we can obtain 

    
∂𝑉(𝛾,𝑡)

∂𝑡
≤ ∆𝑢(𝛾, 𝑡)T(−𝑑1∆𝑢(𝛾, 𝑡) + 𝜉1∆𝑢(𝛾, 𝑡))  

         + |Δ𝑣(𝛾, 𝑡)T (𝑓(𝑣(𝛾, 𝑡 + 𝜏)) − 𝑓(𝑣(𝛾, 𝑡)))| 

                   −(1 + 𝑑2)Δ𝑣(𝛾, 𝑡)
T∆𝑣(𝛾, 𝑡)  

               ≤ ∆𝑢(𝛾, 𝑡)T(−𝑑1∆𝑢(𝛾, 𝑡) + 𝜉1∆𝑢(𝛾, 𝑡))                   

                  +∆𝑣(𝛾, 𝑡)T(−1 − 𝑑2∆𝑣(𝛾, 𝑡) + 𝜉2∆𝑣(𝛾, 𝑡)) 

               = (𝜉1 − 𝑑1)∆𝑢(𝛾, 𝑡)
T∆𝑢(𝛾, 𝑡) 

                   +(𝜉2 − 1 − 𝑑2)Δ𝑣(𝛾, 𝑡)
T∆𝑣(𝛾, 𝑡) 

Obviously, 
∂𝑉(𝛾,𝑡)

∂𝑡
< 0  if 𝑑1 > 𝜉1  and 𝑑2 > 𝜉2 − 1 . 

According to Lyapunov theorem, the system (5) will tend to 

stable. 

B. Mechanism of synchronization of network constructed 

by Fitzhugh–Nagumo model 

The 𝑁 Fitzhugh–Nagumo systems are regarded as nodes 

of networks, where the first node is selected to control by 

bidirectional feedback and modified as Eq. (11), the other 

nodes are described as Eq. (12) 

{
 

 
∂𝑢1(𝛾,𝑡)

∂𝑡
= 𝑔(𝑢1(𝛾, 𝑡)) − 𝜂1 ∑ 𝑐1𝑗

𝑁       

𝑗=1       

𝑢𝑗(𝛾, 𝑡) − 𝑑1𝑢1(𝛾, 𝑡)

                 
∂𝑣1(𝛾,𝑡)

∂𝑡
= 𝑓(𝑣1(𝛾, 𝑡)) − (1 + 𝑑2)𝑣1(𝛾, 𝑡)                          

(11)     

{
 

 
∂𝑢𝑛(𝛾,𝑡)

∂𝑡
= 𝑔(𝑢𝑛(𝛾, 𝑡)) − 𝜂𝑛 ∑𝑐𝑛𝑗

𝑁       

𝑗=1       

𝑢𝑗(𝛾, 𝑡)                     

        
∂𝑣𝑛(𝛾,𝑡)

∂𝑡
= 𝑓(𝑣𝑛(𝛾, 𝑡)) − 𝑣𝑛(𝛾, 𝑡)       (𝑛 = 2,⋯ ,𝑁 − 1) 

(12) 

where 𝜂𝑖 (𝑖 = 1,2,⋯ ,𝑁 − 1) denotes coupling strength, and 

𝑐𝑖𝑗  is matrix element of coupling matrix 𝐶 , its form is 

according to the class of connection, the coupled matrix is 

described as 

 𝐶 =  

[
 
 
 
 
0
−1
−1
⋮
−1

      

0
1
0
⋮
0

       

0
0
1
⋮
0

       

⋯
⋯
⋯
⋮
⋯

       

0
0
0
⋮
1]
 
 
 
 

                    (13) 

The errors of state variable among the network nodes are 

defined as 

{
𝑒1𝑖(𝛾, 𝑡) = 𝑢𝑖+1(𝛾, 𝑡) − 𝑢𝑖(𝛾, 𝑡)
𝑒2𝑖(𝛾, 𝑡) = 𝑣𝑖+1(𝛾, 𝑡) − 𝑣𝑖(𝛾, 𝑡)

 (𝑖 = 1,2,⋯ ,𝑁 − 1)  (14)            

Firstly, the derivatives form of 𝑒1𝑖(𝛾, 𝑡) and 𝑒2𝑖(𝛾, 𝑡) are 

described as 

{
 
 
 
 
 

 
 
 
 
  
∂𝑒11(𝛾, 𝑡)

∂𝑡
= 𝑔(𝑢2(𝛾, 𝑡)) − 𝜂2∑𝑐2𝑗𝑢𝑗(𝛾, 𝑡)

𝑁

𝑗=1

             

               −𝑔(𝑢1(𝛾, 𝑡)) + 𝑑1𝑢1(𝛾, 𝑡)                 

 
∂𝑒1𝑛(𝛾, 𝑡)

∂𝑡
= 𝑔(𝑢𝑛+1(𝛾, 𝑡)) − 𝜂𝑛+1∑𝑐𝑛+1𝑗

𝑁

𝑗=1

𝑢𝑗(𝛾, 𝑡)

          −𝑔(𝑢𝑛(𝛾, 𝑡)) + 𝜂𝑛∑𝑐𝑛𝑗

𝑁

𝑗=1

𝑢𝑗(𝛾, 𝑡)

 

   (15)       

{
 

  
∂𝑒21(𝛾,𝑡)

∂𝑡
= 𝑓(𝑣2(𝛾, 𝑡)) − 𝑓(𝑣1(𝛾, 𝑡)) − 𝑒21(𝛾, 𝑡)     

+𝑑2𝑣1(𝑟, 𝑡)                             

 
∂𝑒2𝑛(𝛾,𝑡)

∂𝑡
= 𝑓(𝑢𝑛+1(𝛾, 𝑡)) − 𝑓(𝑣𝑛(𝛾, 𝑡)) − 𝑒2𝑛(𝛾, 𝑡)

  (16)      

Theorem 2. If 𝑢1(𝛾, 𝑡) and 𝑣1(𝛾, 𝑡) of the first node has been 

stable to 0, and coupling strength of Eqs. (11) and (12) 

satisfies 

{
𝜂𝑖 > 𝜉1𝑖     
𝜂𝑛+1 ≥ 𝜂𝑛

 

the complete synchronization of complex network can be 

achieved. 

Proof. The Lyapunov function is constructed as 

𝑉(𝛾, 𝑡) =
1

2
∑(𝑒1𝑖

T (𝛾, 𝑡)𝑒1𝑖(𝛾, 𝑡) + 𝑒2𝑖
T (𝛾, 𝑡)𝑒2𝑖(𝛾, 𝑡)) (17)

𝑁−1

𝑖=1

 

Based on the Eqs. (15) and (16), the derivative form of 

𝑉(𝛾, 𝑡) can be described as 

𝜕𝑉(𝛾, 𝑡)

𝜕𝑡
= ∑ 𝑒1𝑖

T (𝛾, 𝑡)
𝜕𝑒1𝑖(𝛾, 𝑡)

𝜕𝑡
+ 𝑒2𝑖

T (𝛾, 𝑡)
𝜕𝑒2𝑖(𝛾, 𝑡)

𝜕𝑡
  

𝑁−1

𝑖=1

 

                = 𝑒11
T (𝛾, 𝑡)

𝜕𝑒11(𝛾, 𝑡)

𝜕𝑡
+ ∑ 𝑒1𝑛

T (𝛾, 𝑡)
𝜕𝑒1𝑛(𝛾, 𝑡)

𝜕𝑡
  

𝑁−1

𝑛=2

 

                  +𝑒21
T (𝛾, 𝑡)

𝜕𝑒21(𝛾, 𝑡)

𝜕𝑡
+ ∑ 𝑒2𝑛

T (𝛾, 𝑡)
𝜕𝑒2𝑛(𝛾, 𝑡)

𝜕𝑡

𝑁−1

𝑛=2

 

       = 𝑒11
T (𝛾, 𝑡) (𝑔(𝑢2(𝛾, 𝑡)) − 𝜂2∑𝑐2𝑗

𝑁

𝑗=1

𝑢𝑗(𝛾, 𝑡)   

                     −𝑔(𝑢1(𝛾, 𝑡)) + 𝑑1𝑢1(𝛾, 𝑡)+𝜂1∑𝑐1𝑗

𝑁

𝑗=1

𝑢𝑗(𝛾, 𝑡)) 

       +∑ 𝑒1𝑛
T (𝛾, 𝑡) (−𝜂𝑛+1∑𝑐𝑛+1𝑗

𝑁

𝑗=1

𝑢𝑗(𝛾, 𝑡)

𝑁−1

𝑛=2

 

                     +𝑔(𝑢𝑛+1(𝛾, 𝑡)) − 𝑔(𝑢𝑛(𝛾, 𝑡)) 

                     +𝜂𝑛∑𝑐𝑛𝑗

𝑁

𝑗=1

𝑢𝑗(𝛾, 𝑡)) + 𝑒21
T (𝛾, 𝑡)(𝑓(𝑣2(𝛾, 𝑡)) 

−𝑓(𝑣1(𝛾, 𝑡)) − 𝑒21(𝛾, 𝑡) + 𝑑2𝑣1(𝛾, 𝑡))                  

+∑ 𝑒2𝑛
T (𝛾, 𝑡)(𝑓(𝑣𝑛+1(𝛾, 𝑡)) − 𝑓(𝑣𝑛(𝛾, 𝑡))

𝑁−1

𝑛=2

        

 −𝑒2𝑛(𝑟, 𝑡))                                                    (18) 

  According to the form of coupling matrix 𝐶, Eq. (18) can be 

simplified as: 
𝜕𝑉(𝛾,𝑡)

𝜕𝑡
= 𝑒11

T (𝛾, 𝑡)(𝑔(𝑢2(𝛾, 𝑡)) − 𝑔(𝑢1(𝛾, 𝑡)) − 𝜂2𝑒11(𝛾, 𝑡)  

                +𝑑1𝑢1(𝛾, 𝑡)) + ∑ 𝑒1𝑛
T (𝛾, 𝑡)[𝑔(𝑢𝑛+1(𝛾, 𝑡)) 

𝑁−1

𝑛=2

 

                 −𝑔(𝑢𝑛(𝛾, 𝑡)) − 𝜂𝑛+1(𝑢𝑛+1(𝛾, 𝑡) − 𝑢1(𝛾, 𝑡)) 

            +𝜂𝑛(𝑢𝑛(𝛾, 𝑡) − 𝑢1(𝛾, 𝑡))] + 𝑒21
T (𝛾, 𝑡)(𝑓(𝑣2(𝛾, 𝑡)) 

                 −𝑓(𝑣1(𝛾, 𝑡)) − 𝑒21(𝛾, 𝑡) + 𝑑2𝑣1(𝛾, 𝑡)) 

                 +∑ 𝑒2𝑛
T (𝛾, 𝑡)(𝑓(𝑢𝑛+1(𝛾, 𝑡)) − 𝑓(𝑣𝑛(𝛾, 𝑡))

𝑁−1

𝑛=2

 

−𝑒2𝑛(𝛾, 𝑡))                                                        (19) 
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For non-negative numbers 𝜉1𝑛  and 𝜉2𝑛 , the following 

relationships are existed on condition of Lipschitz  

|𝑔(𝑢𝑛+1(𝛾, 𝑡)) − 𝑔(𝑢𝑛(𝛾, 𝑡))| ≤ 𝜉1𝑛|𝑢𝑛+1(𝛾, 𝑡) − 𝑢𝑛(𝛾, 𝑡)| 

   (20) 

|𝑓(𝑣𝑛+1(𝛾, 𝑡)) − 𝑓(𝑣𝑛(𝛾, 𝑡))| ≤ 𝜉2𝑛|𝑣𝑛+1(𝛾, 𝑡) − 𝑣𝑛(𝛾, 𝑡)|    

          (21) 

Substituting the Eqs. (20) and (21) into the Eq. (19), we 

can get 

𝜕𝑉(𝛾, 𝑡)

𝜕𝑡
≤ ∑(𝜉1𝑖 − 𝜂𝑖+1)𝑒1𝑖

T (𝛾, 𝑡)𝑒1𝑖(𝛾, 𝑡)

𝑁−1

𝑖=1

 

                    +𝑒11
T (𝛾, 𝑡)𝑑1𝑢1(𝛾, 𝑡) 

+∑(𝜂𝑛 − 𝜂𝑛+1)(𝑢𝑛(𝛾, 𝑡) + 𝑢1(𝛾, 𝑡))

𝑁−1

𝑛=2

 

                   +∑(𝜉2𝑖 − 1)𝑒2𝑖
T (𝛾, 𝑡)𝑒2𝑖(𝛾, 𝑡)

𝑁−1

𝑖=1

 

+𝑒21
T (𝛾, 𝑡)𝑑2𝑣1(𝛾, 𝑡)                                         (22) 

When the wave and turbulence of the first node is 

cancelled, we can obtain 𝑢1(𝛾, 𝑡) = 0 and 𝑣1(𝛾, 𝑡) = 0, and 

the Eq. (22) is simplified as: 

𝜕𝑉(𝛾, 𝑡)

𝜕𝑡
≤ ∑(𝜉1𝑖 − 𝜂𝑖+1)𝑒1𝑖

T (𝛾, 𝑡)𝑒1𝑖(𝛾, 𝑡)

𝑁−1

𝑖=1

 

                   +∑(𝜉2𝑖 − 1)𝑒2𝑖
T (𝛾, 𝑡)𝑒2𝑖(𝛾, 𝑡)

𝑁−1

𝑖=1

 

+∑(𝜂𝑛 − 𝜂𝑛+1)(𝑢𝑛(𝛾, 𝑡) + 𝑢1(𝛾, 𝑡))

𝑁−1

𝑛=2

 

where 𝜉2𝑖  is fixed as 𝜉2𝑖 < 1. As Fig. 1 shows, 𝑢𝑛(𝛾, 𝑡) ∈
[0,1], it is obvious that, if coupling strength satisfies 𝜂𝑖+1 >

𝜉1𝑖  and 𝜂𝑛+1 ≥ 𝜂𝑛 , there will be 
𝜕𝑉(𝛾,𝑡)

 𝜕𝑡
< 0. Based on the 

Lyapunov theorem, the synchronization of network has been 

achieved, and spiral waves or the spatiotemporal chaos of the 

other 𝑁 − 1  nodes will be cancelled. That completes the 

proof. 

III. MATH NUMERICAL SIMULATION 

A. Example 1 

In the numerical simulation, parameters 𝑑1  and 𝑑2  are 

fixed as 𝑑1 = 1.7  𝑑2 = 2 , 𝜏 = 5 , 𝜉𝑚 = 0 .01 (𝑚 = 1,2,3) , 

the number of the nodes is designed as 𝑁 = 3, bidirectional 

feedback is added at 𝑡 = 50, where 𝐿 = 100 is the size of 

system. 

 

 
(a) 

  
(b) 

 
(c) 

 
(d) 

Fig.3 Temporal evolution of errors 𝑒1𝑖(𝛾, 𝑡) and 𝑒2𝑖(𝛾, 𝑡) (𝑖 = 1,2), (a) (b) 

𝜀 = 0.07; (c) (d) 𝜀 = 0.09 (𝑦 = 43) 
 

Inputting bidirectional feedback and couplings at 𝑡 = 50, 

the spatial evolution of network errors 𝑒1𝑖(𝛾, 𝑡) and 𝑒2𝑖(𝛾, 𝑡), 
(𝑖 = 1, 2) are shown in Fig. 3, the initial temporal evolution 

of errors changed markedly, because the initial values is 

different, then errors toward zero rapidly with the 

synchronization of the network.  

Process of elimination of 𝑢1(𝛾, 𝑡) , 𝑢2(𝛾, 𝑡)  and 𝑢3(𝛾, 𝑡) 
are shown in Fig. 4 and Fig. 5, if values of the 𝑢1(𝛾, 𝑡), 
𝑢2(𝛾, 𝑡)  and 𝑢3(𝛾, 𝑡)  are stable to 0 , the spiral waves or 

spatiotemporal chaos of network are cancelled. 

In order to describe the elimination process of spiral waves 

and spatiotemporal chaos, ∆𝑈𝑖  and ∆𝑉𝑖 are defined as  
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{
  
 

  
 ∆𝑈𝑖 =∯ √

1

𝐿2
∆𝑢𝑖

2𝑑𝑥𝑑𝑦

𝐷𝑥𝑦

∆𝑉𝑖 =∯ √
1

𝐿2
∆𝑣𝑖

2𝑑𝑥𝑑𝑦

𝐷𝑥𝑦

         (𝑖 = 1,⋯𝑁)   (23) 

As shown in Figs. 6 and 7, the variables of system change 

quickly from 𝑡 = 0 to 𝑡 = 40, then the variables of system 

fluctuate slightly, when we add bidirectional feedback to the 

network at 𝑡 = 50, the variables are eliminated very quickly, 

it is obvious that spiral waves and turbulence of Fitzhugh–

Nagumo model are eliminated effectively and quickly.  

 

     
                         (a)                                                      (b)                                                        (c)                                                        (d) 

    
(e)                                                          (f)                                                      (g)                                                         (h) 

    
(i)                                                        (j)                                                      (k)                                                         (l) 

Fig. 4 Projection map of the spatiotemporal evolution of the state variable 𝑢𝑖(𝑟, 𝑡) at 𝜀 = 0.07, where (a) (b) (c) (d): 𝑢1(𝛾, 𝑡); (e) (f) (g) (h): 𝑢2(𝛾, 𝑡); (i) (j) (k) 

(l): 𝑢3(𝛾, 𝑡), and (a) (e) (i): 𝑡 = 50; (b) (f) (j): 𝑡 = 52; (c) (g) (k): 𝑡 = 53; (d) (h) (l): 𝑡 = 55 

    
(a)                                                  (b)                                                       (c)                                                         (d) 

    
(e)                                                 (f)                                                         (g)                                                          (h) 

    
(i)                                                 (j)                                                           (k)                                                          (l) 

Fig. 5 Projection map of the spatiotemporal evolution of the state variable 𝑢𝑖(𝑟, 𝑡) at 𝜀 = 0.09, where (a) (b) (c) (d): 𝑢1(𝛾, 𝑡); (e) (f) (g) (h): 𝑢2(𝛾, 𝑡); (i) (j) (k) 

(l): 𝑢3(𝛾, 𝑡), and (a) (e) (i): 𝑡 = 50; (b) (f) (j): 𝑡 = 51; (c) (g) (k): 𝑡 = 52; (d) (h) (l): 𝑡 = 55 
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(a) 

 
(b) 

Fig. 6 Temporal evolution of ∆𝑈𝑖, and ∆𝑉𝑖, where 𝜀 = 0.07, 𝜂2 = 2, 𝜂3 = 4, 

(a) Δ𝑈𝑖, (b) Δ𝑉𝑖 

 
(a) 

 
(b) 

Fig. 7 Temporal evolution of ∆𝑈𝑖, and ∆𝑉𝑖, where 𝜀 = 0.09, 𝜂2 = 2, 𝜂3 = 4, 

(a) Δ𝑈𝑖, (b) Δ𝑉𝑖 
 

B. Example 2 

In order to further validate the feasibility and effectiveness 

of the proposed method, the number of nodes is expended to 

30 . Fig. 8 shows the temporal evolution of 𝑒𝑖  (𝑖 =
1, 2,⋯ , 29) at the place 𝑥 = 45 and 𝑦 = 43. Fig. 9 exhibits 

the development of ∆𝑈𝑖. Based on Figs. 8 and 9, it is found 

that performance of the synchronization and effectiveness of 

elimination are insensitive to the scale of network. 
 

 
(a) 

 
(b) 

Fig.8 Temporal evolution of error 𝑒1𝑖 , 𝑒2𝑖  where 𝜀 = 0.09, 𝜂𝑖 = 1.7, 𝑖 =
1,2,⋯ ,29 (𝑥 = 45, 𝑦 = 43), (a) 𝑒1𝑖, (b) 𝑒2𝑖 

 
Fig.9 Temporal evolution of ∆𝑈𝑖, where 𝜀 = 0.09, 𝜂𝑖 = 1.7, 𝑖 = 1,2,⋯ ,30  

 

IV. ANALYSIS AND DISCUSSION 

In this section, the proposed synchronization method is 

compared with previous synchronization method. 

A. Synchronization based on active-passive 

decomposition (APD) method 

Eqs. (11) and (12) are rewritten as 
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{
 
 

 
 𝜕𝑢1

′

𝜕𝑡
= 𝜀−1𝑢1

′ (1 − 𝑢1
′ ) (𝑢1

′ −
𝑣1
′ + 𝑏

𝑎
) + 𝐷∇2𝑢1

′ −∑𝑐1𝑗𝑆𝑗

𝑁

𝑗=1

− 𝑑1𝑢1
′

𝜕𝑣1
′

𝜕𝑡
= 𝑓(𝑢1

′ ) − 𝑣1
′ − 𝑑2𝑣1

′                                                                           

 

(24) 

{
 
 

 
 𝜕𝑢𝑖

′

𝜕𝑡
= 𝜀−1𝑢𝑖

′(1 − 𝑢𝑖
′) (𝑢𝑖

′ −
𝑣𝑖
′ + 𝑏

𝑎
) + 𝐷∇2𝑢𝑖

′ −∑𝑐𝑖𝑗𝑆𝑗

𝑁

𝑗=1

  

𝜕𝑣𝑖
′

𝜕𝑡
= 𝑓(𝑢𝑖

′) − 𝑣𝑖
′      (𝑛 = 𝑖,⋯ ,𝑁 − 1)                                   

(25) 

where 

𝑓(𝑢𝑖
′) = {

0                                0 ≤ 𝑢𝑖
′ < 1/3

1 − 𝑐𝑢𝑖
′(𝑢𝑖

′ − 1)2   1/3 ≤ 𝑢𝑖
′ < 1

1                                 𝑢𝑖
′ ≥ 1             

 

𝑆𝑗 =
𝑢𝑗
′

𝜀
(𝑢𝑗

′ −
𝑣𝑗
′

𝑎
− 𝑢𝑗

′2 +
𝑢𝑗
′𝑣𝑗
′

𝑎
−
𝑏

𝑎
𝑢𝑗
′) 

𝑆𝑗 is driven signal, the coupled matrix is described as Eq. (13), 

and errors of state variable among the network nodes are 

defined as 

{
𝑒1𝑖
′ = 𝑢𝑖

′ − 𝑢𝑖+1
′                                       

𝑒2𝑖
′ = 𝑣𝑖

′ − 𝑣𝑖+1
′   (𝑖 = 1,2,⋯ ,𝑁 − 1)

             (26) 

B. Synchronization based on Lyapunov exponent method 

We rewrite Eqs. (11) and (12) as 

{
 
 

 
 𝜕𝑢1

′′

𝜕𝑡
= 𝜀−1𝑢1

′′(1 − 𝑢1
′′) (𝑢1

′′ −
𝑣1
′′ + 𝑏

𝑎
) + 𝐷∇2𝑢1

′′ − 𝑘∑𝑐1𝑗𝑢
′′
𝑗

𝑁

𝑗=1

−𝑑1𝑢1
′′                                                                             

𝜕𝑣1
′′

𝜕𝑡
= 𝑓(𝑢1

′′) − 𝑣1
′′ − 𝑑2𝑣1

′′     (𝑛 = 2,⋯ ,𝑁 − 1)                           

 

(27) 

{
 
 

 
 𝜕𝑢𝑛

′′

𝜕𝑡
= 𝜀−1𝑢𝑛

′′(1 − 𝑢𝑛
′′) (𝑢𝑛

′′ −
𝑣𝑛
′′ + 𝑏

𝑎
) + 𝐷∇2𝑢𝑛

′′ + 𝑘(𝑢1
′′ − 𝑢𝑛

′′)  

𝜕𝑣𝑛
′′

𝜕𝑡
= 𝑓(𝑢𝑛

′′) − 𝑣𝑛
′′      (𝑛 = 2,⋯ ,𝑁 − 1)                                         

 

(28) 

where 

𝑓(𝑢𝑖
′′) = {

0                                  0 ≤ 𝑢𝑖
′′ < 1/3

1 − 𝑐𝑢𝑖
′′(𝑢𝑖

′′ − 1)2   1/3 ≤ 𝑢𝑖
′′ < 1

1                                   𝑢𝑖
′′ ≥ 1             

 

𝑘 is coupling strength between the nodes of network, the 

coupled matrix is assumed as Eq. (13), and errors of state 

variable among the network nodes are defined as 

{
𝑒1𝑖
′′ = 𝑢𝑖

′′ − 𝑢𝑖+1
′′                                       

𝑒2𝑖
′′ = 𝑣𝑖

′ − 𝑣𝑖+1
′′   (𝑖 = 1,2,⋯ ,𝑁 − 1)

           (29) 

 

 
Fig.10 The evolution of maximum Lyapunov exponent with parameter 𝑘 

 

Fitzhugh–Nagumo models are assigned with different 

initial values, and the evolution of maximum Lyapunov 

exponent 𝜆m  of Eq. (29) with the coupling strength 𝑘  is 

shown in Fig. 10. When the maximum Lyapunov exponent is 

negative, the synchronization of network is achieved. The 

negative maximum Lyapunov exponent is smaller, the 

network approaches to synchronization at the faster the speed. 

As Fig. 10 demonstrates, Lyapunov exponent is minimum, 

when 𝑘 = 2.3. 

C. Comparison and analysis 

In order to compare the synchronization performance of 

our proposed method with APD and Lyapunov exponent 

methods, we define global errors as 

{
  
 

  
 
𝐸1 =

1

𝑁 − 1
∑ 𝑙𝑖𝑚

𝑡→∞
∯√

1

𝐿2
𝑒1𝑖𝑑𝑥𝑑𝑦

𝐷𝑥𝑦

𝑁−1

𝑖=1

𝐸2 =
1

𝑁 − 1
∑ 𝑙𝑖𝑚

𝑡→∞
∯√

1

𝐿2
𝑒2𝑖𝑑𝑥𝑑𝑦

𝐷𝑥𝑦

𝑁−1

𝑖=1

            (30) 

{
  
 

  
 
𝐸1
′ =

1

𝑁 − 1
∑ 𝑙𝑖𝑚

𝑡→∞
∯√

1

𝐿2
𝑒1𝑖
′ 𝑑𝑥𝑑𝑦

𝐷𝑥𝑦

𝑁−1

𝑖=1

𝐸2
′ =

1

𝑁 − 1
∑ 𝑙𝑖𝑚

𝑡→∞
∯√

1

𝐿2
𝑒2𝑖
′ 𝑑𝑥𝑑𝑦

𝐷𝑥𝑦

𝑁−1

𝑖=1

            (31) 

{
  
 

  
 
𝐸1
′′ =

1

𝑁 − 1
∑ 𝑙𝑖𝑚

𝑡→∞
∯√

1

𝐿2
𝑒1𝑖
′′𝑑𝑥𝑑𝑦

𝐷𝑥𝑦

𝑁−1

𝑖=1

𝐸2
′′ =

1

𝑁 − 1
∑ 𝑙𝑖𝑚

𝑡→∞
∯√

1

𝐿2
𝑒2𝑖
′′𝑑𝑥𝑑𝑦

𝐷𝑥𝑦

𝑁−1

𝑖=1

           (32) 

where 𝐸1 and 𝐸2 are global errors of Eqs. (11) and (12), 𝐸1
′  

and 𝐸2
′  are global errors of Eqs. (24) and (25), 𝐸1

′′ and 𝐸2
′′ are 

global errors of Eqs. (27) and (28). 

As Fig. 11 shows, global errors based on our method and 

Lyapunov exponent method approach to zero more quickly 

than APD method, and global errors based on our method 

approach to zero at the best speed of Lyapunov exponent 

method.  

V. CONCLUSION 

   Elimination of spiral waves or spatiotemporal chaos based 

on synchronization of network is investigated in this paper. 𝑁 

Fitzhugh–Nagumo models are taken as nodes of network, 

when a single node is eliminated, spiral waves and turbulence 

of the other nodes are canceled through synchronization of 

network. Two Numerical simulation results show that 

proposed method can be successfully used to achieve the 

synchronization and to eliminate spiral waves or 

spatiotemporal chaos, furthermore, the scale of the network 

does not affect the synchronization performance. In addition, 

our proposed method has better synchronization performance 

than APD and Lyapunov exponent methods. 
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(a) 

 
(b) 

Fig.11 The evolution of global errors, where 𝑘 = 2.3 , 𝜂𝑛 = 2+
0.01(𝑛 − 1), 𝑛 = 2,3,⋯ ,30, (a) 𝜀 = 0.07, (b) 𝜀 = 0.09 
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