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Abstract—A new function class W (Lp,Ψ(t), β) was initially
introduced by Srivastava and Singh [Trigonometric approxima-
tion of periodic functions belonging to weighted Lipschitz class
W (Lp,Ψ(t), β), Contemporary Mathematics, American Math-
ematical Society, 645 (2015) 283-291], which was a weighted
version of Lip(ω(t), p)-class, with weight function sinβp(x/2),
and authors obtained the error of approximation of functions
belonging to this class by matrix means of its Fourier series. In
this paper, we determine the error (degree) of approximation of
conjugate functions belonging to this class using matrix means
of its conjugate Fourier series. We also discuss some corollaries
from our results.

Index Terms—W (Lp,Ψ(t), β)-class, Degree of approxima-
tion, Conjugate Fourier series, Matrix Means.

I. INTRODUCTION

MANY researchers had done a sufficient amount of
work in the area of approximation of g̃(x) (conjugate

function of g) lies in various Lipschitz classes. The error of
approximation of g̃(x) lies in Lipα and Lip(α, p) was stud-
ied in [1]–[8]. After these studies many researchers worked
in analyzing the error of approximation of the functions
lies in Lip(ξ(t), p) and obtained the error of the order of
m1/pξ(1/m), for instance, one can see [9]–[13]. Similarly,
in the area of the error of approximation of the conjugate
of a function lies in W (Lp, ξ(t)), some essential results
was introduced by Nigam and Sharma [14], Qureshi [15]
and Dhakal [16]. Lal [17], Rhoades [18] and Mittal et. al.
[19], [20] have obtained the error of order mβ+1/pξ(1/m).
Mishra et. al. [21], [22], Nigam and Sharma [23], Deǵer [24]
and Singh and Srivastava [25] have got error of approxima-
tion of functions, conjugate to the functions belonging to
W (Lp, ξ(t))-class and gave exciting results using different
types of summability. Singh and Srivastava [25] obtained
error of order (m+ 1)βξ(1/(m+ 1)), by using the general
summability method. The result of Singh and Srivastava [25]
was sharper than the previous result and also free from p.
Rathore and Singh [26] has obtained error of approximation
of function conjugate to W (Lp, ξ(t)). They also relaxed
the conditions imposed on ξ(t). Recently, Singh [27] has
obtained an error of approximation of g̃(x), conjugate to
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functions lies in W (Lp, β, ξ) p ≥ 1 using product summabil-
ity C1.T -mean under the weighted norm. Recently, Sharma
[28] worked on the error of approximation of conjugate
functions lies in W (Lp, ξ(t)) and provided better results
than previous ones. Using the properties of approximation
of functions, many engineers and scientists have designed
digital filters. Psarakis and Moustakiedes [29], developed a
new L2-based method for designing Finite Impulse Response
digital filters to acquire ideal approximation. Also, Lp-space,
L2-space and L∞-space are of much importance in designing
digital filters.

In 2015, Srivastava and Singh [30] introduced a new
Lipschitz class W (Lp,Ψ(t), β). It is a weighted version of
Lip(ω(t), p), with weight function sinβp(x/2), defined as:
W (Lp,Ψ(t), β) = {g ∈ Lp[0, 2π] : ‖(g(x + t) −
g(x)). sinβ (x/2) ‖p = O(Ψ(t)/t1/p)}, where β ≥ 0, t >
0, p ≥ 1 and Ψ(t) is an increasing and positive function
depending on β.

For Ψ(t) = t1/pξ(t), then W (Lp,Ψ(t), β) coincides
with W (Lp, ξ(t)) = {g ∈ Lp[0, 2π] : ‖(g(x + t) −
g(x)). sinβ(x/2)‖p = O(ξ(t))}, where p ≥ 1, β ≥ 0, t >
0 and ξ(t) is an increasing and positive function [31]–
[33]. Also, if we take β = 0 and Ψ(t) = ω(t), then
W (Lp,Ψ(t), β) reduces to Lip(ω(t), p) = {g ∈ Lp[0, 2π] :
‖g(x + t) − g(x)‖p = O(t−1/pω(t))}, where p ≥ 1, t > 0
and ω(t) is an increasing and positive function [34]. Khan
and Ram [35] defined Lip(ξ(t), p) = {g ∈ Lp[0, 2π] : |g(x+
t)− g(x)| = O(ξ(t)t−1/p)}, p > 1, t > 0. For Ψ(t) = ξ(t)
and β = 0, Lip(ξ(t), p) is a subset of W (Lp,Ψ(t), β) , since
‖.‖p = O(‖.‖∞). For β = 0 and Ψ(t) = tα+1/p, 0 < α ≤ 1,
W (Lp,Ψ(t), β) reduces to Lip(α, p).

The Lp[0, 2π]-space is defined as follows:

Lp[0, 2π] =

{
g : [0, 2π]→ R :

∫ 2π

0

|g(x)|p dx <∞
}
, p ≥ 1.

Then for g ∈ Lp[0, 2π], the p-norm can be defined as given
below:

‖g‖p :=

{
1

2π

∫ 2π

0

| g(x) |p dx
}1/p

, (1 ≤ p <∞),

and ‖g‖∞ := ess sup
0≤x≤2π

| g(x) | .

Let g be a 2π periodic function belonging to
Lp[0, 2π] with p ≥ 1. Then the trigonometric Fourier series
and conjugate Fourier series of g can be written as

g(x) ∼ a0
2

+

∞∑
r=1

(ar cos rx+ br sin rx) =

∞∑
r=0

Ar,
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and

g̃(x) ∼
∞∑
r=1

(br cos rx− ar sin rx) =
∞∑
r=0

Br,

respectively.
Let

sm(g;x) :=
a0
2

+
m∑
r=1

(ar cos rx+ br sin rx), m ∈ N

with s0(g;x) =
a0
2
,

and

s̃m(g;x) :=
m∑
r=1

(br cos rx− ar sin rx), m ∈ N

with s̃0(g;x) = 0,

denote the (m + 1)th partial sums of Fourier series and
conjugate Fourier series with respect to g, respectively. Here
ar and br, appeared in the above expressions, are called
Fourier coefficients and can be evaluated easily as per the
requirement.

The error of approximation Em(g) of function g ∈ Lp-
space by a trigonometric polynomial Tm(x) of order m is
given by

Em(g) := min
Tm

‖ g(x)− Tm(x) ‖p,

where Tm(x) is approximant of g(x) and this approach is
known as trigonometric Fourier approximation.

Define

t̃m(g;x) :=
m∑
r=0

am,r s̃r(g;x), m ∈ N0,

where T ≡ (am,r ≥ 0 for every m, r) is a lower triangular

matrix such that am,−1 = 0, Am,r =

m∑
v=r

am,v and Am,0 =

1, m ∈ N0. If t̃m(g;x) → s as m → ∞, then the Fourier
series of the function g is called T -summable to s.
If am,r =

pm−r
Pm

, for 0 ≤ r ≤ m, and am,r = 0, for r >

m,wherePm = p0 + p1 + ... + pm 6= 0 → ∞ as m → ∞,
then matrix T reduce to Nörlund matrix and denoted by Np.

We also write

J(m, t) =
1

2π

m∑
r=0

am,m−r
cos
(
m− r + 1

2

)
t

sin
(
t
2

) ,

η := [t−1], the integer part of t−1,

and

g̃(x) = − 1

2π
lim
ε→0

∫ π

ε

Ψx(t) cot(t/2) dt,

where Ψx(t) = g(x+ t)− g(x− t).
The conjugate function of the function g is defined as

above and is denoted by g̃. For g ∈ W (Lp,Ψ(t), β), the
function Ψx(t) also belongs to W (Lp,Ψ(t), β) [36].

II. MAIN RESULT

Recently, Srivastava and Singh [30] defined
W (Lp,Ψ(t), β)- class, which was a weighted version
of Lip(ω(t), p)-class, with weight function sinβp(x/2),
and they obtained the error of approximation of functions
belonging to this class by matrix means of its Fourier series.
Here, we consider the same function class and determine
the order of approximation of g̃, conjugate to the function g
belonging to this class using matrix means of its conjugate
Fourier series.
Theorem. Let T ≡ (am,r) be a lower triangular regular
matrix with non-negative and non-decreasing ( with
respect to r, for 0 ≤ r ≤ m) entries. Then the error of
approximation of a 2π periodic function g̃, conjugate of g
lies in W (Lp,Ψ(t), β) with p ≥ 1 and 0 ≤ β < 1/p by
matrix means of its conjugate Fourier series is given by

‖ t̃m(g;x)− g̃(x) ‖p= O

(
(m+ 1)β+1/pΨ

(
π

m+ 1

))
,

(1)
where Ψ(t) is an increasing and positive function satisfying
the following conditions:

Ψ(t)/tβ+1/p is an increasing function, (2)(
Ψx(t) sinβ(t/2)

Ψ(t) t−1/p

)
is bounded function of t, (3)

(∫ π

π/(m+1)

(
Ψ(t)

t1+1/p+β

)p
dt

)1/p

= O
(
(m+ 1)β+1 ×

Ψ

(
π

m+ 1

))
, (4)

where condition (3) holds uniformly in x and p−1+q−1 = 1.

III. LEMMAS

Here few lemmas are given, which are useful to prove our
theorems:
Lemma 1. Let T ≡ (am,r) be a matrix defined in the
Theorem then,

|J(m, t)| = O(t−1), for t ∈
(

0,
π

m+ 1

]
.

Proof. Applying | cos(t)| ≤ 1 and t/π ≤ sin

(
t

2

)
for t ∈(

0,
π

m+ 1

]
,

|J(m, t)| =

∣∣∣∣∣(2π)−1
m∑
r=0

am,m−r cos
(
m− r + 1

2

)
t

sin
(
t
2

) ∣∣∣∣∣
≤ (2π)−1

m∑
r=0

am,m−r

∣∣∣∣∣cos
(
m− r + 1

2

)
t

sin
(
t
2

) ∣∣∣∣∣
≤ (2π)−1

m∑
r=0

am,m−r
π

t

≤ t−1
m∑
r=0

am,m−r

|J(m, t)| = O
(
t−1
)
.
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Lemma 2. Let T ≡ (am,r) be a matrix defined in Theorem
then,

|J(m, t)| = O

(
Am,m−η

t

)
, for t ∈

(
π

m+ 1
, π

]
.

Proof. Applying t/π ≤ sin

(
t

2

)
for t ∈

(
π

m+ 1
, π

]
,

we have

|J(m, t)| =
1

2π

∣∣∣∣∣
m∑
r=0

am,m−r cos
(
m− r + 1

2

)
t

sin
(
t
2

) ∣∣∣∣∣
≤ O(t−1)

∣∣∣∣∣Re
m∑
r=0

am,m−r e
i(m−r+1/2)t

∣∣∣∣∣
≤ O(t−1)

∣∣∣∣∣
m∑
r=0

am,m−r e
i(m−r)t

∣∣∣∣∣ . (5)

According to McFadden[ [37], pp.8, Lemma 5.11], we have∣∣∣∣∣
m∑
r=0

am,m−re
i(m−r)t

∣∣∣∣∣ =

∣∣∣∣∣eimt
m∑
r=0

am,m−re
−irt

∣∣∣∣∣
≤

∣∣∣∣∣
η−1∑
r=0

am,m−re
−irt

∣∣∣∣∣+

∣∣∣∣∣
m∑
r=η

am,m−re
−irt

∣∣∣∣∣
≤

η−1∑
r=0

am,m−r + 2am,m−η sup
η≤r≤m

∣∣∣∣e−i(r+1)t − 1

e−it − 1

∣∣∣∣
≤ Am,m−η+1 + 2am,m−η

(
1

sin(t/2)

)
≤ Am,m−η + 2am,m−η (η + 1)

= O(Am,m−η). (6)

According to 2 am,m−η(η+1) = O(Am,m−η)(from increas-
ing nature of am,r).

Thus from (5) and (6),

|J(m, t)| = O

(
Am,m−η

t

)
.

IV. PROOF OF THEOREM
Case 1. For p > 1, we have

s̃m(g;x)− g̃(x) = (2π)−1
∫ π

0

Ψx(t) cos
(
m+ 1

2

)
t

sin
(
t
2

) dt,

and t̃m(g;x)− g̃(x) =

m∑
r=0

am,r [s̃r(g;x)− g̃(x)]

=

∫ π

0

Ψx(t)
1

2π

m∑
r=0

am,r
cos
(
r + 1

2

)
t

sin
(
t
2

) dt

=

∫ π

0

Ψx(t)
1

2π

m∑
r=0

am,m−r
cos
(
m− r + 1

2

)
t

sin
(
t
2

) dt

=

∫ π

0

Ψx(t) J(m, t) dt

=

∫ π/(m+1)

0

Ψx(t) J(m, t) dt+∫ π

π/(m+1)

Ψx(t) J(m, t) dt

= R1 +R2, say. (7)

Applying Ψx(t) ∈ W (Lp,Ψ(t), β), Hölder’s inequality,

Lemma 1, t/π ≤ sin

(
t

2

)
for t ∈ (0, π], condition (2),

(3), mean value theorem for integrals and p−1 + q−1 = 1,
we have

|R1| ≤
∫ π/(m+1)

0

(
sinβ(t/2) |Ψx(t)|

t−1/p Ψ(t)

|J(m, t)|Ψ(t)

t1/p sinβ(t/2)

)
dt

≤

[∫ π/(m+1)

0

(
sinβ(t/2). |Ψx(t)|

t−1/p Ψ(t)

)p
dt

]1/p
×

[∫ π/(m+1)

0

(
|J(m, t)|.Ψ(t)

t1/p sinβ(t/2)

)q
dt

]1/q
= O(m+ 1)−1/p Ψ

(
π

m+ 1

)
×[∫ π/(m+1)

0

(
1

t1/p+β+1

)q
dt

]1/q
= O

(
(m+ 1)β+1/pΨ

(
π

m+ 1

))
. (8)

Applying Hölder’s inequality, Lemma 2, t/π ≤ sin

(
t

2

)
for

t ∈ (0, π], p−1 + q−1 = 1, condition (4) and boundedness

of

(
Ψx(t) sinβ(t/2)

Ψ(t) t−1/p

)
, we have

|R2| ≤
∫ π

π/(m+1)

(
|Ψx(t)|. sinβ(t/2)

Ψ(t)

|J(m, t)|Ψ(t)

sinβ(t/2)

)
dt

= O

[∫ π

π/(m+1)

(
t−1/p

Ψ(t)

t

Am,m−η
tβ

)
dt

]

= O

[∫ π

π/(m+1)

(
Ψ(t)

t1+β+1/p

)p
dt

]1/p
×

[∫ π

π/(m+1)

{Am,m−η}q dt

]1/q

= O

[∫ π

π/(m+1)

(
Ψ(t)

t1+β+1/p

)p
dt

]1/p
×

[∫ π

π/(m+1)

{
π

(m+ 1)t

}q
dt

]1/q
= O(m+ 1)β+1 Ψ

(
π

m+ 1

)
(m+ 1)−1/q

= O

(
(m+ 1)β+1/pΨ

(
π

m+ 1

))
, (9)

for Am,m−η = O

(
π

(m+ 1)t

)
(using regularity condition

of am,r).
Combining (7)-(9), we have

|t̃m(g;x)− g̃(x)| = O

(
(m+ 1)β+1/pΨ

(
π

m+ 1

))
.
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Case 2. For p = 1, as explained in the above proof and
applying Hölder’s inequality (p = 1), we have

|R1| ≤
∫ π/(m+1)

0

(
|Ψx(t)|. sinβ(t/2)

t−1 Ψ(t)

Ψ(t) |J(m, t)|
t sinβ(t/2)

)
dt

≤ O(m+ 1)ess sup
0<t≤π/(m+1)

(∣∣∣∣ Ψx(t)

t−1 Ψ(t)

Ψ(t)

tβ+1

∣∣∣∣)×∫ π/(m+1)

0

1 dt

= O

(
(m+ 1)β+1Ψ

(
π

m+ 1

))
, (10)

according to Lemma 1, t/π ≤ sin

(
t

2

)
for t ∈ (0, π] and

condition (2), (3).

Applying Hölder’s inequality (p = 1), t/π ≤ sin

(
t

2

)
for

t ∈ (0, π], Lemma 2, condition (4) and boundedness of(
Ψx(t) sinβ(t/2)

Ψ(t) t−1

)
, we have

|R2| ≤
∫ π

π/(m+1)

(
|Ψx(t)|. sinβ(t/2)

Ψ(t)

|J(m, t)|Ψ(t)

sinβ(t/2)

)
dt

≤ O

[∫ π

π/(m+1)

(
t−1

Ψ(t)

t

Am,m−η
tβ

)
dt

]

≤ O

[∫ π

π/(m+1)

(
Ψ(t)

t2+β

)
dt

]
×

ess sup
π/(m+1)≤t≤π

|Am,m−η|

= O(m+ 1)β+1Ψ

(
π

m+ 1

)
×

ess sup
π/(m+1)≤t≤π

∣∣∣∣ π

(m+ 1)t

∣∣∣∣
= O

(
(m+ 1)β+1Ψ

(
π

m+ 1

))
, (11)

in view of Am,m−η = O

(
π

(m+ 1)t

)
.

Combining (7), (10) and (11), we get

|t̃m(g;x)− g̃(x)| = O

(
(m+ 1)β+1Ψ

(
π

m+ 1

))
.

Hence, for p ≥ 1, we have

‖t̃m(g;x)− g̃(x)‖p = O

(
(m+ 1)β+1/pΨ

(
π

m+ 1

))
.

It completes the proof of Theorem.

V. COROLLARIES
Here few corollaries are given, which are derived from our

results.
1. If ψ(t) = t1/pξ(t), then for g̃ ∈W (Lp, ξ(t)),

‖t̃m(g;x)− g̃(x)‖p = O

(
(m+ 1)β ξ

(
π

m+ 1

))
,

where p ≥ 1 and ξ(t) is an increasing and positive function
such that:

ξ(t)/tβ is an increasing function, (12)

ψx(t) sinβ(t/2)

ξ(t)
is a bounded function of t, (13)

(∫ π

π/(m+1)

(
ξ(t)

t1+β

)p
dt

)1/p

= O
(

(m+ 1)β+1/q ×

ξ

(
π

m+ 1

))
. (14)

Here p−1 + q−1 = 1 and condition (13) holds uniformly in
x.
2. If β = 0 and Ψ(t) = t1/p ξ(t), then for g̃ ∈ Lip(ξ(t), p),

‖t̃m(g;x)− g̃(x)‖p = O

(
ξ

(
π

m+ 1

))
,

where p ≥ 1 and ξ(t) is an increasing and positive function
such that:

Ψx(t)

ξ(t)
is a bounded function of t,

(∫ π

π/(m+1)

(
ξ(t)

t

)p
dt

)1/p

= O
(

(m+ 1)1/q ×

ξ

(
π

m+ 1

))
.

3. If β = 0 and Ψ(t) = tα+1/p, α ∈ (0, 1/q), then for
g̃ ∈ Lip(α, p),

‖t̃m(g;x)− g̃(x)‖p = O((m+ 1)−α), α < 1/q, p > 1.

4. If p→∞ in Corollary 3, then for g̃ ∈ Lipα (0 < α ≤ 1),

‖t̃m(g;x)− g̃(x)‖∞ =

 O((m+ 1)−α), 0 < α < 1,

O

(
log(m+ 1)

m+ 1

)
, α = 1.
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