
 

 

Abstract—To understand the isothermal flow of the non-

Newtonian fluids through a porous media, it is necessary to 

know how shear stress affects fluid viscosity. The objective of 

this research is to investigate MHD non -Newtonian fluid flow 

that best fits the Powell-Eyring model in the presence of shear 

stress on an inclined porous plate for both lift and draining flow.  

The flow behaviour has been examined under the influence of a 

magnetic field and a shear distribution. In order to solve the 
non-dimensionalized governing equation, the Adomian 

Decomposition Method (ADM) is utilized. For both lifting and 

drainage flow, the influence of material parameters such as 

permeability, shear stress, and magnetic has been investigated 

and described. The physical interpretation of the essential 

factors which influenced the shear stress versus the velocity is 

presented. Finally, the analysis highlights the impact of 

permeability and magnetic parameters on the fluid flow 

graphically.  The outcomes demonstrate that shear stress is an 

increasing function of fluid parameter in lifting case, but it is 

decreasing in drainage case. Moreover, the inclination is an 

important factor that affects the shear stress of both lifting and 

drainage flow. 

 
Index Terms—Adomian Decomposition Method (ADM), 

Darcy's law, Magnetohydrodynamic (MHD), Powell -Eyring 

fluid, Shear stress 

 

I. INTRODUCTION 

HE dynamics of non-Newtonian fluids have an effect on 

fluid behaviour. Nonlinear constitutive relationships are 

found in a wide range of industrial products, including 

 
 

lubricants, paints, and foodstuffs. These constitutive relations 

for such fluids give rise to complex non-linear equations. The 

solution of non-linear mathematical problems is far more 

difficult than that of Newtonian fluids. The importance of 

finding a proper solution of theses equations comes from the 

need of understanding of rheological properties of the non-

Newtonian fluids, which can help in describing the behaviour 

of the non-Newtonian fluid [1]. 

Powell-Eyring fluid model is a non-Newtonian fluid 

developed from Ree-Eyring fluid model by adding an infinite 

shear rate viscosity [2]. The Powell-Eyring fluid was 

introduced by Eyring and Powell [3]. This type of fluid is 

used commonly to describe viscoelastic fluids. This model is 

known for its accuracy and consistency in the calculation of 

experimental and analytical studies [4]. The main 

characteristic of this fluid model is that instead of scientific 

relationships, it is taken from the kinetic theory of liquids. 

Also, the liquid reduces Newtonian activity with a low and 

high shear rate [5], [6].  

Many models have been developed in the last few years to 

describe the viscous flow of Powell-Eyring fluids through 

porous media. The incompressible Couette flow for the 

Eyring-Powell model on porous walls was proposed by 

Zaman [7]. In his study, he applied the Homotopy analysis 

method for uniform suction or injection. Similarly, in another 

study, Prasad et al. [8] investigated in a non-Darcy porous 

medium, the steady-state flow and heat transfer of non-

Newtonian incompressible Eyring-Powell fluid from a 

vertical porous layer. Their study shows that the Darcy 

parameter enhances both velocity and temperature. Gupta, et 

al. [9] adopted the Homotopy perturbation technique solution 

for the heat transfer flow between vertical plates that moved 

in the reverse direction and packed with a porous medium 

partially. 

Additionally, different researchers have analysed the 

impact of MHD on Powell-Eyring fluid. To analyse Powell- 

Eyring flow to a stretching sheet, Akbar et al [10] applied the 

boundary layer approach and similarity transformations. 

Their outcome showed that the rise in magnetic field strength 

produced resistance to the flow. Khan, et al [11] investigated 

the MHD flow of Powell–Eyring fluid over a rotating disk 

Due to the movement of Powell-Eyring fluid through a 

stretching cylinder with Newtonian heating. Hussain et al. 

[12] studied the influence of inclined magnetic field. From 
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the literature review, it depicts that most of these studies have 

not considered the dynamics of the problem for the combined 

effects of porous media, steadiness and impact of 

Magnetohydrodynamic (MHD) on the flow system. These 

effects have not been discussed with the use of ADM. 

It is worth to note that most of these problems have been 

solved numerically despite obtaining an approximate or 

analytical solution is most favourable than numerical 

solutions. In literature, various approximate theoretical 

approaches have been used to solve the governing equations 

of the fluid flow of the Powell Eyring, such as the variation 

iteration method [13], the method of Homotopy analysis [6], 

[11], Adomian Decomposition Method [14]–[16]. However, 

the exact solution regarding the thin film flow of non-

Newtonian fluid is very challenging to obtain. Therefore, 

numerical methods take apart besides the approximate 

analytical methods. 

Recently, different modelling s tudies have been carried out 

on thin-film flow for the Powell Eyring fluid by various 

researchers using numerical methods [17], [18]. In light of 

these efforts, Salah, et al. [19] have described the Powell 

Eyring fluid flow on the vertically moving belt using 

successive linearization method. Ellahi, Shivanian [20] also 

studied the numerical solutions for Couette flow of Powell-

Eyring fluid under slip boundary condition and heat transfer. 

Akinshilo and Olaye [21] studied the Powell-Eyring pipe 

flow model with variable temperature, variable viscosity and 

internal heat generation using Perturbation method. 

Many researchers have been modelling applied sciences 

and engineering problems through ADM. ADM is known due 

to its effectiveness and reliability for handling linear and non-

linear differential equations [22], [23]. In the form of an 

infinite sequence, it provides the required analytical solution 

that quickly defines each term. The ADM requires no 

discretization, linearization, or spatial transformation, unlike 

conventional approaches. It offers some valuable benefits as 

well as numerical methods over other analytical techniques. 

The object of this paper was to investigate the impact of 

shear stress and inclination when the Powell-Eyring fluid 

flow over porous medium. The material parameters of the 

shear stress for the lifting and drainage flow are taken into 

accounts, such as magnetic permeability, friction and heat 

transfer parameters. The governing equations representing 

the problem are converted into a non-linear ordinary 

differential equation. Using the Adomian decomposition 

process, the transformed ordinary differential equation was 

solved to get approximate solution. The results of relevant 

parameters on the velocity and stress of the fluid have been 

graphically displayed. 

II. PROBLEM FORMULATION 

Consideration was provided to the one-dimensional flow 

of an incompressible Powell-Eyring fluid running over an 

inclined porous layer. The flow regime is supposed to be 

steady, laminar, uniform, and its direction is perpendicular to 

the magnetic field of strength 0B . A small magnetic 

Reynolds number is expected so that the induced magnetic 

field is neglected. Suddenly, the plate moves upward with 

constant velocity 0U , but due to gravity effects, the fluid 

drains down again. The thickness of thin-film is assumed to 

equal to  , and the external pressure is uniform everywhere. 

Figure 1 shows the x-axis perpendicular to the plate, and the 

y-axis is taken along the plate after rotation. 

A. Lift Flow of Powell-Eyring Fluid 

The flow is one dimensional in which the velocity varies 

only in one direction, and the flow is a function of only one 

co-ordinate axis. Then, the only velocity component and the 

extra stress tensor S  in the y-direction is written in the 

following form 

 

(0, ( ),0), ( )u x x u S S  (1) 

 

If we neglect the thermal effects, then the momentum and 

continuity equations of an incompressible fluid in lifting case 

are given by: 

 

0 u  (2) 

2

0 sin
d

B g
dt

     
u

T u  (3) 

 

where ‘ρ’ is the constant density, ‘u’ is the velocity vector, 

the 0B  magnetic field of strength, and T is the stress tensor. 

Cauchy stress tensor T  for an incompressible fluid is given 

by Yunus et al. [24]. 

 

p  T I S
 

(4) 

 

where the extra stress tensor S  for the Powell-Eyring fluid 

satisfies the relation [16]: 

 

11 1
sinh

C




  
    

 
S u u  (5) 

 

where   the coefficient of shear viscosity, and ,C  are the 

material constants of the Powell-Eyring fluid. As stated in 

[17], the Taylor expansion of the inverse hyperbolic term in 

the above equation (5) is approximately given by the 

following equation (6): 

 

 
Fig. 1.  A schematic diagram of lifting flow of Powell-Eyring over an inclined 
porous plate. 
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3

1 1 1 1 1
sinh ,

6

1
1

C C C

C

    
       

   

 

u u u

u

 (6) 

which leads to: 

 

3

3

1 1

6

du du

C dx C dx


 

    
      

    
S  (7) 

 

Since the flow is steady then 0
du

dt
 . By substituting 

equation (6) into equation (5) and with the help of equation 

(4), the non-zero components of the momentum equation (3) 

excluding pressure gradient in matrix form written as follows: 

 

 
3

2

03

0 1 0 0 1 0
1

0 1 0 0 1 0 0

0 0 0 0 0 0

0 1 0
1

1 0 0 0, ( ),0
6

0 0 0

sin (0, ( ),0)i

du du

dx C dx

du
B u x

C dx

g u x
K








  

   
      

             
   

 
  

     
 

 

 

(8) 

 

From equation (8), the values of  

 and 

consequently 
xySS  in equation (7). Equation (8) is 

written in a simple form as: 

 
3

3

2

0

1 1
0

6

sin i

du du

C dx C dx

B u g u
K


 


   

    
      

    

  

 (9) 

 

Subject to the boundary conditions 

 

0( )   at   0u x U x   (no-slip condition) (10) 

0  at   xyS x    (free surface) (11) 

 

Introducing the non-dimensional quantities to simplify the 

equations (8)-(11), as follows: 

 

0

2 22

0

22

0

2 3

0

1
,  ,  1 ,

,

sin
,

2

u u U x x
C

B
M

K

Ug
St

U C

 


 




  


 

    

 

 

 (12) 

 

where   and   are the dimensionless parameters of  

Eyring-Powell fluid, St  is the Stokes number, M  is the 

magnetic parameter, and   is the permeability parameters. 

The dimensionless form of equations (9)-(11), omitting the 

(*) notation, can now be written as: 

 
22 2

2 2
( )

sin 0

i

d u d u du
M u

dx dx dx

St

  



    
      

    

 

 (13) 

 

subject to the boundary conditions 

 

1  at    0u x   (14) 

0  at   1
du

x
dx

 
 

(15) 

 

Equation (13) under the boundary conditions (14) and (15), is 

a non-linear differential equation of the second-order that 

challenges its exact solution. Therefore, we use ADM to get 

the solution. 

B. Application of the ADM in lifting problem 

Firstly, we define the linear operator 

2

2xx

d
L

dx
 . Suppose 

that the inverse of this operator exists and defined by 
1( ) ( )xxL dxdx    , accordingly. Equation (13) can be 

written in the operator form as follows:  

 

22

2

1
( ) ( )

1
sin

xx i

d u du
L u x M u

dx dx

St




 




  
    

  



 (16) 

 

By applying the inverse operator 1

xxL  on both sides of 

equation (16), we obtain 

 

22
1 1 1

2

1

1
( ) sin

1
( )

xx xx xx xx

i xx

d u du
L L u x L St L

dx dx

M L u




 




  



  
    

  

 

 
(17) 

 

0xx yy zz xz zx yz zyS S S S S S S      
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Or 

 
2

0 1

22
1 1

2

1
( ) sin

2

1
( )xx i xx

x
u x St c x c

d u du
L M L u

dx dx







 

 

 
   

 

  
    

  

 (18) 

 

0c  and 
1c  are integration constants. As the ADM is a series 

method [9], it is possible to give the solution ( )u x , and the 

non-linear terms can be given as, 

0

( ) ( )n

n

u x u x





 

(19) 

22

2 n

d u du
A

dx dx

  
  

  


 

(20) 

 

where 
nA  is the Adomian polynomial which is calculated by 

using the following equation: 

 

1 0

1
  0,1,2,..

!

n n
i

n in
i

d
A N u n

n d



  

  
   

  
  (21) 

 

To get: 

 
22

0 0
0 2

d u du
A

dx dx

  
   

    

(22) 

22

01
1 2

2

0 0 1

2
2

dud u
A

dx dx

d u du du

dx dx dx

  
   

  

   
     

   

 (23) 

22

02
2 2

2

0 0 2

2

2

01 1

2

22

01

2 2

2

2

dud u
A

dx dx

d u du du

dx dx dx

dud u du

dx dx dx

d ud u

dx dx

  
   

  

   
     

   

   
     

   

  
   
  

 (24) 

 

Substituting equations (19) and (20) in (18), we obtain 

 

2

0 1

0

1 1

0 0

1
( ) sin

2

1
( )

n

n

xx n i xx n

n n

x
u x St c x c

L A M L u







 





 
 

 

 
   

 

  



 

 (25) 

 

The zero component problem for the MHD Powell-Eyring 

fluid 
0 ( )u x  is identified as follows: 

 

2

0 0 1

1
( ) sin

2

x
u x St c x c



 
   

   

(26) 

 

Subject to the boundary conditions 

 

0 ( ) 1   at 0u x x 
 

(27) 

0 0  at   1
du

x
dx

 
 

(28) 

 

Involving the boundary conditions (27) and (28) in equation 

(26), we obtain the zero component as: 

 
2

0

1
( ) sin sin 1

2

x
u x St St x 



 
   

   

(29) 

 

The remaining components can be written as: 

 

1

1

1

( )

1
( )

n xx n

i xx n

u x L A

M L u
















 




 (30) 

 

Subject to the boundary condition 

 

1( ) 0   at 0nu x x  
 

(31) 

1 0  at   1ndu
x

dx

  
 

(31a) 

 

Substitute 0,1,2,..n   in equation (29) and apply the 

inverse operator with the help of the boundary conditions (31) 

and (31a) to obtain the first several component solutions. 
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 

 

 

 

1

3 3

4

3 3
2

4

3 3
3

4 2

3 3
4

4 2

( )

1 1 sin 1 sin
1

3 3

1 sin 1

2 2

sin1 sin 1

3 6

sin1 sin 1

12 24

i

i

i

i

u x

St St
M x

St
M x

M StSt
x

M StSt
x

  


  

 


 

  

 

  

 



  
      

  

 
   
 

 
   
 

 
  
 

 

(32) 

 

 

2

3 3

2 3
2 2

3 3

3
2 2

2

( )

1 sin

1 1 30
sin

sin1

2

2 sin

1 1
sin ...

12 sin1

i

i

u x

St

St
M St

St

St
M St

 

 
 

   



 




  

 



   
   
   
    

   
   

  
  
   
   
  
  

 

(33) 

 

The noticeable length and complexity of 
2 ( )u x  terms make 

it difficult to display. The solution of the differential equation 

(13) takes the form: 

 

0 1

0

2 3

( ) ( ) ( ) ( )

( ) ( ) ....

n

n

u x u x u x u x

u x u x





  

  


 (34) 

 

Or equivalently as 

 

 

 

 

 

2

3 3

4

3 3
2

4

3 3
3

4 2

3 3
4

4 2

( )

1
sin sin 1

2

1 1 sin
1

3

1 sin

3

1 sin 1

2 2

sin1 sin 1

3 6

sin1 sin 1

12 24

lift

i

i

i

i

u x

x
St St x

St
M

x
St

St
M x

M StSt
x

M StSt
x

 





 

 



 


 

  

 

  

 



 
   

 

  
     

  
 
 
 

 
   
 

 
   
 

 
  
 

....

 

(35) 

 

where ( )liftu x  is the solution of lifting case. The accuracy of 

the ADM solution increases by increasing the complexity of 

the solution. A truncated number of terms has used for the 

solution.  If 
2


   and the effect of MHD and the porosity 

parameters are dominated (i.e., M  and   are equals to zero) 

in equation (35), then: 

 
2 3 3 2

4

2 5 5 4 3 2

7

1 1 ( 4 6 4)
( ) 1

2 12

1 ( 6 15 20 15 6)
....

18

Stx Stx St x x x x
u x

St x x x x x x



  





  
   

    
 

 

(36) 

 

Moreover, at 0   and 1   in equation (36), the 

solution for the Newtonian fluid is recovered, and a similar 

result was derived in earlier research by [10]. 

C. Drainage Flow of Powell-Eyring Fluid 

 In this section, the MHD Powell-Eyring fluid steeps down 

on the stationary inclined plate due to the gravity. The same 

assumptions of lifting problem are used, except that the 

gravity which is the dominant driving force for the flow acts 

in the downward direction. Thus, the governing is converted 

to: 

 
3

3

2

0

1 1
0

6

sin i

du du

C dx C dx

B u g u
K


 


   

    
      

    

  

 (37) 

 

subject to the boundary conditions 

 

( ) 0  at   0u x x   (at the plate surface) (38) 

0  at   
du

x
dx

   (shear stress at the free 

surface) 

(38a) 

 

By using equation (11), the dimensionless form of equation 

(36) is 

 
22 2

2 2

( ) sin 0i

d u d u du

dx dx dx

M u St

 

 

    
    

    

   

 (39) 

 

subject to the boundary conditions  
 

( ) 0  at   0u x x   (40) 

0  at   1
du

x
dx

 
 

(41) 

 

To solve equation (39), we use the ADM by the same 

process. The components of the solution are:  
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2

0

1
( ) sin sin

2

x
u x St St x 



 
   

   

(42) 
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12 24
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   
 

 
  

 

 
  

 

 
   
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 (43) 
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(44) 

 

By substituting the values of equations (42) and (44) in 

equation (33), the solution of the non-linear differential 

equation (36) takes the form 
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12 24
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 
  

 

 
  

 

 
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0, 0 and
2

iM


   
 

(45) 

 

In the case that the effects of porosity and MHD are  

neglected, which means equation (45) becomes: 

 
2

3 3 2
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....

Stx Stx
u x

St x x x x

St x x x x x x

 









  

  


    




 (46) 

TABLE I 

COMPARING THE NUMERICAL VALUE OF THE VELOCITY ( )u x  TO THE PREVIOUS STUDY USING A SUCCESSIVE LINEARIZATION METHOD (SLM) FOR THE 

LIFTING CASE 

x 

Newtonian fluid 

St=1, M=0,  =0 

Non-Newtonian fluid 

St =1, M=0,   =0.15,   =0 

Present study 

( )u x
 

(ADM) 

[19] 

( )u x
 

(SLM) 

[19] 

( )u x
 

(SLM) 

Present study 

( )u x
 

(ADM) 

0 1 1 1 1 
0.1 0.9050 0.9050 0.9015 0.9013 

0.2 0.8200 0.8200 0.8145 0.8138 
0.3 0.7450 0.7450 0.7386 0.7374 

0.4 0.6800 0.6800 0.6736 0.6716 
0.5 0.6250 0.6250 0.6191 0.6163 

0.6 0.5800 0.5800 0.5749 0.5713 
0.7 0.5450 0.5450 0.5411 0.5364 

0.8 0.5200 0.5200 0.5173 0.5116 
0.9 0.5050 0.5050 0.5036 0.4967 

1.0 0.5000 0.5000 0.5000 0.4918 
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In equation (46), it is noticeable that when 0, 1    the 

solution for the Newtonian fluid is recovered. 

III. RESULT AND DISCUSSION 

The problem has been divided into two sections: lifting and 

a drainage fluid flow. Therefore, the results are also discussed 

individually in two separate sections. 

A. Lift Flow of Powell-Eyring Fluid 

 In this section, the effect of the embedded flow parameters 

for the lifting problem of the Powell-Eyring fluid is 

discussed. Table I elucidates to compare ( )liftu x  for the 

Newtonian film. When we set the porosity and magnetic 

parameters equal to zero in equation (35), the Newtonian film 

solution is obtained. The results are tabulated in columns 1 

and 2, and these results are similar to an earlier study 

conducted by Salah, et al. [19]. Moreover, the effect of the 

magnetic and the porosity parameter in the non-Newtonian 

film are tabulated in columns 3 and 4. The results reflect that 

the speed of the non-Newtonian film is strongly dependent on 

Sisko fluid parameter, and the Newtonian film lift faster than 

the non-Newtonian film. 

The material parameters   and   are significant 

parameters that control friction and heat transfer. These 

parameters are also affecting the behaviour of the viscoelastic 

fluid, as illustrated in an earlier study [5]. Thus, the sensitivity 

of the solution due to the change of these two parameters is 

investigated. Substitute 0x   in equation (8) to obtain the 

shear stress on the plate. 

Figure 2 shows that the shear stress is susceptible to any 

small variations in the parameter  . The flow of Powell-

Eyring fluid is too slow at high shear rate values [5]. The 

shear stress increased with the increment of   for 0.5x 

, and thus the fluid flow is reduced. After 0.5x   there is 

no noticeable effect of   on the shear stress, this result is in 

agreement with the results obtained by Van Rossum [11]. 

Figure 3-8 discuss the effect of the different parameters on 

velocity profile. Figure 3 illustrates the impact of Stoke's 

number St  on the fluid velocity. It is found that the speed 

decreases by increasing St  due to the rising of liquid 

thickness. Figure 4 and Figure 5 portray the effects of 

magnetic parameter. Generally, the velocity values reduce 

 
Fig. 4.  Effect of Parameter M  on the lift velocity 

0.5,  1,  0,  1.1,  0,  
4

iSt   


     
. 

  

 
Fig. 2.  Effect of the shear stress on the plate. 

  

 
Fig. 3.  Effect of the Stokes number on the lift velocity  

0.5,  0.15,  1,  1.1,  1,  
4

iM   


     
. 

  

 
Fig. 5.  Effect of the parameter on the lift velocity 

0.5,  1,  2,  1.1,  1,  
4

iSt   


     
. 

  

IAENG International Journal of Applied Mathematics, 51:4, IJAM_51_4_05

Volume 51, Issue 4: December 2021

 
______________________________________________________________________________________ 



 

along the x  axis. In the case of 0i   , the fluid 

moves slower with the increment of M , as shown in Figure 

4. Physically, the presence of a transverse magnetic field 

raises the Lorentz force, which acts as a retarding force on the 

velocity field. On the other hand, Figure 5 presents the 

relation between the velocity and M  in the presence of  

porous medium. The generation of intermolecular porous 

force limits the effect of the magnetic force. 

B. Drainage Flow of Powell-Eyring Fluid 

The effects of different parameters on the drainage velocity 

( )u x  are investigated. Initially, the impact of inclination is 

summarised in Table II. In column 1, the drainage velocity of 

the Newtonian fluid is controlled by St  value by affecting the 

fluid layer thickness. For non-Newtonian fluids in columns 2 

and 3, it is clear that the liquid drained fast when the plate is 
in vertical position. Additionally, increasing either of St  or 

M  values reduces the rate of drainage while increasing   

value raises the drain velocity because a large stokes number 
is indicating the dominance of inertial force. Figure 6 

demonstrates the minimising of the material parameter  , 

which leads to the velocity decaying and at 1  , the fluid 

converts to the Newtonian fluid. It is worthy to note the 

significant effect of   the flow velocity, as shown in Figure 

7. In particular, the increment of   produces friction force 

which results in more fluid layer thickness, which means that 

TABLE II 
EFFECT OF THE INCLINATION ON ( )u x  FOR THE DRAINAGE CASE 

x 

Newtonian fluid 
when 

1, 0,

0, 1

St M

 

 

   

Non- Newtonian fluid flow through a porous medium ( )u x  

under these conditions St =1, M=0,   =0.15,   =0 

1, 0,

0, 1

St M

 

 

   

1.5, 0.1, 1

0.5, 0.1,
2

St M 


  

  

  
 

1.5, 0.1, 1

0.9, 0.1,
4

St M 


  

  

  
 

0 0 0 1 

0.1 0.19 0.2187 0.1455 

0.2 0.36 0.3904 0.2613 

0.3 0.51 0.5258 0.3539 
0.4 0.64 0.6329 0.4279 

0.5 0.75 0.7172 0.4867 
0.6 0.84 0.7827 0.5326 

0.7 0.91 0.8317 0.5672 
0.8 0.96 0.8658 0.5913 

0.9 0.99 0.8860 0.6056 
1.0 1.00 0.8927 0.6104 

 

 
Fig. 6.  Effect of the material parameter on the lift velocity 

0.4,  0.15,  0, 0.5,  0,  
4

i MSt   


    
. 

  

 
Fig. 7.  Effect of non-Newtonian parameter on the lift velocity 

1,  1.1, 2, 0.5,  1,  
4

i MSt   


    
. 

  

 
Fig. 8.  Effect of the permeability on the lift velocity 

1,  0.15,  1.1, 0.5,  1,  
4

i MSt   


    
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the fluid movement becomes slower. Figure 8 highlights the 

inverse relation between   and fluid velocity. The large 

values of   mean that a more considerable amount of fluid 

will be allowed to enter the medium with higher speed. 

Moreover, it is noticed that the flows of non-Newtonian fluid 
in a saturated porous medium are slower than the Newtonian 
fluid.  

Figure 9 indicates that the drainage velocity increases at 
high values of the Stokes number St . This phenomenon has 

occurred as the friction is low near to the plate and higher at 
the surface, which results in flattening of the fluid layer. 

Figure 10 shows that due to the high viscous force, which 

increases the adhesion of the liquid coatings, the velocity is a 
decreasing function due to the magnetic parameter effect. 

Figure 10 displays the influence of non-Newtonian 

parameter   on drainage velocity. Generally, the fluid 

appears different behaviour by increasing   when assuming 

different values of the  . Utilising   that   controlled the 

tone of the flow. Additionally, it is found that the fluid 

performs a shear-thinning when, 0   as shown in Figure 

11. Figure 12 illustrates that the increment of   increases the 

fluid layer thickness near the plate and flattens it far away 

from the plate. The effect of the non-Newtonian parameter on 
the shear stress is displayed in Figure 13. The graph indicates 
that the shear stress increases as the non-Newtonian 

parameter increases.  

IV. CONCLUSION 

This study investigated the approximate analytical solution 

for the steady flow of magnetohydrodynamic (MHD) Powell-

Eyring fluid over an inclined porous plate, for lifting and 

drainage problem. The non-linear differential equation 

arising from the mathematical modelling was analytically 

solved using ADM. The effect of the different parameters on 

the solutions was presented graphically. Certain major results 

are summarised as follows: 

1) The effect of the magnetic parameter on velocity is 

opposite in lifting and drainage situations.  

2) Shear stress is an increasing function of the fluid 

parameter in the lifting case and a decrease in the 

drainage case. 

3) The adhesive force reduces the flow as 


 increases for 

both lifting and drainage flow. 

4) Newtonian fluid results can be taken as a particular case 

 
Fig. 10.  Magnetic parameter’s effect on the drainage velocity 

0.5,  0.15,  1.1,  0.1,  1,  
4

iSt    


    
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Fig. 11.  Magnetic parameter’s effect on the drainage velocity 

0.8, 0.5,  1,  
4

i M 


   
. 

  

 
Fig. 9.  Effect of the Stokes number on the velocity 

0.5,  0.15,  1.1,  1,  1,  
4

iM    

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Fig. 12.  Effect of the   parameter on the drainage velocity 

1,  0.15,  1.1, 0.5,  1,  
4

i MSt   

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of the present problem 0,   higher velocities are 

observed with the increase of Stokes number when the 

fluid is drained down. 
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Fig. 13.  Effect of the parameter on the shear stress 
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