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Total Dominator Edge Chromatic Number of
Graphs

Minhui Li, Shumin Zhang, Caiyun Wang and Chengfu Ye

Abstract—Let G be a simple graph with no isolated edge. A
total dominator edge coloring (TDEC) of a graph G is a proper
edge coloring such that each edge of G is adjacent to every edge
of some (other) color class. The total dominator edge chromatic
number (TDEC-number) of G is the minimum number of color
classes among all total dominator edge colorings of GG, denoted
by X (G). The stability number of TDEC-number of G is the
minimum number of vertices whose removal changes the value
of x/J(G) and remaining graph is connected. The bondage
number of TDEC-number of G is the minimum number of
edges whose removal changes the value of x/; (G). In this paper,
we establish the lower and upper bounds of the TDEC-number
of a graph G, obtain the TDEC-number and the stability and
bondage numbers of some graphs.

Index Terms—total edge domination number, total dominator
edge chromatic number, stability number, bondage number

I. INTRODUCTION

LL graphs considered here are finite, undirected and

simple. For standard graph theory terminology not
given here we refer to [1]. Let G = (V, E) be a simple graph
with the vertex set V' = V(G) and the edge set £ = E(G).
The order and size of G are denoted by n = |V | and m = |E|
respectively.

The open neighborhood N (v) of a vertex v consists of the
set of all vertices adjacent to v. The degree of a vertex v is
the number of edges incident with v, denoted by deg(v). Let
4(G) and A(G) be the minimum degree and the maximum
degree of G, respectively. A vertex v is called a pendant
vertex if deg(v) = 1. The open neighborhood N (e) of an
edge e consists of the set of all edges adjacent to e. The
degree of an edge wv is defined as deg(u) + deg(v) — 2.
An edge uv is called an isolated edge if deg(uv) = 0. An
edge incident with a pendant vertex is called a pendant edge.
For a subset X C V(G), let G — X denote a subgraph of G
obtained by removing X. For a subset Y C E(G), let G-Y
denote a subgraph of GG obtained by removing Y. We denote
a path, a cycle, a star and a complete graph of order n by
P,, C,, Ki -1 and K, respectively. We say that a graph
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is connected if there is a path between every two vertices of
the graph, and otherwise is called disconnected.

A total dominating set of a graph G is a set S C V(G)
such that any vertex v of G satisfies N(v) NS # &, that
is, every vertex of GG is adjacent to at least one vertex in
S. The total domination number of G is the cardinality of
a minimum total dominating set, denoted by ~;(G). Some
literatures on the subject on total domination of graphs has
been surveyed in the book [5].

A proper coloring of a graph G is a function f : V(G) —
{1,...,k}(k € N) such that f(u) # f(v) if u and v
are adjacent. The chromatic number of G is the minimum
number of colors needed in a proper coloring of GG, denoted
by x(G). Kazemi in [8] defined the new concept of total
dominator coloring of graphs as following. A total dominator
coloring of a graph G, briefly TDC, is a proper coloring such
that each vertex of GG is adjacent to every vertex of some
(other) color class. The total dominator chromatic number
of G, briefly TDC-number, is the minimum number of color
classes among all total dominator colorings of G, denoted
by x4(G).

The TDC-number of some graphs was determined and the
computation of the TDC-number was NP-complete in [8].
Henning in [4] established the lower and upper bounds on
the TDC-number of a graph G in terms of its v(G). And
the properties of a TDC in trees were studied in [4, 8]. More
details about the TDC-number of a graph can be found in
[7,9, 13].

In addition, the definitions related to the TDC-number of
a graph were introduced by Ghanbari and Alikhani [3]. The
total dominator chromatic stability (bondage) number of a
graph G, is the minimum number of vertices (edges), whose
removal changes the TDC-number.

Motivated by a TDC of a graph, Ghanbari and Alikhani [2]
considered the proper edge coloring of G and introduced the
total dominator edge coloring of G. A proper edge coloring
of a graph G is a function ¢ : E(G) — {1,...,k}(k € N)
such that c(e) # ¢(f) for any adjacent edges e, f. The edge
chromatic number of G is the minimum number of colors
needed in a proper edge coloring of GG, denoted by X/(G).
A total dominator edge coloring of G, briefly TDEC, is a
proper edge coloring such that each edge of G is adjacent to
every edge of some (other) color class. The total dominator
edge chromatic number of G, briefly TDEC-number, is the
minimum number of color classes among all total dominator
edge colorings of G, denoted by x/f (G). We say that a color
is free if no edge is adjacent to all edges of this color class
in a TDEC of G.

The TDEC-number of a graph is related to its total edge
domination number. A set D of edges is a total edge dominat-
ing set of G, briefly TEDS, if every edge of GG is adjacent to
at least one edge in D. The total edge domination number of
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G, briefly TED-number, is the minimum cardinality among
all total edge dominating sets of G, denoted by ~,(G). A
~;(G)-set is a TEDS of G with minimum cardinality. The
total edge dominating of a graph was introduced and studied
by Kulli and Patwari [6] in 1991. Readers may refer to [10—
12, 14] for more information.

At present, in [2], Ghanbari and Alikhani obtained some
properties of the TDEC-number and computed the values of
the parameter for specific graphs and k-subdivision of graphs.

In this paper, we obtain some bounds of the TDEC-number
of general graphs, and determine the TDEC-number, the
TDEC-stability number and the TDEC-bondage number of
some special graphs.

II. PRELIMINARIES

Now we briefly introduce some related results.

Lemma 1. [11] For any path P, with n > 2, then

2 if n =0 or 2(mod 4),
’Y;(Pn,) — ”;1 if n = 1(mod 4),
n+1

a=  if n = 3(mod 4).

Lemma 2. [11] For any cycle C,, with n > 3, then

5 if n = 0(mod 4),
7,(Cp) = il if n =1 or 3(mod 4),
n+2

2= if n = 2(mod 4).

Lemma 3. [11] For any complete graph K, with n > 3,
then v, (K,) = L%"j

III. BOUNDS OF THE TDEC-NUMBER OF GENERAL
GRAPHS

In this section, we obtain some bounds of the TDEC-
number of general graphs.

Observation 1. Let G be a connected graph of size m with
the maximum degree A. Then A < th(G) < m. Also the
bounds are sharp.

Theorem 1. Let G be a graph with no isolated edge. Then
maz{x (G),7(G)} < xd (G) < %(G) + x (G).

Also the bounds are sharp.

Proof: First we prove the lower bound. It is obvious
X (G) < X:f(G). Let f = (E1, Fa,..., E;) be a minimal
TDEC of G, where | = X;{(G) and D = {ej,ea,...,e},
e; € E;(1 < i <1). According to the definition of TDEC,
we know that any edge e of G dominates at least a color
class and is adjacent to at least one edge in D. And by the
definition of TEDS, it is easy to see that D is a TEDS of G,
(@) <xH@),

Now we prove x;(G) < 7,(G)+x (G). Let ¢ : E(G) —
{1,2,...,k} (k € N) be a proper edge coloring of G. We
assign the colors k + 1,k +2,...,k + 'y; to the edges of a
’yé(G)-set of G and the other edges are colored as before.
Clearly, this is a TDEC of G.

Furthermore, the lower bound is sharp if G
know that

= P3, we

X4 (P3) =2 =X (P3) = 7,(P3).

The upper bound is sharp if G = Py, we know that

Xd (Po) = 6 = 7, (Py) + x (Py).

|
By Lemma 3 and Theorem 1, the following Corollary is
immediate.

Corollary 1. Let n be any positive integer and n > 2.
Then 2n — 1 < x/(Ka,) < [ %] +2n— 1 and 2n —1 <
Xd (EKon—1) < [*52] +2n — L.

Next, we assign a unique color to each edge in the TEDS
of G, then a proper edge coloring to the remaining edges.

Theorem 2. Let G be a connected graph. Then
Xd (G) < 7(G) + minx' (G — D),

where D C E(G) is a ~,(G)-set of G. Also the bound is
sharp.

Proof: Let p = min{x (G — D) | D is a 7,(G)-set of
G.}, S ={e1,ea,...,e4} be a~,(G) -set such that x (G —
S)=p,and f: E(G)—S — {1,2,...,p} be a proper edge

coloring of G — S. We define g : E(G) — {1,2,....p+q}
such that
p+i ife=e €58,
g(e) = :
fle) ifeé¢S.

Since S is a TEDS of G, g is a TDEC of G. Hence,
X4 (G) < q+p=7,(G) +min{x (G- D) | D is a 7,(G)-
set of G.}.

Furthermore, the bound is sharp if G = K ,, we know
that

X;lt(Kl,n) =n= 7;(K1,n) + X/ (KLTL—Q)/
= (K1) +min{x (K1,—D) | D is a v, (K1 ,)— set.}.

|

Now, we study the TDEC-number for a disconnected
graph without isolated edges.

Theorem 3. Let G be a disconnected graph without isolated
edges and G1,Gs,...,Gs be all connected components of
G, where s > 2. Then

1<i<s

max X/dt(Gi) +25—2< X;it(G) < ZX:it(Gi)‘
i=1

Also the bounds are sharp.

Proof: Let f; be a TDEC of G; with x.}(G;) colors,
for 1 < i < s. Without loss of generality, we have X:it(G) <
S HG): Let v (G)) = max{x}(Gy) | 1 <1 < s},
for some j, 1 < j < s. Since the edges of G; need at least
two new colors, where 7 # j, we obtain Juax X/dt(Gi) +25—

2 < x{(G).
Furthermore, the bounds are sharp if G = kPs(k > 2),
where kPjs is the disjoint union of k copies of Ps. ]

Let M be an independent edges set of a graph G such
that G — M has no isolated edge or every isolated edge is
adjacent to all edges in M.

Theorem 4. Let G be a connected graph of size m and
without isolated edges. Then x}(G) <m — |M|+ 1.
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Proof: Let M be a maximum independent edges set,
f be an edge coloring of G as following. Assign m — | M|
colors to m — | M| edges of G — M respectively, and assign
a new color to all edges of M. Clearly, f is a TDEC of G,
50 XH(G) <m— M| +1. ]

IV. TDEC-NUMBER OF SPECIAL GRAPHS

In this section, we determine the TDEC-number of some
special graphs. First, we state the following observation.

Observation 2. For 3 <n <19, we have
7 (Pn) for n € {3,4,7},

XF(P) =< 4i(P.)+2 forne{9,13,14,16,17,18},

v (P,) +1 for other.
We have the following result when n > 20.

Theorem 5. For any positive integer n > 20, X;it(Pn) =
Ve(Pn) +2.

Proof: We prove the theorem by induction on size of
G. Let G be a path P, with the vertex set {v; | 1 <i < n}
and the edge set {e; | e; = v;v;41,1 < < n—1}. Itis easy
to verify that the theorem holds when n = 20, 21, 22, 23.

By inductive hypothesis, we have x.f(P,) =7;(P,/) + 2
when 20 < n' < n. Let f be a TDEC of G, G = G —
{Ul, vg, V3, V4t and ¢ be the restriction of f to the edges in
G 1t's easy to know that the edge eq is assigned a unique
color in f and the two edges in N(es) = {e1,es} needs
at least a new color. Hence, f has at least two more color
classes than ¢, and we will discuss the ¢ as follows.

Case 1: Suppose that ¢ is a TDEC of G According
to the inductive hypothesis, we see that c¢ has at least
Xd (@) =7(G) +2 = 7 (Pa-a) + 2 = %(P) = %(G)
color classes. It means that f has at least fyt(G) + 2 color
classes.

Case 2: Suppose that c is not a TDEC of G'. Since fis
a TDEC of G, only one edge e5 in G’ is not adjacent to all
edges of some color class in c. Also, we see that eg is the
only adjacent edge of e5 in G, so the edge ey is assigned
a unique color in f. Moreover, the color class that contains
eg has at least two edges. Furthermore, let ¢ bea coloring
of G', which is obtained by recoloring eg from ¢ with the
color of e4 in f, then ¢ is a TDEC of G’ and ¢ has at least
XHG) =1(G') + 2 = 3, (Puca) + 2 = 7,(P) = %(G)
color classes. Since eq, es, e3 are assigned at least two colors
in f, f has at least two more color classes than ¢ , so f has
at least fyt(G) + 2 color classes.

According to the above discussions, we have Xd HG) >
~;(G) + 2. In addition, by Theorem 1, x£(G) < ~,(G) + 2.
Hence, X /(G) = 7,(G) + 2. [ |

By Lemma 1, Observation 2 and Theorem 5, we have the
following Corollary immediately.

Corollary 2. If P, is a path with n > 20, then

% +2 if n =4k, 4k +1,
Xi(P) =4 2k+3 ifn=4k+2
2% +4 if n =4k +3.

Especzally, xd (Pg) = Xd HPy) =2, Xd HPs) =3, Xd HPs) =
Xd(P7> =4 Xd(PS) =5 Xd(P9) = Xd(PlO) = 6,

Fig. 1. A total dominator edge coloring of Fi,.

1(Pn) = x{(Pi2) =
;( Pys) = 9 Xd(P )
X4 (Pro) = 11

X

7, X/d(P13) = § X;lt(PM) =
/t
X =

i(Pi7) = 10, x/(Pig) =

Analogously, we have some results about cycles.
Observation 3. For 3 <n < 14, we have
7(C) for n € {4,6},
7 (Cp) +1 forn e {3,5,7,9,10,14},
v(Cp) +2 forn e {8,11,12,13}.

Theorem 6. For n > 15, x./(C,) = 7,(C,,) + 2.

Proof: According to Theorem 5, we can similarly prove
that X;lt(Cn) > ~,(C,) + 2 when n > 15. Next we show
that xf(Cp) < 7, (Cp) + 2. Let C,, be a cycle with the
edge set E(C,) = {e1,€2,...,en}, F be a v,(Cy)-set of
C,, and fyt/(Cn) =k. We define f: E— {1,2,...,k+2}
as an edge coloring of C,,, such that f(e;) = ¢ for any
e; € F and use the remaining two colors to give a proper
ec}ge coloring to C,, — F'. Clearly, this is a TDEC of C,,, so
X4 (Cn) < 7(Cn) +2. u

By Lemma 2, Observation 3 and Theorem 6, we have the
following Corollary immediately.

Corollary 3. If C, is a cycle with n > 15, then

2% +2 if n =4k,
XHC) =2 2k+3 ifn=4k+1,
2% +4 if n =4k + 2,4k + 3.

Especmlly, Xd HCs) =3, Xd (C4) =2, Xd HPs) = Xd HPs) =
4, Xd(P7)—5 Xd(PS)_Xd(PQ)_G Xd(PIO) 7,
Xd (Pll) Xd (P12) =8 X4 (Pld) Xd (P14) =9

A fan graph F), is a graph with n + 1 vertices and 2n — 1
edges, see Figure 1.

Theorem 7. For n > 3, X/dt(Fn) =n.

Proof: This result is obvious when 3 < n < 6. For
n > 7, there is a TDEC of F,,, see Figure 1. Actually, we
assign the color j to the edge vov; (1 < j < n), the color
n—4 to the edge vyv2, the color 7 to the edge v;11v;12 (1 <
1 <n-—25), the colors n—1, n, n—2 to the edges vy, —3v5,—2,
Up—2Un—1, Un—1V, respectively. So Xd (F ) < n, and since
A(F,) =n, x}(F,) > n. Hence x ! (F,) = n. |

A double star graph \S), ., is a tree, obtained by connecting
the centers of two disjoint stars K ,, and K ,,, for n,m >
2, see Figure 2.

Theorem 8. For n,m > 2, x.t(Sy.m) = max{n,m} + 1.
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Fig. 2. A total dominator edge coloring of Sy, wWhen n > m.

Proof: Without loss of generality, suppose that n >
m (n,m > 2). Since A(S,,) =n+ 1, a TDEC of S,, ,,,
contains at least n+1 colors. Assigning the color ¢ to the edge
uu; (1 <4 < mn), the color j to the edge vv; (1 < j < m)
and the color n+ 1 to the edge uwv, see Figure 2. Obviously,
this is a TDEC of S, . s0 X;}(Sn’m) =max{n,m}+1. &

V. THE STABILITY (BONDAGE) NUMBER OF
TDE-COLORING

In this section, we study the stability (bondage) number
of a TDEC of a graph.

The TDC-stability (TDC-bondage) number of a graph G,
is the minimum number of vertices (edges) of G, whose
removal changes the TDC-number of G. Motivated by the
stability (bondage) number of a TDC of a graph G, we
naturally consider the stability (bondage) number of a TDEC
of G.

The total dominator edge chromatic stability number of
G, briefly TDEC-stability number, denoted by St:f (G), is
min{|X| | X C V(G)}, such that x’/(G) # x4(G — X)
and G — X is connected. The total dominator edge chromat-
ic bondage number of G, briefly TDEC-bondage number,
denoted by Bt} (G), is min{|Y| | Y C E(G)}, such that
XL(G) # XHE =)

First, we show that the TDEC-stability numbers of paths,
cycles, fan graphs and double star graphs.

Observation 4. For 5 < n < 21,

, 2 forn e {7,10,12,15,17,19,21},
Stdt(Pn) =
1 for other.
Theorem 9. For n > 22,
2 if n = 4k,
StiP) =4 3 ifn=4k+1,

1 if n=4k+2,4k + 3.

Proof: We consider the following four cases.

When n = 4k. By Corollary 2, we have X:}(P4k) =
X:;(P4k71) = 2k + 2, so we need to remove at least
two vertices. Removing the vertices vyjt3, V4k+4, W€ Obtain
Pujio and X} (Pigs2) = 2k + 3. So St:f(P4k+4)/: 2,

When n = 4k + 1. We have x/(Par+1) = x4 (Paw) =
X/dt(P4k_1) = 2k + 2, so we need to remove at least three
vertices. Removing the vertices vgx_1, Vag, Vak+1, We obtain
Puj_o and X} (Pyg_2) = 2k + 1. So St} (Pyry1) = 3.

When n = 4k + 2. We have x.f(Pis2) = 2k + 3.
Removing the pendant vertex vgxi2, we obtain Py, and
X;(P4k+1) =2k+2. So St;it(P4k+2) =1.

When n = 4k + 3. The proof is similar to the case n =
4k 4 2. S0 St} (Pypis) = 1. n

Proposition 1. For 5 < n < 20, St/dt(C'n) =1

Proof: Removing one vertex of C,,, we know that C,
becomes P, _;. By Corollary 2 and Corollary 3, we have
Xd (Pn—1) < x4(Cr), so Stf(C,) =1 when 5 < n < 20.

|

Theorem 10. For n > 21,
2 if n = 4k.

Sti(Cp) =
1 ifn=4k+1,4k + 2,4k + 3.

Proof: We consider the following cases.

When n = 4k. By Corollary 3, we have x}(Cux) =
X;lt(P4k_1) = 2k + 2, so we need to remove at least two
vertices. Removing two consecutive vertices of Cyjy4, We
obtain Py - and det (Pags2) = 2k+3. So St;(C’4k+4) = 2.

When n = 4k+1. We have X;t(c4k+1) = 2k+3. Remov-
ing the vertex vyq11, we obtain Py and X/dt(P4k) =2k +2.
So St/dt(04k+1) =1

When n = 4k + 2 or n = 4k + 3. the proof is similar to
the case n = 4k + 1. So St;it(CALkJrQ) = St;f(04k+3) =1.

| |

Theorem 11. For n > 3, St }(F,) = 1.

Proof: Obviously, removing the vertex vy in F),, see
Figure 1, we have x;(P,) < xf(Fp). So St} (F,)=1. m

Theorem 12. For n,m > 2,

, 1 ifn+#m,
Sti(Snm) = { 7

2 ifn=m

Proof: We consider the following two cases.

If n # m. Without loss of generality, let n > m. Removing
the pendant vertex u; in .S, ,,, see Figure 2. And by Theorem
8, we have X:it(sn,m) > X/dt(Sn,l,m). So St:f(Snym) =1

If n = m. It is easy to see that x.f(S, ) does not
change by removing a pendant vertex in S, . Therefore,
we need to remove two pendant vertices u; and v;, where
1<i<nd<j<m, and xf(Sn1m-1) < XJ(Sn.m).
So Stt(Snm) = 2. ]

Next, we investigate the TDEC-bondage numbers of these
graphs.

Observation 5. For 5 < n < 24,
2 forn =715
1 for other.

BtH(P,) = {
Theorem 13. For n > 25,

, 2 if n =4k,
Btdt(Pn) =
1 ifn=4k+ 1,4k + 2,4k + 3.

Proof: We consider the following four cases.
When n = 4k. By Corollary 2, we have xf (Py;) = 2k+2.
It is easy to see that X/dt(P4k) does not change by removing
a pendant edge of P,j. Therefore, we consider that removing
one edge e of Py, we obtain Py, and P, as the compo-
nents of Py, — {e}, where 3 < s < 2k. There is a minimum
TDEC of Py, —{e} as following. Giving a TDEC to Py,
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we have

Bhos L9 if 4k — s = 0,2(mod 4),
|45 | 42 if 4k — s = 1(mod 4),
[4=s1 42 if 4k — s = 3(mod 4).

And giving a TDEC to P;, we know that the TDEC contains
f(s) new colors and other colors use free colors of Pyy_.
We have

X/dt(P4kfs) =

5 if s =0,2(mod 4),
f(s)=¢ [3] if s=1(mod 4),
[51 if s = 3(mod 4).

Clearly, XE(Pa — {e}) = XF(Pu—s) + f(s) = 2k +2 =
xd Y(Pyx). So we need to remove at least two edges in
P4;c Removing two pendant edges we obtain P,;_o and
X4 (Pa_2) = 2k + 1. Hence, Btd (Py) = 2.

When n = 4k + 1. We have Xd Y Pypi1) = 2k +2. We can
obtaln P45 and P5 by removmg one edge of Pyj41. Since
X4 (Pi—2) = 2k + 1 and x }(Ps) = 2, Bt} (Pagy1) = 1.

When n = 4k + 2. We have x.f(Pis2) = 2k + 3.
Removing a pendant edge of P2, we obtain P41 and
X:;(P4k+1) =2k + 2. So Bt;lt(P4k+2) =1.

When n = 4k + 3. The proof is similar to the case n =
4k 4 2. So Bt} (Pyji3) = 1. m

Observation 6. For 5 <n < 20
, 2 forn € {6,9,14,16,20},
Btdt(cn) =
1 for other.

Theorem 14. For n > 21,

3 if n =4k,
BtHC,) =4 1 ifn=4k+1,4k+2,

2 ifn=4k+ 3,24.

Proof: We consider the following four cases.

When n = 4k. By Corollary 2 and Corollary 3, it is easy
to see that x.f(Car) = xf(Pu) = 2k + 2, so we need
to remove at least two edges in Cyi. If n = 24. We can
obtain P9 and P5 by removing two inconsecutive edges of
Cs4, and use 13 colors to give them a TDEC. We know that
X/dt(024) = 14, SO Bt/dt(CQzl) = 2.

When n = 4k and n # 24, we have two subcases:

i) Removmg two consecutive edges of Cyi, we obtain
Pyj—1 and X} (Pay—1) = 2k + 2 = x.}(Cup).

ii) Removing two inconsecutive edges e, e of Cyk, we
obtain Py;_,, and P, as the components of Cy — {e, e }
where 3 < m < 2k. There is a minimum TDEC of Cyj, —
{e, e/} as following. Giving a TDEC to Pyx_,,, we have

4k;m +2 ifdk —m =0,2(mod 4),
dk=m | 12 if 4k —m = 1(mod 4),
dhom] 2 if 4k —m = 3(mod 4).

And giving a TDEC to P,,, we know that the TDEC contains
f(m) new colors and other colors use free colors of Pyg_,,
we have

X (Paem) =

if m=0,2(mod 4),
if m = 1(mod 4),
1 if m = 3(mod 4).

f(m) =

o w3 I3

Fig. 3. A total dominator edge coloring of Fy, — {vovn}.

Clearly, XL (Ca—{e,e'}) = X} (P4;c m)+f(m) =2k+2 =
X.£(Cyr). Hence, the value of x.f(Cyy) does not change by
removing two edges. We remove three consecutive edges of
Cy, obtain Pyy_5 and X} (Pyx—_2) = 2k+1.So Bt}(Cy) =
3.

When 1 = 4k+1. We have x}(Cyxy1) = 2k +3. Remov-
ing any edge of Cyry1, we obtain Pyj41 and X:it(P4k+1) =
2k +2. So Bt }(Cypy1) = 1.

When n = 4k + 2. It is similar to the case n = 4k + 1.
So Btd (C4k+2) = 1.

When n = 4k + 3. We have XH(Capys) = XL (Pagys) =
2k + 4, so the value of x/(Cuxi3) does not change by
removing one edge. We need to remove at least two edges.
Removing two consecutive edges of Cyx 3, we obtain Py o
and X/dt(P4k+2) =2k + 3. So Bt;lt(C4k+3) = 2. |

Theorem 15. For n > 5, Bt}(F,) = 1. Especially,
Bt}(Fy) = Bt}(F3) = 1, Bt}(Fy) = 2.

Proof: Removing any edge of F,,, we see that the value
of Xd !(F,)) does not change when n = 4. By removing
Vo4, U3Vs in F,,, we have Xd WF3) = 3 < X;f(F4). So
Btd (Fy) = 2. Removing the edge vgv, in F,,, we have
Xd '(F, — {vovn}) = n —1 when n > 5, see Figure 3. So
Bt} (F,) =1. [

Theorem 16. For n,m > 2, Bt.!(S,.m) = 1.

Proof: We consider the following two cases.

If n # m. Without loss of generality, let n > m. Removing
a pendant edge uu; (1 <i<n)in Sn/m, see Figure 2, we
have X} (Snm) > X4 (Sn_1.m)- So Btd (Snm) = 1.

If n = m. It is easy to see that x.f (S, ) does not change
by removing a pendant edge in S, ,,. However, removing
the edge uv, we obtain two star graphs K, and K ,,
as the components of S, ,,, — {uv}, see Figure 2. Clearly,
Xd( —{uv}) = n+2 and X} (Sp.m) = n + 1. So
Bt} (S m) = L. |
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