Total Dominator Edge Chromatic Number of Graphs

Minhui Li, Shumin Zhang, Caiyun Wang and Chengfu Ye

Abstract

Let G be a simple graph with no isolated edge. A total dominator edge coloring (TDEC) of a graph G is a proper edge coloring such that each edge of G is adjacent to every edge of some (other) color class. The total dominator edge chromatic number (TDEC-number) of G is the minimum number of color classes among all total dominator edge colorings of G, denoted by $\chi_{d}^{\prime t}(G)$. The stability number of TDEC-number of G is the minimum number of vertices whose removal changes the value of $\chi_{d}^{\prime t}(G)$ and remaining graph is connected. The bondage number of TDEC-number of G is the minimum number of edges whose removal changes the value of $\chi_{d}^{\prime t}(G)$. In this paper, we establish the lower and upper bounds of the TDEC-number of a graph G, obtain the TDEC-number and the stability and bondage numbers of some graphs.

Index Terms-total edge domination number, total dominator edge chromatic number, stability number, bondage number

I. Introduction

ALL graphs considered here are finite, undirected and simple. For standard graph theory terminology not given here we refer to [1]. Let $G=(V, E)$ be a simple graph with the vertex set $V=V(G)$ and the edge set $E=E(G)$. The order and size of G are denoted by $n=|V|$ and $m=|E|$ respectively.
The open neighborhood $N(v)$ of a vertex v consists of the set of all vertices adjacent to v. The degree of a vertex v is the number of edges incident with v, denoted by $\operatorname{deg}(v)$. Let $\delta(G)$ and $\Delta(G)$ be the minimum degree and the maximum degree of G, respectively. A vertex v is called a pendant vertex if $\operatorname{deg}(v)=1$. The open neighborhood $N(e)$ of an edge e consists of the set of all edges adjacent to e. The degree of an edge $u v$ is defined as $\operatorname{deg}(u)+\operatorname{deg}(v)-2$. An edge $u v$ is called an isolated edge if $\operatorname{deg}(u v)=0$. An edge incident with a pendant vertex is called a pendant edge. For a subset $X \subseteq V(G)$, let $G-X$ denote a subgraph of G obtained by removing X. For a subset $Y \subseteq E(G)$, let $G-Y$ denote a subgraph of G obtained by removing Y. We denote a path, a cycle, a star and a complete graph of order n by $P_{n}, C_{n}, K_{1, n-1}$ and K_{n}, respectively. We say that a graph

Manuscript received February 06, 2021; revised August 23, 2021. This work was supported by the the Science Found of Qinghai Province (2021-ZJ-703).

Minhui Li is a Master candidate of the School of Mathematics and Statistics, Qinghai Normal University, Xining, Qinghai, 810008 China (email: lmh15689836053@163.com).

Shumin Zhang is a Professor of the School of Mathematics and Statistics, Academy of Plateau Science and Sustainability, People's Government of Qinghai Province and Beijing Normal University, Qinghai Normal University, Xining, Qinghai, 810008 China (Corresponding author to provide e-mail: zhangshumin@qhnu.edu.cn).

Caiyun Wang is a Master candidate of the School of Mathematics and Statistics, Qinghai Normal University, Xining, Qinghai, 810008 China (email: 15188293079@163.com).

Chengfu Ye is a Professor of the School of Mathematics and Statistics, Academy of Plateau Science and Sustainability, People's Government of Qinghai Province and Beijing Normal University, Qinghai Normal University, Xining, Qinghai, 810008 China (e-mail: yechf@qhnu.edu.cn).
is connected if there is a path between every two vertices of the graph, and otherwise is called disconnected.

A total dominating set of a graph G is a set $S \subseteq V(G)$ such that any vertex v of G satisfies $N(v) \cap S \neq \varnothing$, that is, every vertex of G is adjacent to at least one vertex in S. The total domination number of G is the cardinality of a minimum total dominating set, denoted by $\gamma_{t}(G)$. Some literatures on the subject on total domination of graphs has been surveyed in the book [5].
A proper coloring of a graph G is a function $f: V(G) \rightarrow$ $\{1, \ldots, k\}(k \in N)$ such that $f(u) \neq f(v)$ if u and v are adjacent. The chromatic number of G is the minimum number of colors needed in a proper coloring of G, denoted by $\chi(G)$. Kazemi in [8] defined the new concept of total dominator coloring of graphs as following. A total dominator coloring of a graph G, briefly TDC, is a proper coloring such that each vertex of G is adjacent to every vertex of some (other) color class. The total dominator chromatic number of G, briefly TDC-number, is the minimum number of color classes among all total dominator colorings of G, denoted by $\chi_{d}^{t}(G)$.
The TDC-number of some graphs was determined and the computation of the TDC-number was NP-complete in [8]. Henning in [4] established the lower and upper bounds on the TDC-number of a graph G in terms of its $\gamma_{t}(G)$. And the properties of a TDC in trees were studied in [4, 8]. More details about the TDC-number of a graph can be found in [7, 9, 13].

In addition, the definitions related to the TDC-number of a graph were introduced by Ghanbari and Alikhani [3]. The total dominator chromatic stability (bondage) number of a graph G, is the minimum number of vertices (edges), whose removal changes the TDC-number.
Motivated by a TDC of a graph, Ghanbari and Alikhani [2] considered the proper edge coloring of G and introduced the total dominator edge coloring of G. A proper edge coloring of a graph G is a function $c: E(G) \rightarrow\{1, \ldots, k\}(k \in N)$ such that $c(e) \neq c(f)$ for any adjacent edges e, f. The edge chromatic number of G is the minimum number of colors needed in a proper edge coloring of G, denoted by $\chi^{\prime}(G)$. A total dominator edge coloring of G, briefly TDEC, is a proper edge coloring such that each edge of G is adjacent to every edge of some (other) color class. The total dominator edge chromatic number of G, briefly TDEC-number, is the minimum number of color classes among all total dominator edge colorings of G, denoted by $\chi_{d}^{\prime t}(G)$. We say that a color is free if no edge is adjacent to all edges of this color class in a TDEC of G.
The TDEC-number of a graph is related to its total edge domination number. A set D of edges is a total edge dominating set of G, briefly TEDS, if every edge of G is adjacent to at least one edge in D. The total edge domination number of
G, briefly TED-number, is the minimum cardinality among all total edge dominating sets of G, denoted by $\gamma_{t}^{\prime}(G)$. A $\gamma_{t}^{\prime}(G)$-set is a TEDS of G with minimum cardinality. The total edge dominating of a graph was introduced and studied by Kulli and Patwari [6] in 1991. Readers may refer to [10$12,14]$ for more information.

At present, in [2], Ghanbari and Alikhani obtained some properties of the TDEC-number and computed the values of the parameter for specific graphs and k -subdivision of graphs.

In this paper, we obtain some bounds of the TDEC-number of general graphs, and determine the TDEC-number, the TDEC-stability number and the TDEC-bondage number of some special graphs.

II. Preliminaries

Now we briefly introduce some related results.
Lemma 1. [11] For any path P_{n} with $n \geq 2$, then

$$
\gamma_{t}^{\prime}\left(P_{n}\right)= \begin{cases}\frac{n}{2} & \text { if } n \equiv 0 \operatorname{or} 2(\bmod 4) \\ \frac{n-1}{2} & \text { if } n \equiv 1(\bmod 4) \\ \frac{n+1}{2} & \text { if } n \equiv 3(\bmod 4)\end{cases}
$$

Lemma 2. [11] For any cycle C_{n} with $n \geq 3$, then

$$
\gamma_{t}^{\prime}\left(C_{n}\right)= \begin{cases}\frac{n}{2} & \text { if } n \equiv 0(\bmod 4) \\ \frac{n+1}{2} & \text { if } n \equiv 1 \operatorname{or} 3(\bmod 4) \\ \frac{n+2}{2} & \text { if } n \equiv 2(\bmod 4)\end{cases}
$$

Lemma 3. [11] For any complete graph K_{n} with $n \geq 3$, then $\gamma_{t}^{\prime}\left(K_{n}\right)=\left\lfloor\frac{2 n}{3}\right\rfloor$.

III. Bounds of the TDEC-number of general GRAPHS

In this section, we obtain some bounds of the TDECnumber of general graphs.

Observation 1. Let G be a connected graph of size m with the maximum degree Δ. Then $\Delta \leq \chi_{d}^{\prime t}(G) \leq m$. Also the bounds are sharp.

Theorem 1. Let G be a graph with no isolated edge. Then

$$
\max \left\{\chi^{\prime}(G), \gamma_{t}^{\prime}(G)\right\} \leq \chi_{d}^{\prime t}(G) \leq \gamma_{t}^{\prime}(G)+\chi^{\prime}(G)
$$

Also the bounds are sharp.
Proof: First we prove the lower bound. It is obvious $\chi^{\prime}(G) \leq \chi_{d}^{\prime t}(G)$. Let $f=\left(E_{1}, E_{2}, \ldots, E_{l}\right)$ be a minimal TDEC of G, where $l=\chi_{d}^{\prime t}(G)$ and $D=\left\{e_{1}, e_{2}, \ldots, e_{l}\right\}$, $e_{i} \in E_{i}(1 \leq i \leq l)$. According to the definition of TDEC, we know that any edge e of G dominates at least a color class and is adjacent to at least one edge in D. And by the definition of TEDS, it is easy to see that D is a TEDS of G, so $\gamma_{t}^{\prime}(G) \leq \chi_{d}^{\prime t}(G)$.

Now we prove $\chi_{d}^{\prime t}(G) \leq \gamma_{t}^{\prime}(G)+\chi^{\prime}(G)$. Let $c: E(G) \rightarrow$ $\{1,2, \ldots, k\}(k \in N)$ be a proper edge coloring of G. We assign the colors $k+1, k+2, \ldots, k+\gamma_{t}^{\prime}$ to the edges of a $\gamma_{t}^{\prime}(G)$-set of G and the other edges are colored as before. Clearly, this is a TDEC of G.

Furthermore, the lower bound is sharp if $G \cong P_{3}$, we know that

$$
\chi_{d}^{\prime t}\left(P_{3}\right)=2=\chi^{\prime}\left(P_{3}\right)=\gamma_{t}^{\prime}\left(P_{3}\right)
$$

The upper bound is sharp if $G \cong P_{9}$, we know that

$$
\chi_{d}^{\prime t}\left(P_{9}\right)=6=\gamma_{t}^{\prime}\left(P_{9}\right)+\chi^{\prime}\left(P_{9}\right) .
$$

By Lemma 3 and Theorem 1, the following Corollary is immediate.

Corollary 1. Let n be any positive integer and $n \geq 2$. Then $2 n-1 \leq \chi_{d}^{\prime t}\left(K_{2 n}\right) \leq\left\lfloor\frac{4 n}{3}\right\rfloor+2 n-1$ and $2 n-1 \leq$ $\chi_{d}^{\prime t}\left(K_{2 n-1}\right) \leq\left\lfloor\frac{4 n-2}{3}\right\rfloor+2 n-1$.
Next, we assign a unique color to each edge in the TEDS of G, then a proper edge coloring to the remaining edges.

Theorem 2. Let G be a connected graph. Then

$$
\chi_{d}^{\prime t}(G) \leq \gamma_{t}^{\prime}(G)+\min _{D} \chi^{\prime}(G-D)
$$

where $D \subseteq E(G)$ is a $\gamma_{t}^{\prime}(G)$-set of G. Also the bound is sharp.

Proof: Let $p=\min \left\{\chi^{\prime}(G-D) \mid D\right.$ is a $\gamma_{t}^{\prime}(G)$-set of G. $\}, S=\left\{e_{1}, e_{2}, \ldots, e_{q}\right\}$ be a $\gamma_{t}^{\prime}(G)$-set such that $\chi^{\prime}(G-$ $S)=p$, and $f: E(G)-S \rightarrow\{1,2, \ldots, p\}$ be a proper edge coloring of $G-S$. We define $g: E(G) \rightarrow\{1,2, \ldots, p+q\}$ such that

$$
g(e)= \begin{cases}p+i & \text { if } e=e_{i} \in S \\ f(e) & \text { if } e \notin S\end{cases}
$$

Since S is a TEDS of G, g is a TDEC of G. Hence, $\chi_{d}^{\prime t}(G) \leq q+p=\gamma_{t}^{\prime}(G)+\min \left\{\chi^{\prime}(G-D) \mid D\right.$ is a $\gamma_{t}^{\prime}(G)$ set of G.\}.
Furthermore, the bound is sharp if $G \cong K_{1, n}$, we know that
$\chi_{d}^{\prime t}\left(K_{1, n}\right)=n=\gamma_{t}^{\prime}\left(K_{1, n}\right)+\chi^{\prime}\left(K_{1, n-2}\right)$,
$=\gamma_{t}^{\prime}\left(K_{1, n}\right)+\min \left\{\chi^{\prime}\left(K_{1, n}-D\right) \mid D\right.$ is a $\gamma_{t}^{\prime}\left(K_{1, n}\right)-$ set. $\}$.
Now, we study the TDEC-number for a disconnected graph without isolated edges.
Theorem 3. Let G be a disconnected graph without isolated edges and $G_{1}, G_{2}, \ldots, G_{s}$ be all connected components of G, where $s \geq 2$. Then

$$
\max _{1 \leq i \leq s} \chi_{d}^{\prime t}\left(G_{i}\right)+2 s-2 \leq \chi_{d}^{\prime t}(G) \leq \sum_{i=1}^{s} \chi_{d}^{\prime t}\left(G_{i}\right)
$$

Also the bounds are sharp.
Proof: Let f_{i} be a TDEC of G_{i} with $\chi_{d}^{\prime t}\left(G_{i}\right)$, colors, for $1 \leq i \leq s$. Without loss of generality, we have $\chi_{d}^{\prime t}(G) \leq$ $\sum_{i=1}^{s} \chi_{d}^{\prime t}\left(G_{i}\right)$. Let $\chi_{d}^{\prime t}\left(G_{j}\right)=\max \left\{\chi_{d}^{\prime t}\left(G_{i}\right) \mid 1 \leq i \leq s\right\}$, for some $j, 1 \leq j \leq s$. Since the edges of G_{i} need at least two new colors, where $i \neq j$, we obtain $\max _{1 \leq i \leq s} \chi_{d}^{\prime}\left(G_{i}\right)+2 s-$ $2 \leq \chi_{d}^{\prime}(G)$.

Furthermore, the bounds are sharp if $G \cong k P_{3}(k \geq 2)$, where $k P_{3}$ is the disjoint union of k copies of P_{3}.

Let M be an independent edges set of a graph G such that $G-M$ has no isolated edge or every isolated edge is adjacent to all edges in M.

Theorem 4. Let G be a connected graph of size m and without isolated edges. Then $\chi_{d}^{\prime t}(G) \leq m-|M|+1$.

Proof: Let M be a maximum independent edges set, f be an edge coloring of G as following. Assign $m-|M|$ colors to $m-|M|$ edges of $G-M$ respectively, and assign a new color to all edges of M. Clearly, f is a TDEC of G, so $\chi_{d}^{\prime t}(G) \leq m-|M|+1$.

IV. TDEC-NUMBER OF SPECIAL GRAPHS

In this section, we determine the TDEC-number of some special graphs. First, we state the following observation.

Observation 2. For $3 \leq n \leq 19$, we have
$\chi_{d}^{\prime t}\left(P_{n}\right)= \begin{cases}\gamma_{t}^{\prime}\left(P_{n}\right) & \text { for } n \in\{3,4,7\}, \\ \gamma_{t}^{\prime}\left(P_{n}\right)+2 & \text { for } n \in\{9,13,14,16,17,18\}, \\ \gamma_{t}^{\prime}\left(P_{n}\right)+1 & \text { for } \text { other } .\end{cases}$
We have the following result when $n \geq 20$.
Theorem 5. For any positive integer $n \geq 20$, $\chi_{d}^{\prime t}\left(P_{n}\right)=$ $\gamma_{t}^{\prime}\left(P_{n}\right)+2$.

Proof: We prove the theorem by induction on size of G. Let G be a path P_{n} with the vertex set $\left\{v_{i} \mid 1 \leq i \leq n\right\}$ and the edge set $\left\{e_{i} \mid e_{i}=v_{i} v_{i+1}, 1 \leq i \leq n-1\right\}$. It is easy to verify that the theorem holds when $n=20,21,22,23$.

By inductive hypothesis, we have $\chi_{d}^{\prime t}\left(P_{n^{\prime}}\right)=\gamma_{t}^{\prime}\left(P_{n^{\prime}}\right)+2$ when $20 \leq n^{\prime}<n$. Let f be a TDEC of $G, G^{\prime}=G-$ $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ and c be the restriction of f to the edges in G^{\prime}. It's easy to know that the edge e_{2} is assigned a unique color in f and the two edges in $N\left(e_{2}\right)=\left\{e_{1}, e_{3}\right\}$ needs at least a new color. Hence, f has at least two more color classes than c, and we will discuss the c as follows.

Case 1: Suppose that c is a TDEC of G^{\prime}. According to the inductive hypothesis, we see that c has at least $\chi_{d}^{\prime t}\left(G^{\prime}\right)=\gamma_{t}^{\prime}\left(G^{\prime}\right)+2=\gamma_{t}^{\prime}\left(P_{n-4}\right)+2=\gamma_{t}^{\prime}\left(P_{n}\right)=\gamma_{t}^{\prime}(G)$ color classes. It means that f has at least $\gamma_{t}^{\prime}(G)+2$ color classes.

Case 2: Suppose that c is not a TDEC of G^{\prime}. Since f is a TDEC of G, only one edge e_{5} in G^{\prime} is not adjacent to all edges of some color class in c. Also, we see that e_{6} is the only adjacent edge of e_{5} in G^{\prime}, so the edge e_{4} is assigned a unique color in f. Moreover, the color class that contains e_{6} has at least two edges. Furthermore, let c^{\prime} be a coloring of G^{\prime}, which is obtained by recoloring e_{6} from c with the color of e_{4} in f, then c^{\prime} is a TDEC of G^{\prime} and c^{\prime} has at least $\chi_{d}^{\prime t}\left(G^{\prime}\right)=\gamma_{t}^{\prime}\left(G^{\prime}\right)+2=\gamma_{t}^{\prime}\left(P_{n-4}\right)+2=\gamma_{t}^{\prime}\left(P_{n}\right)=\gamma_{t}^{\prime}(G)$ color classes. Since e_{1}, e_{2}, e_{3} are assigned at least two colors in f, f has at least two more color classes than c^{\prime}, so f has at least $\gamma_{t}^{\prime}(G)+2$ color classes.

According to the above discussions, we have $\chi_{d}^{\prime t}(G) \geq$ $\gamma_{t}^{\prime}(G)+2$. In addition, by Theorem $1, \chi_{d}^{\prime t}(G) \leq \gamma_{t}^{\prime}(G)+2$. Hence, $\chi_{d}^{\prime t}(G)=\gamma_{t}^{\prime}(G)+2$.

By Lemma 1, Observation 2 and Theorem 5, we have the following Corollary immediately.

Corollary 2. If P_{n} is a path with $n \geq 20$, then

$$
\chi_{d}^{\prime t}\left(P_{n}\right)= \begin{cases}2 k+2 & \text { if } n=4 k, 4 k+1 \\ 2 k+3 & \text { if } n=4 k+2 \\ 2 k+4 & \text { if } n=4 k+3\end{cases}
$$

Especially, $\chi_{d}^{\prime t}\left(P_{3}\right)=\chi_{d}^{\prime t}\left(P_{4}\right)=2, \chi_{d}^{\prime t}\left(P_{5}\right)=3, \chi_{d}^{\prime t}\left(P_{6}\right)=$ $\chi_{d}^{\prime t}\left(P_{7}\right)=4, \quad \chi_{d}^{\prime t}\left(P_{8}\right)=5, \quad \chi_{d}^{\prime t}\left(P_{9}\right)=\chi_{d}^{\prime t}\left(P_{10}\right)=6$,

Fig. 1. A total dominator edge coloring of F_{n}.
$\chi_{d}^{\prime t}\left(P_{11}\right)=\chi_{d}^{\prime t}\left(P_{12}\right)=7, \chi_{d}^{\prime t}\left(P_{13}\right)=8, \chi_{d}^{\prime t}\left(P_{14}\right)=$ $\chi_{d}^{t}\left(P_{15}\right)=9, \chi_{d}^{\prime t}\left(P_{16}\right)=\chi_{d}^{\prime t}\left(P_{17}\right)=10, \chi_{d}^{t}\left(P_{18}\right)=$ $\chi_{d}^{t}\left(P_{19}\right)=11$.

Analogously, we have some results about cycles.
Observation 3. For $3 \leq n \leq 14$, we have

$$
\chi_{d}^{\prime t}\left(C_{n}\right)= \begin{cases}\gamma_{t}^{\prime}\left(C_{n}\right) & \text { for } n \in\{4,6\} \\ \gamma_{t}^{\prime}\left(C_{n}\right)+1 & \text { for } n \in\{3,5,7,9,10,14\} \\ \gamma_{t}^{\prime}\left(C_{n}\right)+2 & \text { for } n \in\{8,11,12,13\}\end{cases}
$$

Theorem 6. For $n \geq 15, \chi_{d}^{\prime t}\left(C_{n}\right)=\gamma_{t}^{\prime}\left(C_{n}\right)+2$.
Proof: According to Theorem 5, we can similarly prove that $\chi_{d}^{\prime t}\left(C_{n}\right) \geq \gamma_{t}^{\prime}\left(C_{n}\right)+2$ when $n \geq 15$. Next we show that $\chi_{d}^{\prime t}\left(C_{n}\right) \leq \gamma_{t}^{\prime}\left(C_{n}\right)+2$. Let C_{n} be a cycle with the edge set $E\left(C_{n}\right)=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}, F$ be a $\gamma_{t}^{\prime}\left(C_{n}\right)$-set of C_{n} and $\gamma_{t}^{\prime}\left(C_{n}\right)=k$. We define $f: E \rightarrow\{1,2, \ldots, k+2\}$ as an edge coloring of C_{n}, such that $f\left(e_{i}\right)=i$ for any $e_{i} \subseteq F$ and use the remaining two colors to give a proper edge coloring to $C_{n}-F$. Clearly, this is a TDEC of C_{n}, so $\chi_{d}^{\prime t}\left(C_{n}\right) \leq \gamma_{t}^{\prime}\left(C_{n}\right)+2$.

By Lemma 2, Observation 3 and Theorem 6, we have the following Corollary immediately.

Corollary 3. If C_{n} is a cycle with $n \geq 15$, then

$$
\chi_{d}^{\prime t}\left(C_{n}\right)= \begin{cases}2 k+2 & \text { if } n=4 k \\ 2 k+3 & \text { if } n=4 k+1, \\ 2 k+4 & \text { if } n=4 k+2,4 k+3\end{cases}
$$

Especially, $\chi_{d}^{\prime t}\left(C_{3}\right)=3$, $\chi_{d}^{\prime t}\left(C_{4}\right)=2, \chi_{d}^{\prime t}\left(P_{5}\right)=\chi_{d}^{\prime t}\left(P_{6}\right)=$ 4, $\chi_{d}^{\prime t}\left(P_{7}\right)=5, \chi_{d}^{\prime t}\left(P_{8}\right)=\chi_{d}^{\prime t}\left(P_{9}\right)=6, \chi_{d}^{\prime t}\left(P_{10}\right)=7$, $\chi_{d}^{\prime t}\left(P_{11}\right)=\chi_{d}^{\prime t}\left(P_{12}\right)=8, \chi_{d}^{\prime t}\left(P_{13}\right)=\chi_{d}^{\prime t}\left(P_{14}\right)=9$.

A fan graph F_{n} is a graph with $n+1$ vertices and $2 n-1$ edges, see Figure 1.
Theorem 7. For $n \geq 3$, $\chi_{d}^{\prime t}\left(F_{n}\right)=n$.
Proof: This result is obvious when $3 \leq n \leq 6$. For $n \geq 7$, there is a TDEC of F_{n}, see Figure 1. Actually, we assign the color j to the edge $v_{0} v_{j}(1 \leq j \leq n)$, the color $n-4$ to the edge $v_{1} v_{2}$, the color i to the edge $v_{i+1} v_{i+2}(1 \leq$ $i \leq n-5$), the colors $n-1, n, n-2$ to the edges $v_{n-3} v_{n-2}$, $v_{n-2} v_{n-1}, v_{n-1} v_{n}$ respectively. So $\chi_{d}^{\prime t}\left(F_{n}\right) \leq n$, and since $\Delta\left(F_{n}\right)=n, \chi_{d}^{\prime t}\left(F_{n}\right) \geq n$. Hence $\chi_{d}^{\prime}\left(F_{n}\right)=n$.

A double star graph $S_{n, m}$ is a tree, obtained by connecting the centers of two disjoint stars $K_{1, n}$ and $K_{1, m}$, for $n, m \geq$ 2, see Figure 2.

Theorem 8. For $n, m \geq 2, \chi_{d}^{\prime t}\left(S_{n, m}\right)=\max \{n, m\}+1$.

Fig. 2. A total dominator edge coloring of $S_{n, m}$ when $n \geq m$.

Proof: Without loss of generality, suppose that $n \geq$ $m(n, m \geq 2)$. Since $\Delta\left(S_{n, m}\right)=n+1$, a TDEC of $S_{n, m}$ contains at least $n+1$ colors. Assigning the color i to the edge $u u_{i}(1 \leq i \leq n)$, the color j to the edge $v v_{j}(1 \leq j \leq m)$ and the color $n+1$ to the edge $u v$, see Figure 2. Obviously, this is a TDEC of $S_{n, m}$, so $\chi_{d}^{\prime t}\left(S_{n, m}\right)=\max \{n, m\}+1$.

V. The stability (bondage) number of TDE-COLORING

In this section, we study the stability (bondage) number of a TDEC of a graph.

The TDC-stability (TDC-bondage) number of a graph G, is the minimum number of vertices (edges) of G, whose removal changes the TDC-number of G. Motivated by the stability (bondage) number of a TDC of a graph G, we naturally consider the stability (bondage) number of a TDEC of G.

The total dominator edge chromatic stability number of G, briefly TDEC-stability number, denoted by $S t_{d}^{\prime t}(G)$, is $\min \{|X| \mid X \subseteq V(G)\}$, such that $\chi_{d}^{\prime t}(G) \neq \chi_{d}^{\prime t}(G-X)$ and $G-X$ is connected. The total dominator edge chromatic bondage number of G, briefly TDEC-bondage number, denoted by $B t_{d}^{\prime t}(G)$, is $\min \{|Y| \mid Y \subseteq E(G)\}$, such that $\chi_{d}^{\prime t}(G) \neq \chi_{d}^{\prime t}(G-Y)$.

First, we show that the TDEC-stability numbers of paths, cycles, fan graphs and double star graphs.
Observation 4. For $5 \leq n \leq 21$,

$$
S t_{d}^{\prime}\left(P_{n}\right)= \begin{cases}2 & \text { for } n \in\{7,10,12,15,17,19,21\} \\ 1 & \text { for other } .\end{cases}
$$

Theorem 9. For $n \geq 22$,

$$
S t_{d}^{\prime t}\left(P_{n}\right)= \begin{cases}2 & \text { if } n=4 k \\ 3 & \text { if } n=4 k+1 \\ 1 & \text { if } n=4 k+2,4 k+3\end{cases}
$$

Proof: We consider the following four cases.
When $n=4 k$. By Corollary 2, we have $\chi_{d}^{\prime t}\left(P_{4 k}\right)=$ $\chi_{d}^{\prime}\left(P_{4 k-1}\right)=2 k+2$, so we need to remove at least two vertices. Removing the vertices $v_{4 k+3}, v_{4 k+4}$, we obtain $P_{4 k+2}$ and $\chi_{d}^{\prime t}\left(P_{4 k+2}\right)=2 k+3$. So $S t_{d}^{\prime t}\left(P_{4 k+4}\right)=2$.
When $n=4 k+1$. We have $\chi_{d}^{\prime t}\left(P_{4 k+1}\right)=\chi_{d}^{\prime t}\left(P_{4 k}\right)=$ $\chi_{d}^{\prime t}\left(P_{4 k-1}\right)=2 k+2$, so we need to remove at least three vertices. Removing the vertices $v_{4 k-1}, v_{4 k}, v_{4 k+1}$, we obtain $P_{4 k-2}$ and $\chi_{d}^{\prime t}\left(P_{4 k-2}\right)=2 k+1$. So $S t_{d}^{\prime t}\left(P_{4 k+1}\right)=3$.

When $n \stackrel{=}{=} 4 k+2$. We have $\chi_{d}^{\prime t}\left(P_{4 k+2}\right)=2 k+3$. Removing the pendant vertex $v_{4 k+2}$, we obtain $P_{4 k+1}$ and $\chi_{d}^{\prime t}\left(P_{4 k+1}\right)=2 k+2$. So $S t_{d}^{\prime t}\left(P_{4 k+2}\right)=1$.

When $n=4 k+3$. The proof is similar to the case $n=$ $4 k+2$. So $S t_{d}^{\prime}\left(P_{4 k+3}\right)=1$.

Proposition 1. For $5 \leq n \leq 20, S t_{d}^{\prime t}\left(C_{n}\right)=1$.
Proof: Removing one vertex of C_{n}, we know that C_{n} becomes P_{n-1}. By Corollary 2 and Corollary 3, we have $\chi_{d}^{\prime t}\left(P_{n-1}\right)<\chi_{d}^{\prime t}\left(C_{n}\right)$, so $S t_{d}^{\prime}\left(C_{n}\right)=1$ when $5 \leq n \leq 20$.

Theorem 10. For $n \geq 21$,

$$
S t_{d}^{\prime t}\left(C_{n}\right)= \begin{cases}2 & \text { if } n=4 k \\ 1 & \text { if } n=4 k+1,4 k+2,4 k+3\end{cases}
$$

Proof: We consider the following cases.
When $n=4 k$. By Corollary 3, we have $\chi_{d}^{\prime t}\left(C_{4 k}\right)=$ $\chi_{d}^{\prime t}\left(P_{4 k-1}\right)=2 k+2$, so we need to remove at least two vertices. Removing two consecutive vertices of $C_{4 k+4}$, we obtain $P_{4 k+2}$ and $\chi_{d}^{\prime t}\left(P_{4 k+2}\right)=2 k+3$. So $S t_{d}^{\prime t}\left(C_{4 k+4}\right)=2$.

When $n=4 k+1$. We have $\chi_{d}^{\prime t}\left(C_{4 k+1}\right)=2 k+3$. Removing the vertex $v_{4 k+1}$, we obtain $P_{4 k}$ and $\chi_{d}^{\prime t}\left(P_{4 k}\right)=2 k+2$. So $S t_{d}^{\prime t}\left(C_{4 k+1}\right)=1$.

When $n=4 k+2$ or $n=4 k+3$. the proof is similar to the case $n=4 k+1$. So $S t_{d}^{\prime t}\left(C_{4 k+2}\right)=S t_{d}^{\prime t}\left(C_{4 k+3}\right)=1$.

Theorem 11. For $n \geq 3, S t_{d}^{\prime t}\left(F_{n}\right)=1$.
Proof: Obviously, removing the vertex v_{0} in F_{n}, see Figure 1, we have $\chi_{d}^{\prime t}\left(P_{n}\right)<\chi_{d}^{\prime t}\left(F_{n}\right)$. So $S t_{d}^{\prime t}\left(F_{n}\right)=1$.
Theorem 12. For $n, m \geq 2$,

$$
S t_{d}^{\prime}\left(S_{n, m}\right)= \begin{cases}1 & \text { if } n \neq m \\ 2 & \text { if } n=m\end{cases}
$$

Proof: We consider the following two cases.
If $n \neq m$. Without loss of generality, let $n>m$. Removing the pendant vertex u_{i} in $S_{n, m}$, see Figure 2. And by Theorem 8 , we have $\chi_{d}^{\prime t}\left(S_{n, m}\right)>\chi_{d}^{\prime t}\left(S_{n-1, m}\right)$. So $S t_{d}^{\prime t}\left(S_{n, m}\right)=1$.

If $n=m$. It is easy to see that $\chi_{d}^{\prime t}\left(S_{n, m}\right)$ does not change by removing a pendant vertex in $S_{n, m}$. Therefore, we need to remove two pendant vertices u_{i} and v_{j}, where $1 \leq i \leq n, 1 \leq j \leq m$, and $\chi_{d}^{\prime t}\left(S_{n-1, m-1}\right)<\chi_{d}^{\prime t}\left(S_{n, m}\right)$. So $S t_{d}^{\prime t}\left(S_{n, m}\right)=2$.

Next, we investigate the TDEC-bondage numbers of these graphs.

Observation 5. For $5 \leq n \leq 24$,

$$
B t_{d}^{\prime t}\left(P_{n}\right)= \begin{cases}2 & \text { for } n=7,15 \\ 1 & \text { for other }\end{cases}
$$

Theorem 13. For $n \geq 25$,

$$
B t_{d}^{\prime}\left(P_{n}\right)= \begin{cases}2 & \text { if } n=4 k \\ 1 & \text { if } n=4 k+1,4 k+2,4 k+3\end{cases}
$$

Proof: We consider the following four cases.
When $n=4 k$. By Corollary 2, we have $\chi_{d}^{\prime t}\left(P_{4 k}\right)=2 k+2$. It is easy to see that $\chi_{d}^{\prime t}\left(P_{4 k}\right)$ does not change by removing a pendant edge of $P_{4 k}$. Therefore, we consider that removing one edge e of $P_{4 k}$, we obtain $P_{4 k-s}$ and P_{s} as the components of $P_{4 k}-\{e\}$, where $3 \leq s \leq 2 k$. There is a minimum TDEC of $P_{4 k}-\{e\}$ as following. Giving a TDEC to $P_{4 k-s}$,
we have

$$
\chi_{d}^{\prime t}\left(P_{4 k-s}\right)=\left\{\begin{array}{cl}
\frac{4 k-s}{2}+2 & \text { if } 4 k-s \equiv 0,2(\bmod 4), \\
\left\lfloor\frac{4 k-s}{2}\right\rfloor+2 & \text { if } 4 k-s \equiv 1(\bmod 4), \\
\left\lceil\frac{4 k-s}{2}\right\rceil+2 & \text { if } 4 k-s \equiv 3(\bmod 4) .
\end{array}\right.
$$

And giving a TDEC to P_{s}, we know that the TDEC contains $f(s)$ new colors and other colors use free colors of $P_{4 k-s}$. We have

$$
f(s)=\left\{\begin{array}{cl}
\frac{s}{2} & \text { if } s \equiv 0,2(\bmod 4), \\
\left\lfloor\frac{s}{2}\right\rfloor & \text { if } s \equiv 1(\bmod 4), \\
\left\lceil\frac{s}{2}\right\rceil & \text { if } s \equiv 3(\bmod 4) .
\end{array}\right.
$$

Clearly, $\chi_{d}^{\prime t}\left(P_{4 k}-\{e\}\right)=\chi_{d}^{\prime t}\left(P_{4 k-s}\right)+f(s)=2 k+2=$ $\chi_{d}^{\prime t}\left(P_{4 k}\right)$. So we need to remove at least two edges in $P_{4 k}$. Removing two pendant edges, we obtain $P_{4 k-2}$ and $\chi_{d}^{\prime t}\left(P_{4 k-2}\right)=2 k+1$. Hence, $B t_{d}^{\prime}\left(P_{4 k}\right)=2$.
When $n=4 k+1$. We have $\chi_{d}^{\prime t}\left(P_{4 k+1}\right)=2 k+2$. We can obtain $P_{4 k-2}$ and P_{3} by removing one edge of $P_{4 k+1}$. Since $\chi_{d}^{\prime t}\left(P_{4 k-2}\right)=2 k+1$ and $\chi_{d}^{\prime t}\left(P_{3}\right)=2, B t_{d}^{\prime t}\left(P_{4 k+1}\right)=1$.

When $n=4 k+2$. We have $\chi_{d}^{\prime t}\left(P_{4 k+2}\right)=2 k+3$. Removing a pendant edge of $P_{4 k+2}$, we obtain $P_{4 k+1}$ and $\chi_{d}^{\prime t}\left(P_{4 k+1}\right)=2 k+2$. So $B t_{d}^{\prime t}\left(P_{4 k+2}\right)=1$.
When $n=4 k+3$. The proof is similar to the case $n=$ $4 k+2$. So $B t_{d}^{\prime t}\left(P_{4 k+3}\right)=1$.
Observation 6. For $5 \leq n \leq 20$

$$
B t_{d}^{\prime}\left(C_{n}\right)= \begin{cases}2 & \text { for } n \in\{6,9,14,16,20\} \\ 1 & \text { for other }\end{cases}
$$

Theorem 14. For $n \geq 21$,

$$
B t_{d}^{\prime}\left(C_{n}\right)= \begin{cases}3 & \text { if } n=4 k \\ 1 & \text { if } n=4 k+1,4 k+2 \\ 2 & \text { if } n=4 k+3,24\end{cases}
$$

Proof: We consider the following four cases.
When $n=4 k$. By Corollary 2 and Corollary 3, it is easy to see that $\chi_{d}^{\prime t}\left(C_{4 k}\right)=\chi_{d}^{\prime t}\left(P_{4 k}\right)=2 k+2$, so we need to remove at least two edges in $C_{4 k}$. If $n=24$. We can obtain P_{19} and P_{5} by removing two inconsecutive edges of C_{24}, and use 13 colors to give them a TDEC. We know that $\chi_{d}^{\prime t}\left(C_{24}\right)=14$, so $B t_{d}^{\prime t}\left(C_{24}\right)=2$.
When $n=4 k$ and $n \neq 24$, we have two subcases:
i) Removing two consecutive edges of $C_{4 k}$, we obtain $P_{4 k-1}$ and $\chi_{d}^{\prime t}\left(P_{4 k-1}\right)=2 k+2=\chi_{d}^{\prime t}\left(C_{4 k}\right)$.
ii) Removing two inconsecutive edges e, e^{\prime} of $C_{4 k}$, we obtain $P_{4 k-m}$ and P_{m} as the components of $C_{4 k}-\left\{e, e^{\prime}\right\}$, where $3 \leq m \leq 2 k$. There is a minimum TDEC of $C_{4 k}-$ $\left\{e, e^{\prime}\right\}$ as following. Giving a TDEC to $P_{4 k-m}$, we have $\chi_{d}^{\prime t}\left(P_{4 k-m}\right)=\left\{\begin{array}{cl}\frac{4 k-m}{2}+2 & \text { if } 4 k-m \equiv 0,2(\bmod 4), \\ \left\lfloor\frac{4 k-m}{2}\right\rfloor+2 & \text { if } 4 k-m \equiv 1(\bmod 4), \\ \left\lceil\frac{4 k-m}{2}\right\rceil+2 & \text { if } 4 k-m \equiv 3(\bmod 4) .\end{array}\right.$ And giving a TDEC to P_{m}, we know that the TDEC contains $f(m)$ new colors and other colors use free colors of $P_{4 k-m}$, we have

$$
f(m)=\left\{\begin{array}{cl}
\frac{m}{2} & \text { if } m \equiv 0,2(\bmod 4) \\
\left\lfloor\frac{m}{2}\right\rfloor & \text { if } m \equiv 1(\bmod 4) \\
\left\lceil\frac{m}{2}\right\rceil & \text { if } m \equiv 3(\bmod 4)
\end{array}\right.
$$

Fig. 3. A total dominator edge coloring of $F_{n}-\left\{v_{0} v_{n}\right\}$.

Clearly, $\chi_{d}^{\prime t}\left(C_{4 k}-\left\{e, e^{\prime}\right\}\right)=\chi_{d}^{\prime t}\left(P_{4 k-m}\right)+f(m)=2 k+2=$ $\chi_{d}^{\prime t}\left(C_{4 k}\right)$. Hence, the value of $\chi_{d}^{\prime t}\left(C_{4 k}\right)$ does not change by removing two edges. We remove three consecutive edges of $C_{4 k}$, obtain $P_{4 k-2}$ and $\chi_{d}^{\prime t}\left(P_{4 k-2}\right)=2 k+1$. So $B t_{d}^{\prime t}\left(C_{4 k}\right)=$ 3.

When $n=4 k+1$. We have $\chi_{d}^{\prime t}\left(C_{4 k+1}\right)=2 k+3$. Removing any edge of $C_{4 k+1}$, we obtain $P_{4 k+1}$ and $\chi_{d}^{\prime t}\left(P_{4 k+1}\right)=$ $2 k+2$. So $B t_{d}^{\prime t}\left(C_{4 k+1}\right)=1$.

When $n=4 k+2$. It is similar to the case $n=4 k+1$. So $B t_{d}^{\prime}\left(C_{4 k+2}\right)=1$.
When $n=4 k+3$. We have $\chi_{d}^{\prime t}\left(C_{4 k+3}\right)=\chi_{d}^{\prime t}\left(P_{4 k+3}\right)=$ $2 k+4$, so the value of $\chi_{d}^{\prime t}\left(C_{4 k+3}\right)$ does not change by removing one edge. We need to remove at least two edges. Removing two consecutive edges of $C_{4 k+3}$, we obtain $P_{4 k+2}$ and $\chi_{d}^{\prime t}\left(P_{4 k+2}\right)=2 k+3$. So $B t_{d}^{\prime t}\left(C_{4 k+3}\right)=2$.

Theorem 15. For $n \geq 5, B t_{d}^{\prime t}\left(F_{n}\right)=1$. Especially, $B t_{d}^{\prime t}\left(F_{2}\right)=B t_{d}^{\prime t}\left(F_{3}\right)=1, B t_{d}^{\prime t}\left(F_{4}\right)=2$.

Proof: Removing any edge of F_{n}, we see that the value of $\chi_{d}^{\prime t}\left(F_{n}\right)$ does not change when $n=4$. By removing $v_{0} v_{4}, v_{3} v_{4}$ in F_{n}, we have $\chi_{d}^{\prime t}\left(F_{3}\right)=3<\chi_{d}^{\prime t}\left(F_{4}\right)$. So $\operatorname{Bt}_{d}^{\prime}\left(F_{4}\right)=2$. Removing the edge $v_{0} v_{n}$ in F_{n}, we have $\chi_{d}^{\prime t}\left(F_{n}-\left\{v_{0} v_{n}\right\}\right)=n-1$ when $n \geq 5$, see Figure 3. So $B t_{d}^{\prime}\left(F_{n}\right)=1$.
Theorem 16. For $n, m \geq 2, B t_{d}^{\prime t}\left(S_{n, m}\right)=1$.
Proof: We consider the following two cases.
If $n \neq m$. Without loss of generality, let $n>m$. Removing a pendant edge $u u_{i}(1 \leq i \leq n)$ in $S_{n, m}$, see Figure 2, we have $\chi_{d}^{\prime t}\left(S_{n, m}\right)>\chi_{d}^{\prime t}\left(S_{n-1, m}\right)$. So $B t_{d}^{\prime t}\left(S_{n, m}\right)=1$.

If $n=m$. It is easy to see that $\chi_{d}^{\prime t}\left(S_{n, m}\right)$ does not change by removing a pendant edge in $S_{n, m}$. However, removing the edge $u v$, we obtain two star graphs $K_{1, n}$ and $K_{1, m}$ as the components of $S_{n, m}-\{u v\}$, see Figure 2. Clearly, $\chi_{d}^{\prime t}\left(S_{n, m}-\{u v\}\right)=n+2$ and $\chi_{d}^{\prime t}\left(S_{n, m}\right)=n+1$. So $B t_{d}^{\prime t}\left(S_{n, m}\right)=1$.

REFERENCES

[1] J. A. Bondy and U. S. R. Murty, Graph Theory. Springer London, 2008.
[2] N. Ghanbari and S. Alikhani, "Introduction to total dominator edge chromatic number," Available at https://arxiv.org/abs/1801.08871.
[3] N. Ghanbari and S. Alikhani, "More on the total dominator chromatic number of a graph," Journal of Information and Optimization Sciences, vol. 40, no. 1, pp. 157-169, 2018.
[4] M. A. Henning, "Total dominator colorings and total domination in graphs," Graphs and Combinatorics, vol. 31, pp. 953-974, 2015.
[5] M. A. Henning and A. Yeo, Total domination in graphs. Springer, 2013.
[6] V. R. Kulli and D. K. Patwari, "On the total edge domination number of a graph," In A. M. Mathi, ed. Proc. of the symp. on Graph Theory and Combinatorics, Kochi Centre Math. Sci, Trivandrum, Series Publication, pp. 75-81, 1991.
[7] A. P. Kazemi, "Total dominator coloring in product graphs," Utilatas Mathematica, vol. 94, no. 3, pp. 329345, 2014.
[8] A. P. Kazemi, "Total dominator chromatic number of a graph," Transactions on Combinatorics, vol. 4, no. 2, pp. 57-68, 2015.
[9] A. P. Kazemi, "Total dominator chromatic number of Mycieleskian graphs," Utilatas Mathematica, vol. 103, pp. 129-137, 2017.
[10] M. N. S. Paspasan and S. R. J. Canoy, "Edge domination and total edge domination in the join of graphs," Applied Mathematical Sciences, vol. 10, no. 22, pp. 1077-1086, 2016.
[11] S. Velammal and S. Arumugam, "Total edge domination in graphs," Elixir Discrete Mathematics, vol. 44, pp. 7213-7217, 2012.
[12] S. Velammal, "Equality of connected edge domination and total edge domaination in graphs," Int J Enhanc Res Sci Technol Eng, vol. 3, no. 5, pp. 198-201, 2014.
[13] A. Vijayalekshmi, "Total dominator colorings in Graphs," Int.J.Adv.Research Tech, vol. 1, no. 4, pp. 1-6, 2012.
[14] Y. Zhao, Z. Liao and L. Miao, "On the algorithmic complexity of edge total domination," Theoretical Computer Science, vol. 557, pp. 28-33, 2014.

