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Abstract—A single-species model with nonlinear harvesting
and feedback control on time scales is studied. By using
some differential inequalities on time scales and constructing
a suitable Lyapunov function, some new conditions which
guarantee the permanence and uniformly asymptotical stability
of the model are obtained, respectively. Our results indicate that
feedback term is irrelevant to the permanence of this model
which improve and complement some existing ones. Numeric
simulations are carried out to show the feasibility of the main
results.

Index Terms—Permanence, Uniformly asymptotical stability,
Single-species model, Feedback control, Time scales.

I. INTRODUCTION

AS an effective tool to depict real ecological system,
mathematical ecological model has become more and

more important in the study of modern applied mathematics.
Differential equations and difference equations are two main
tools for the description of species relationship. However, due
to the different concepts, theoretical knowledge and research
methods, differential equations and difference equations al-
ways appear separately and people need to study twice for
a complete and comprehensive understanding for systems.
Furthermore, only using differential equations or difference
equations is ineffective for describing the law of those species
whose development process are both continuous and discrete
in the real world [1, 2]. In order to unify both differential and
difference analysis, Hilger [12] introduced the theory of time
scales in his Ph.D. thesis. After then, many researchers pay
attentions to the study of dynamic equations on time scales,
such as permanence [5, 14, 15], global attractivity [11, 18],
periodic solution and almost periodic solution [4, 7, 16, 19–
21] and so on. In particular, Li, Yang and Zhang [16]
considered the following single-species model with nonlinear
harvesting and feedback control on time scales T

xM(t) =a(t)− b(t)exp{x(t)} − c(t)

1 +mexp{x(t)}
− r(t)u(t),

uM(t) =− α(t)u(t) + β(t)exp{x(t)},

(1)

where m > 0 is a constant, {a(t)}, {b(t)}, {c(t)}, {r(t)},
{α(t)} and {β(t)} are all bounded nonnegative functions on
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T such that

0 < al ≤ a(t) ≤ au, 0 < bl ≤ b(t) ≤ bu,
0 < cl ≤ c(t) ≤ cu, 0 < βl ≤ β(t) ≤ βu,

0 < αl ≤ α(t) ≤ αu, 0 < βl ≤ β(t) ≤ βu,

where we using the following notations:

hl = inf
t∈T

h(t), hu = sup
t∈T

h(t),

for any h(t) which is a continuous bounded function defined
on T. We also suppose that 1−µ(t)α(t) > 0 (µ(t) is defined
in Section II) and there exists a positive constant L such that
µ(t) ≤ L. Based on the following initial conditions of system
(1)

x(0) > 0, u(0) > 0, (2)

by using the time scale calculus theory, Li, Yang and Zhang
[16] got the following permanent result for system (1):
Theorem A ([16]). Assume

−bu,−bl,−αu,−αl ∈ R+, au > bl (H1)

and
al − cu − ruu∗ > bu (H2)

hold, where u∗ = βuexp{x∗}
αl and x∗ = au−bl

bl
, then system

(1) is permanent.
According to Theorem A, feedback term can affect the

permanence of system (1). However, some results (see such
as [8–10, 14, 15] and so on) have shown that feedback term
has no impact on the permanence of ecological system. In
particular, by using some differential inequalities on time
scales, Wang and Fan [15] showed that feedback term is
irrelevant to the permanence of a Nicholson’s blowflies
model with feedback control on time scales. Their results
motivated us to consider the permanence of system (1) again.
In fact, in this paper, by utilizing the analytical skills of Wang
and Fan [15], we ultimately get the following result:
Theorem B. Assume

al − cu > 0 (A1)

holds, then system (1) is permanent.
One can easily find that (A1) in Theorem B is weaker than

(H1) and (H2) in Theorem A and feedback term is harmless
to the permanence of system (1), hence our results improve
those in [16]. For more similar problems, one could refer to
[3, 6, 17, 22–24] and references therein.

The organization of this paper is as follows. In Section II,
we give some foundational definitions and results on time
scales. The permanence and global attractivity are discussed
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in Section III and IV. Then, in Section V, our results are
verified by one example with numerical simulations. Finally,
we conclude in Section VI.

II. PRELIMINARIES

In this section, we shall present some foundational
definitions and results on time scales and one can refer to
[13] for more detail.

Definition 2.1. ([13]) A time scale is an arbitrary nonempty
closed subset T of the real numbers R. The set T inherits
the standard topology of R.

Definition 2.2. ([13]) For t ∈ T, the forward jump operator,
the backward jump operator σ, ρ : T → T, and the
graininess µ : T→ R+ = [0,+∞) are defined by

σ(t) = inf{s ∈ T : s > t},

ρ(t) = sup{s ∈ T : s < t},

µ(t) = σ(t)− t,

respectively. If t < sup T and σ(t) = t, then t is called
right-dense, and if t > inf T and ρ(t) = t, then t is called
left-dense.

Definition 2.3. ([13]) A function f : T → R is said to be
rd-continuous if it is continuous at right-dense points in
T and its left-sided limits exist (finite) at left-dense points
in T. The set of rd-continuous functions is denoted by
Crd = Crd(T) = Crd(T,R).

Definition 2.4. ([13]) Suppose f : T→ R is a function and
let t ∈ T. Then we define fM(t), the delta-derivative of f
at t, to be the number (provided it exists) with the property
that, given any ε > 0, there is a neighborhood U of t (i.e.,
U = (t− δ, t+ δ) ∩ T) for some δ > 0 such that

|[f(σ(t))−f(s)]−fM(t)[σ(t)−s]| ≤ ε|σ(t)−s|, for all s ∈ U.

Thus, f is said to be delta-differentiable if its delta-derivative
exists. The set of functions f : T → R that are delta-
differentiable and whose delta-derivative are rd-continuous
functions is denoted by C1

rd = C1
rd(T) = C1

rd(T,R).

Definition 2.5. ([13]) A function F : T → R is called a
delta-antiderivative of f : T → R provided F4(t) = f(t),
for all t ∈ T. Then, we write∫ s

r

f(t)∆t = F (s)− F (r), for all s, r ∈ T.

Definition 2.6. ([13]) A function f : T→ R is regressive if
1 + µ(t)f(t) 6= 0 for all t ∈ T and is positively regressive if
1+µ(t)f(t) > 0 for all t ∈ T. Denote by R and R+ the set
of regressive and positively regressive functions from T to R,
respectively. If p ∈ R, we define the exponential function by

ep(a, b) = exp
{∫ a

b

ξµ(t)(p(t))∆t
}
, a, b ∈ T,

where the cylinder transformation ξµ(z) = (1/µ)log(1+zµ),
for µ > 0 and ξ0(z) = z, for µ = 0.

Lemma 2.1. ([13]) Suppose that p, q ∈ R+; then for all
a, b ∈ T,
(i) ep(a, b) > 0;

(ii) if p(a) ≤ q(a) for all a ∈ T, then ep(a, b) ≤ eq(a, b)
for all a ≥ b.

Lemma 2.2. ([13])
(i) (ν1f +ν2g)M = ν1f

M +ν2g
M, for any constants ν1, ν2;

(ii) if fM ≥ 0, then f is nondecreasing.

Lemma 2.3. ([14]) Suppose A,B > 0 and x(0) > 0, further
assume that
(i)

xM(t) ≤ B −Aexp{x(t)}, ∀ t ≥ 0,

then
lim sup
t→+∞

x(t) ≤ BL+ ln
B

A
.

(ii)
xM(t) ≥ B −Aexp{x(t)}, ∀ t ≥ 0,

and there exists a constant M > 0, such that
lim sup
t→+∞

x(t) < M , then

lim inf
t→+∞

x(t) ≥ (B −Aexp{M})L+ ln
B

A
.

Lemma 2.4. ([14]) Assume that C(t), D(t) > 0 are bound-
ed and rd-continuous functions, −C ∈ R+ and Cl > 0.
Further suppose that
(i)

xM(t) ≤ −C(t)x(t) +D(t), ∀ t ≥ T0,

then there exists a constant T1 > T0, such that for t >
T1,

x(t) ≤ x(T1)e(−C)(t, T1) +
D(t)

Cl
.

Especially, if D(t) is bounded above with respect to H1,
then

lim sup
t→+∞

x(t) ≤ H1

Cl
.

(ii)
xM(t) ≥ −C(t)x(t) +D(t), ∀ t ≥ T0,

then there exists a constant T2 > T0, such that for t >
T2,

x(t) ≥
(
x(T2)− D(T2)

Cu

)
e(−C)(t, T2) +

D(T2)

Cu
.

Especially, if D(t) is bounded below with respect to h1,
then

lim inf
t→+∞

x(t) ≥ h1
Cu

.

Definition 2.7. System (1) is said to be permanent if for any
solution (x(t), u(t))T of system (1), there exist four constants
w, k, W and K such that

w ≤ lim inf
t→+∞

x(t) ≤ lim sup
t→+∞

x(t) ≤W,

k ≤ lim inf
t→+∞

u(t) ≤ lim sup
t→+∞

u(t) ≤ K.
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III. PERMANENCE

We shall investigate the permanence of system (1) in this
part. Similarly to the proof of [15, Lemma 18], we can obtain
the following result:
Lemma 3.1. For any solution (x(t), u(t))T of system (1)
with initial condition (2), we have

exp{x(t)} > 0, u(t) > 0, ∀ t ∈ T.

Lemma 3.2. For any solution (x(t), u(t))T of system (1)
with initial condition (2), we have

lim sup
t→+∞

x(t) ≤W, lim sup
t→+∞

u(t) ≤ K,

where W = auL+ lna
u

bl
and K = βuexp{W}

αl .
Proof. From the positivity of u1(t) and the first equation of
system (1), we get

xM(t) ≤a(t)− b(t)exp{x(t)}
≤au − blexp{x(t)}.

According to Lemma 2.3 (i), we obtain

lim sup
t→+∞

x(t) ≤ auL+ ln
au

bl
4
= W. (3)

Thus, for any ε0 > 0, there exists a large enough t0 ∈ T+,
such that for all t > t0,

x(t) ≤W + ε0.

Then, for t > t0, we can get from the second equation of
system (1) that

uM(t) =− α(t)u(t) + β(t)exp{x(t)}
≤ − α(t)u(t) + βuexp{W + ε0}.

Using Lemma 2.4 (i), we further obtain

lim sup
t→+∞

u(t) ≤ βuexp{W + ε0}
αl

. (4)

Setting ε0 → 0, it follows from (4) that

lim sup
t→+∞

u(t) ≤ βuexp{W}
αl

4
= K.

The proof is completed. �
Lemma 3.3 Assume

al − cu > 0, (A1)

then there exists two constants w and k such that

lim inf
t→+∞

x(t) ≥ w, lim inf
t→+∞

u(t) ≥ k,

where w and k can be found in the proof.
Proof. It follows from the second equation of system (1)
that

uM(t) ≤ −α(t)u(t) + βuexp{x(t)}.

By Lemma 2.4 (i), there exists a constant t1 > t0, such that
for t > t1,

u(t) ≤ u(t1)e(−α)(t, t1) +
βuexp{x(t)}

αl
.

Since u(t1)e(−α)(t, t1)→ 0 as t→ +∞, then there exists a
positive integer t2 > t1 such that

ruu(t1)e(−α)(t2, t1) ≤ 1

2
(al − cu). (5)

Fix t2, for t > t2, we have

u(t) ≤ u(t1)e(−α)(t2, t1) +
βuexp{x(t)}

αl
. (6)

One can get from (5), (7) and the first equation of system (1)
that

xM(t) ≥al − buexp{x(t)} − cu − ruu(t)

≥al − buexp{x(t)} − cu

− ru
[
u(t1)e(−α)(t2, t1) +

βuexp{x(t)}
αl

]
=al − cu − ruu(t1)e(−α)(t2, t1)

−
(
bu +

ruβu

αl

)
exp{x(t)}

≥1

2
(al − cu)−

(
bu +

ruβu

αl

)
exp{x(t)},

(7)

for t > t2. Using this and Lemma 2.3 (ii), we get

lim inf
t→+∞

x(t) ≥
[1

2
(al − cu)−

(
bu +

ruβu

αl

)
exp{W}

]
L

+ ln
αl(al − cu)

2(αlbu + ruβu)

4
= w.

(8)
So for any ε1 > 0, there exists enough large t3 > t2, such
that for t > t3,

x(t) ≥ w − ε1.

This together with the second equation of system (1) results
in

uM(t) ≥ −α(t)u(t) + βlexp{w − ε1}, for t > t3. (9)

It follows from (9) and Lemma 2.4 (ii) that

lim inf
t→+∞

u(t) ≥ βlexp{w − ε1}
αu

. (10)

Setting ε1 → 0, we get from (10) that

lim inf
t→+∞

u(t) ≥ βlexp{w}
αu

4
= k. (11)

The proof is completed. �
Theorem B can be obtained directly from Lemma 3.2 and

Lemma 3.3.

IV. UNIFORM ASYMPTOTICAL STABILITY

In this part, we will investigate the uniform asymptotical
stability of system (1) by the method of Lyapunov function.
Theorem 4.1. Assume (A1), further suppose that

αl > ru and bl − mcu

[1 +mexp{w}]2
> βu (A2)

where w is defined in Lemma 3.3, then system (1) with initial
conditions (2) is uniformly asymptotically stable.
Proof. It follows from (A2) that there exists a small enough
ε > 0 such that

αl − ru > ε (12)

and[
bl − mcu

[1 +mexp{w − ε}]2
− βu

]
exp{w − ε} > ε. (13)

Suppose z1(t) = (x(t), u(t))T , z2(t) = (x∗(t), u∗(t))
T are

two solutions of system (1) with initial conditions (2). For
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above ε, according to Lemma 3.2 and Lemma 3.3, there exist
a t4 > 0, when t > t4,

w − ε ≤ x(t) ≤W + ε, k − ε ≤ u(t) ≤ K + ε,

w − ε ≤ x∗(t) ≤W + ε, k − ε ≤ u∗(t) ≤ K + ε.
(14)

Consider the following Lyapunov function

V (t, z1, z2) = |x(t)− x∗(t)|+ |u(t)− u∗(t)|.

Calculating D+V M(t, z1, z2) of V (t, z1, z2) along system (1)
leads to

D+V M(t, z1, z2)

=sgn(x(t)− x∗(t))
[
− b(t)(exp{x(t)} − exp{x∗(t)})

− c(t)
( 1

1 +mexp{x(t)}
− 1

1 +mexp{x∗(t)}

)
− r(t)(u(t)− u∗(t))

]
+ sgn(u(t)− u∗(t))

[
− α(t)(u(t)− u∗(t))

+ β(t)(exp{x(t)} − exp{x∗(t)})
]

=sgn(x(t)− x∗(t))
[
− b(t)(exp{x(t)} − exp{x∗(t)})

+
mc(t)(exp{x(t)} − exp{x∗(t)})

[1 +mexp{x(t)}][1 +mexp{x∗(t)}]
− r(t)(u(t)− u∗(t))

]
− α(t)|u(t)− u∗(t)|

+ sgn(u(t)− u∗(t))β(t)(exp{x(t)} − exp{x∗(t)}).
(15)

Using the mean value theorem, we get

exp{x(t)} − exp{x∗(t)} = ξ(t)(x(t)− x∗(t)), (16)

where ξ(t) lies between exp{x(t)} and exp{x∗(t)}. We can
obtain from (14), (15) and (16) that

D+V M(t, z1, z2)

≤− b(t)ξ(t)|x(t)− x∗(t)|

+
mc(t)ξ(t)|x(t)− x∗(t)|

[1 +mexp{x(t)}][1 +mexp{x∗(t)}]
+ r(t)|u(t)− u∗(t)| − α(t)|u(t)− u∗(t)|
+ β(t)ξ(t)|x(t)− x∗(t)|

=
[
− b(t) +

mc(t)

[1 +mexp{x(t)}][1 +mexp{x∗(t)}]
+ β(t)

]
ξ(t)|x(t)− x∗(t)|

+ (r(t)− α(t))|u(t)− u∗(t)|

≤ −
[
bl − mcu

[1 +mexp{w − ε}]2

− βu
]
exp{w − ε}|x(t)− x∗(t)|

− (αl − ru)|u(t)− u∗(t)|
≤ − εV (t, z1, z2), for t > t4,

(17)

where we also use (12) and (13). Therefore, V (t, z1, z2) is
non-increasing. Integrating (17) from t4 to t (t > t4) leads
to

V (t, z1, z2) + ε

∫ t

t4

V (s, z1, z2)∆s ≤ V (t4, z1, z2) < +∞.

Hence, ∫ +∞

t4

V (s, z1, z2)∆s < +∞,

which means that

lim
t→+∞

|x(t)− x∗(t)| = lim
t→+∞

|u(t)− u∗(t)| = 0.

Therefore, system (1) is uniformly asymptotically stable. �
Remark 4.1. By constructing a different Lyapunov function
with ours, Li, Yang and Zhang [16] established sufficient
conditions on the uniformly asymptotical stability of the
system (1) (see Theorem 3.2 in [16]) which are more complex
than condition (A2) in Theorem 4.1.

V. EXAMPLE AND NUMERIC SIMULATION
In this part, we will give some numerical simulations to

support our results.
Example 5.1. Consider the following system:

xM(t) =0.35 + 0.02 sin(2t)− 0.33exp{x(t)}

− 0.005 + 0.0003 cos(
√

7t)

1 + 0.3exp{x(t)}
− 0.0002u(t),

uM(t) =− (0.5 + 0.03 cos(
√

5t))u(t) + 0.08exp{x(t)},
(18)

we have

al − cu = 0.3247 > 0 and αl − ru = 0.4698 > 0,

so (A1) holds and system (18) is permanent according to
Theorem B. However,

al − cu − ruu∗ − bu ≈ −0.0053 < 0,

which implies that we can’t judge the permanence by The-
orem A since (H2) does not hold and our results improved
those in [16].

Moreover, if T = R, set y(t) = exp{x(t)}, then system
(18) reduces to the following continuous system:

ẏ(t) =y(t)
[
0.35 + 0.02 sin(2t)− 0.33y(t)

− 0.005 + 0.0003 cos(
√

7t)

1 + 0.3y(t)
− 0.0002u(t)

]
,

u̇(t) =− (0.5 + 0.03 cos(
√

5t))u(t) + 0.08y(t).
(19)

Since µ(t) ≡ 0, we can choose L = 0 for convenience. Thus,
for system (14), we have

bl − mcu

[1 +mexp{w}]2
− βu ≈ 0.2488 > 0.

So all conditions in Theorem 4.1 are satisfied and system (19)
is permanent and uniformly asymptotically stable which is
supported by Fig. 1.

When T = Z, if we also set y(t) = exp{x(t)}, then
system (18) reduces to the following discrete system:

y(t+ 1) =y(t)exp
[
0.35 + 0.02 sin(2t)− 0.33y(t)

− 0.005 + 0.0003 cos(
√

7t)

1 + 0.3y(t)
− 0.0002u(t)

]
,

∆u(t) =− (0.5 + 0.03 cos(
√

5t))u(t) + 0.08y(t),
(20)

Since µ(t) ≡ 1, we choose L = 1 for convenience. Thus,
we have

bl − mcu

[1 +mexp{w}]2
− βu ≈ 0.2487 > 0,

so all conditions in Theorem 4.1 are satisfied, system (20) is
permanent and uniformly asymptotically stable. Our numer-
ical simulation also supports this result (see Fig. 2).
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Fig. 1. Numeric simulations of system (19) with the initial condition
(y(0), u(0))T = (0.5, 0.3)T , (1.2, 0.1)T , (0.6, 0.8)T and (0.2, 1.1)T ,
respectively.
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Fig. 2. Numeric simulations of system (20) with the initial condition
(y(0), u(0))T = (0.5, 0.3)T , (1.2, 0.1)T , (0.6, 0.8)T and (0.2, 1.1)T ,
respectively.

VI. CONCLUSION
In this paper, we consider a single-species model with

nonlinear harvesting and feedback control on time scales
which was investigated by Li, Yang and Zhang [16]. By using
some differential inequalities on time scales, we obtain some
new conditions on the permanence of system (1) which are
weaker than those in [16]. This result shows that feedback
term has no influence on the permanence of the model. By
constructing a different Lyapunov function with Li, Yang and
Zhang [16], we established some new sufficient conditions
on the uniformly asymptotical stability of the model which
are more simpler and easier to verify then those in [16].
Therefore, our results improve and complement those in Li,
Yang and Zhang [16].
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