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Abstract—A Hardware-In-the-Loop evaluation of a modified
PID controller applied over a DC-DC Boost Converter is
presented. The controller is designed by considering a linearized
representation of the system, validated in real-time over an
embedded system. The controller’s design is performed by
considering the operation of the closed-loop system around the
equilibrium point. The proposed method considers a settling
time approach for a transfer function of a non-minimum
phase system. Also, the proposed approach is validated for
simulated and real-time systems under a Hardware-In-the-Loop
structure. The closed-loop system is evaluated for time-varying
loads (parametric disturbances) and external disturbances.
As a result, the proposed approach effectively achieves the
design criteria in terms of settling time. In addition, the
tracking performance of the proposed approach is evaluated
for step and impulse reference signals in real-time by using the
Hardware-In-the-Loop structure.

Index Terms—Real-time, PID control, Boost converter.

I. INTRODUCTION

THE implementation of real systems by using
Hardware-In-the-Loop (HIL) or Software-In-the-Loop

(SIL) structures is nowadays the most common approach
to evaluate the effectiveness of the controller over
nonlinear systems [1]. For non-complex linear systems, the
implementation by using analog computation is always an
option [2], [3], but this method requires a lot of resources
when the complexity of the system is increased [4], and
for that reason, HIL and SIL approaches are now the gold
standards for real-time simulation.

DC-DC Buck and Boost converters are the nonlinear
systems most used in power electronics applications [5].
Several controllers can be designed to fulfill the closed-loop
requirements, as proposed in [6], where a nonlinear controller
for a Buck converter is presented, or in [7], where
a passivity-based control is designed for a Buck-Boost
converter. It is worth noting that the evaluation of the
controller’s performance over these systems is developed by
using HIL or SIL structures [8], [9], or by using a very
low-cost real-time simulation environment [10].

In this work, a Hardware-In-the-Loop evaluation of a
modified PID controller applied over a DC-DC Boost
Converter is presented. The controller is designed by
considering a linearized representation of the system,
which is validated in real-time over an embedded system.
The paper is organized as follows: in section II the
mathematical modeling of the Boost converter and the
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modified PID controller is presented. In section III, the
discrete HIL implementation of the DC-DC Boost converter
and the modified PID controller is presented, and finally, in
section IV is presented the obtained results for simulated and
HIL implementation over the embedded system.

II. DC-DC BOOST CONVERTER

Consider a simplified model of a DC-DC Boost converter
presented in Fig. 1.

Fig. 1. Simplified Boost converter schematic circuit

This circuit can be modeled by the set of state-space
equations (1) proposed in [11], as follows:

ẋ1 = −ω0x2(t) + u(t)ω0x2(t) + b(t)

ẋ2 = ω0x1(t)− ω1x2(t)− u(t)ω0x1(t)
(1)

where x1(t) = i(t)
√
L, x2(t) = v(t)

√
C are the normalized

state-space variables of the inductor L input current i(t)
and the output capacitor C voltage v(t), respectively. The
variable b(t) = e(t)√

L
> 0 is the normalized external voltage

source e(t). The constants ω0 = 1√
LC

and ω1 = 1
RC are

the natural undamped frequencies of the LC input circuit
and the RC output circuit, respectively. Besides, u(t) is the
control signal related to the switch position with only two
possible values {0, 1}.

The average model of the Boost converter of (1), by
considering a Pulse-Width-Modulated (PWM) u(t) signal,
can be defined as

ż1 = −ω0z2(t) + µ(t)ω0z2(t) + b(t)

ż2 = ω0z1(t)− ω1z2(t)− µ(t)ω0z1(t)
(2)

being z1(t) the average normalized input current, and z2 the
average normalized output voltage. It is worth noting that
the discontinuous control input u(t) of (1) is replaced by
the continuous function µ(t) which is the duty cycle of the
PWM, defined as 0 ≤ µ(t) ≤ 1.

The equilibrium point of the variables z10 and µ0 around
a normalized output constant voltage z20 and b0 can be
obtained as follows

0 = −ω0z20 + µ0ω0z20 + b0

0 = ω0z10 − ω1z20 − µ0ω0z10
(3)
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where µ0 is obtained from (3) as

µ0 =
ω0z20 − b0
ω0z20

(4)

and z10 is obtained as from (3) as

z10 =
ω1z20

ω0 − µ0ω0
(5)

Around the operational point µ0, z10, z20, b0, the nonlinear
system (2) is linearized as follows

∆ż1 = (µ0 − 1)ω0∆z2(t) + ω0z20∆µ(t)

∆ż2 = (ω0 − µ0ω0)∆z1(t)− ω1∆z2(t)− ω0z10∆µ(t)
(6)

And by applying Laplace transform over (6) the following
equations are obtained

∆Z1(s) =
−(1− µ0)ω0∆Z2(s) + ω0z20∆µ(s)

s
(7)

and

∆Z2(s) =
(1− µ0)ω0∆Z1(s)− ω0z10∆µ(s)

s+ ω1
(8)

and by considering that ∆Z2(s) is the output to be controlled,
from (7) and (8) the following equation can be obtained

∆Z2(s) =
−(1− µ0)2ω2

0∆Z2(s) + (1− µ0)ω2
0z20∆µ(s))

s(s+ ω1)

− ω0z10∆µ(s)

s+ ω1
(9)

and from (9) the following transfer function can be obtained

∆Z2(s) =
−ω0z10s+ (1− µ0)ω2

0z20
s2 + ω1s+ (1− µ0)2ω2

0

∆µ(s) (10)

The design criteria for the controllers is a fixed settling
time ts and a steady-state error equal to zero for an unitary
step reference signal. To this end, a PID controllers is
selected. Since (10) is a transfer function which includes
a non-minimum phase zero at s = (1−µ0)ω0z20

z10
, a modified

structures of PID controller is used without increasing the
system closed loop zeros. The PID structure is defined to
have a control signal as

∆µ(t) = Ki

∫
(∆r(τ)−∆z2(τ))δτ

−Kp∆z2(t)−Kd∆z2(t)

(11)

being Kp, Kd and Ki the controller constants. In Fig. 2 is
shown the structure of the controller.

Fig. 2. Modified PID controller structure over DC-DC Boost converter

From Fig. 2 the following closed loop equation is obtained

∆Z2(s) =
−ω0z10s+ (1− µ0)ω2

0z20
s2 + ω1s+ (1− µ0)2ω2

0(
Ki

s
(∆R(s)−∆Z2(s))− (Kp +Kds)∆Z2(s)

)
(12)

which can be rewritten as

∆Z2(s) =
c1s+ c2

s2 + c3s+ c4(
Ki

s
(∆R(s)−∆Z2(s))− (Kp +Kds)∆Z2(s)

)
(13)

being

c1 = −ω0z10 (14)

c2 = (1− µ0)ω2
0z20 (15)

c3 = ω1 (16)

c4 = (1− µ0)2ω2
0 (17)

Therefore, the closed loop system of (13) can be rewritten
as

∆Z2(s) =
Kic1s+Kic2

PCL(s)
∆R(s) (18)

being the closed-loop polynomial equation PCL(s) defined
by

PCL(s) = (1 + c1Kd)s
3 + (c3 +Kdc2 +Kpc1)s2

+ (c4 + c2Kp +Kic1)s+Kic2
(19)

By considering a PCL(s) stable, then, the steady-state error
can be computed as

ess = lim
s→0

s(∆R(s)−∆Z2(s)) (20)

being ∆R(s) = 1
s , resulting in

ess = 1− Kic2
Kic2

(21)

where the ess = 0. It is worth noting that the values
of Kp, Ki and Kd are independent of the steady-state
error, therefore, the selection of controller parameters are
computed based on the settling-time. By considering that the
settling-time ts can be related to the real magnitude of the
dominant pole p, as follows

ts ≈
4

p
(22)

Therefore, the desired polynomial equation in closed loop
must have a dominant pole at s = −p, if the pole is real o
a dominant complex poles s1,2 = −p ± jωd, being ωd the
damped frequency. The desired closed loop polynomial is
defined as

PD(s) = s3 + α1s
2 + α2s+ α3 (23)

Finally, the resulting equations system for PD(s) =
PCL(s) is obtained by Kp

Ki

Kd

 =

 c1 0 c2 − α1c1
c2 c1 −α2c1
0 c2 −α3c1

−1  α1 − c3
α2 − c4
α3


(24)
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III. HIL IMPLEMENTATION OF THE BOOST CONVERTER

The discrete implementation of the DC-DC Boost
converter is developed by using the structure depicted in
Fig. 3, where an ARDUINO DUE based on a 32-bit ARM
core microcontroller is used. The microcontroller includes 54
digital input/output pins, 12 analog inputs, 2 DAC, and a 84
MHz clock.

Fig. 3. Real time implementation of the modified PID controller over a
DC-DC Boost converter

The modified PID controller in discrete time is computed
by

∆e[k] = ∆r[k]−∆z2[k] (25)
ei[k] = ei[k − 1] + h∆e[k] (26)

yd[k] =
∆z2[k]−∆z2[k − 1]

h
(27)

u[k] = −Kp∆z2[k]−Kdyd[k] +Kiei[k] (28)

being yd[k] the derivative of the output ∆z2[k], ei[k] the
integral of the error ∆e[k].

IV. RESULTS

In order to evaluate the performance of the controller, the
following values are considered E = 1V , L = 0.01H ,
C = 0.0001F , R = 1000Ω, and where the nonlinear
model is approximated to a linear model around z20 = 3V .
By considering these values, the following transfer function
from (10) is obtained

∆Z2(s) =
−9000s+ 10000

s2 + 10s+ 11.1
∆µ(s) (29)

In Fig. 4 is presented the impulse response of the linearized
DC-DC Boost converter (29).

Fig. 4. Impulse response of (29)

It is worth noting that (29) has a non-minimum phase zero,
resulting in a large undershoot, which increase the difficulty
of the control design. This can be verified by analyzing the
step response presented in Fig. 5.

Fig. 5. Step response of (29)

However, by considering a settling-time ts = 4 seconds,
as dominant dynamics, while holding the independent
coefficient as smallest as possible, the following desired
equation is obtained:

PD(s) = (s+ 1)(s+ 4)2 (30)

PD(s) = s3 + 9s2 + 24s+ 16 (31)

and by considering (24) and (30), the following equation is
obtained  Kp

Ki

Kd

 =

 7.0363× 10−4

7.5614× 10−4

5.8601× 10−5

 (32)

and therefore (13) is given by (33), as follows

∆Z2(s) =
−6.805s+ 7.561

0.4726s3 + 4.253s2 + 11.34s+ 7.561
∆R(s)

(33)

In Fig. 6 is shown the unitary impulse response of (33).

IAENG International Journal of Applied Mathematics, 51:4, IJAM_51_4_10

Volume 51, Issue 4: December 2021

 
______________________________________________________________________________________ 



Fig. 6. Unitary impulse response of (33)

In Fig. 7 is shown the unitary step response of (33).

Fig. 7. Unitary step response of (33)

It is worth noting that in Fig. 4 in comparison with Fig. 7, a
reduction in the non-minimum phase zero effect is obtained.
A detailed trial including 60 seconds of simulation time with
small variations around the operational point is presented in
Fig. 8.

Fig. 8. Closed loop response for small variations around operational point

The corresponding control signal ∆µ(t) is shown in Fig. 9.

Fig. 9. Control signal ∆µ(t) for test of Fig. 8

Another trial including 60 seconds of simulation time with
small variations around the 120V is presented in Fig. 10.

Fig. 10. Closed loop response for small variations around 120V
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The corresponding control signal ∆µ(t) is shown in
Fig. 11.

Fig. 11. Control signal ∆µ(t) for test of Fig. 10

A parametric modification of the system is developed by
considering a DC-DC Boost converter with the following
values E = 2V , L = 0.00001H , C = 0.001F , R = 10Ω,
and where the nonlinear model is approximated to a linear
model around z20 = 3V . By considering these values, the
following transfer function from (10) is obtained as follows

∆Z2(s) =
−14230s+ 6324555

s2 + 100s+ 44444
∆µ(s) (34)

In Fig. 12 is presented the impulse response of the linearized
DC-DC Boost converter (34).

Fig. 12. Impulse response of (34)

In Fig. 13 is presented the step response of the linearized
DC-DC Boost converter (34).

Fig. 13. Step response of (34)

By considering a settling-time ts = 1 seconds, as dominant
dynamics, while holding the independent coefficient as
smallest as possible, the following desired equation is
obtained:

PD(s) = (s+ 4)(s+ 16)2 (35)

PD(s) = s3 + 36s2 + 384s+ 1024 (36)

and by considering (24) and (35), the following equation is
obtained  Kp

Ki

Kd

 =

 −0.00694
2.1678× 10−4

−2.3817× 10−5

 (37)

and therefore (13) is given by (38), as follows

∆Z2(s) =
−3.085s+ 1371

1.339s3 + 48.2s2 + 514.1s+ 1371
∆R(s) (38)

In Fig. 14 is shown the unitary impulse response of (38).

Fig. 14. Unitary impulse response of (38)

In Fig. 15 is shown the unitary step response of (38).
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Fig. 15. Unitary step response of (38)

By considering 20 seconds of HIL simulation time with
small variations around the operational point z20, the closed
loop response is depicted in Fig. 16.

Fig. 16. Closed loop response for small variations around z20

The corresponding control signal ∆µ(t) is shown in
Fig. 17.

Fig. 17. Control signal ∆µ(t) for test of Fig. 16

By considering 5 seconds of HIL simulation time with
step reference signal variation around the operational point
z20, the closed loop response is depicted in Fig. 18.

Fig. 18. Closed loop response for small step reference variation around
z20

Finally, by considering 5 seconds of HIL simulation
time with impulse reference signal variation around the
operational point z20, the closed loop response is depicted
in Fig. 19.
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Fig. 19. Closed loop response for small impulse reference variation around
z20

V. CONCLUSIONS

In this work, a real-time evaluation of a modified
PID controller is developed. The controller is designed
by considering the settling time and a non-minimum
phase system corresponding to a linearized DC-DC Boost
converter. The designed PID is applied over a DC-DC Boost
converter in simulation and by using a HIL structure for
real-time analysis. As presented in section IV, the proposed
approach improves the performance of the closed-loop
system for tracking references with a reduction of the
undershoot, which is an inherent feature of non-minimum
phase systems. Also, the method is validated by considering
parametric variations and two settling time conditions.
The HIL structure shows the tracking performance of
the proposed method for real reference signal variations
around the operational point, such as step and impulse
reference signals. Finally, it is worth mentioning that the HIL
validation in real-time of the proposed approach improves

the results over real conditions, which is a required stage for
rapid prototyping. As future works, the fractional-order PI
controllers can be designed and evaluated in real-time over
DC-DC converters.
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