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Abstract—The discrete filled function method (DFFM) is a
global optimization method for searching for the best solution
amongst multiple local optima. This method consists of two
phases: in the first phase, an ordinary descent method is used
to find a local minimum; in the second phase, an auxiliary
function, called a filled function, is introduced that has a
maximizer at the current local minimum, so that minimizing
the filled function leads to improved points. Once an improved
point is found, it can serve as a starting point for the next local
search. In this paper, we consider a standard discrete filled
function algorithm in the literature and propose a modification
to increase its efficiency. Three numerical examples are given
to demonstrate the proposed modification’s potential in solving
large scale discrete optimization problems.

Index Terms- Global optimization, discrete filled function,
optimal control, mixed discrete optimization, heuristic.

I. INTRODUCTION

The DFFM is one of the more recently developed global
optimization heuristic approach in solving discrete optimiza-
tion problems [1]. The main idea is as follows: An ordinary
descent method is first applied to identify a local mini-
mum. Once found, the DFFM is used to suggest sequential
improvement of local optima strategy through an auxiliary
function to escape from one local minima to a better one.
Consequently, the local minimum of the original function
becomes a local maximum of the auxiliary function. The
search for the improved minimum in a lower basin continues
until the parameter of the discrete filled function is satisfied.
The final point found is expected to be the global minimum.

The first filled function was introduced by Ge [2] to solve
continuous global optimization problems in the late 1980s.
Then, Zhu [3] initiated a discrete analogue of the continu-
ous filled function method which overcame the difficulties
encountered in using a continuous approximation of the
discrete optimization problem. However, the filled function
proposed by Zhu contains an exponential term, which causes
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numerical difficulties such as numerical overflow [4]. Since
the introduction of the original discrete filled function by
Zhu, several new types of DFFM with improved theoretical
properties have been proposed, such as those in [4]–[8], to
enhance computational efficiency. In spite of computational
efficiency, exist researcher applied DFFM in some area such
in designing sparse filter [9]. A comprehensive survey of
several DFFM in the literature has been given in [10]. The
survey showed that the DFFM developed in [4] seems to
be the most reliable one since it guarantees that a local
minimizer of the filled function is also a local minimizer
of the original function. Other filled functions do not share
this property where they can only guarantee that a local
minimizer of the filled function is an improved point over the
current local minimizer of the original function. The goal of
this paper is to propose an improved filled function algorithm
based on the work in [4].

The remainder of the paper is organized as follows. An
overview of discrete optimization is presented in the next sec-
tion, followed by a brief review of the discrete filled function
algorithm in [4]. Then, the modified algorithm is proposed
in Section IV. The modification on some benchmark test
problems is tested in Section V. Comparison and further
analysis of both algorithms are discussed before concluding
the paper.

II. PRELIMINARY CONCEPTS

Consider the following nonlinear discrete optimization
problem:

min f(x), s.t. x ∈ X, (1)

where X = {x ∈ Zn : xi,min ≤ xi ≤ xi,max, i = 1, . . . , n},
Zn is the set of integer points in Rn, and xi,min, xi,max, i =
1, . . . , n, are given bounds. Since X is bounded, there exists
a constant K such that

1 ≤ max
x1,x2∈X
x1 6=x2

‖ x1 − x2 ‖≤ K <∞, (2)

where ‖ · ‖ is the Euclidean norm.
We now recall some familiar definitions and concepts used

in the discrete optimization area.
Definition 1: A sequence {x(i)}k+1

i=0 in X is a discrete
path between two distinct points x∗ and x∗∗ in X if
x(0) = x∗, x(k+1) = x∗∗, x(i) ∈ X for all i, x(i) 6= x(j) for
all i 6= j, and ‖ x(i+1)−x(i) ‖= 1 for all i. Let A be a subset
of X . If, for all x∗,x∗∗ ∈ A, x∗ and x∗∗ are connected by
a discrete path, then A is called a pathwise connected set.

Definition 2: For any x ∈ X , the neighbourhood of x is
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defined by

N(x) = {w ∈ X : w = x± ei, i = 1, . . . , n},

where ei denotes the i-th standard unit basis vector of
Rn with the i-th component equal to one and all other
components equal to zero.

Definition 3: The set of feasible directions at x ∈ X is
defined by

D(x) = {d ∈ Rn : x+d ∈ N(x)} ⊂ E = {±e1, . . . ,±en}.

Definition 4: d ∈ D(x) is a descent direction of f at x if
f(x + d) < f(x).

Definition 5: d∗ ∈ D(x) is a steepest descent direction of
f at x if it is a descent direction and f(x + d∗) ≤ f(x + d)
for all d ∈ D(x).

Definition 6: x∗ ∈ X is a local minimizer of X if
f(x∗) ≤ f(x) for all x ∈ N(x∗). If f(x∗) < f(x) for
all x ∈ N(x∗) \x∗, then x∗ is a strict local minimizer of f .

Definition 7: x∗ is a global minimizer of f if f(x∗) ≤
f(x) for all x ∈ X . If f(x∗) < f(x) for all x ∈ X \ x∗,
then x∗ is a strict global minimizer of f .

Definition 8: x is a vertex of X if x − d /∈ X for each
d ∈ D(x). Let X̃ denote the set of vertices of X .

Definition 9: B∗ ⊂ X is a discrete basin of f correspond-
ing to the local minimizer x∗ if it satisfies the following
conditions:

• B∗ is pathwise connected.
• B∗ contains x∗.
• For each x ∈ B∗, any connected path starting at x and

consisting of descent steps converges to x∗.

Definition 10: Let x∗ and x∗∗ be two distinct local mini-
mizers of f . If f(x∗∗) < f(x∗), then B∗∗ is said to be lower
than B∗.

Definition 11: For a given local minimizer x∗, define the
discrete sets

SL(x∗) = {x ∈ X : f(x) < f(x∗)}

and
SU (x∗) = {x ∈ X : f(x) ≥ f(x∗)}.

Note that SL(x∗) contains the points lower than x∗, while
SU (x∗) contains the points higher than x∗.

Let x∗ be a local minimizer of f . In [4], the discrete filled
function Gµ,ρ,x∗ at x∗ is defined as follows:

Gµ,ρ,x∗(x) = Aµ(f(x)− f(x∗))− ρ ‖ x− x∗ ‖, (3)

Aµ(y) = µy

[
(1− c)

(
1− cµ
µ− cµ

)−y/ω
+ c

]
,

where c ∈ (0, 1) is a constant, ω > 0 is a sufficiently small
constant, ρ > 0, and µ ∈ (0, 1) are adjustable parameters. It
can be shown that the function Gµ,ρ,x∗(x) is a discrete filled
function when certain conditions on the parameters µ and ρ
are satisfied, as revealed by the following properties proved
in [4]:

� x∗ is a strict local maximizer of Gµ,ρ,x∗ if ρ > 0
and 0 < µ < min{1, ρ/L}.

� If x∗ is a global minimizer of f , then
Gµ,ρ,x∗(x) < 0 for all x ∈ X \ x∗.

� Let d̄ ∈ D(x̄) be a feasible direction at x̄ ∈

SU (x∗) such that

‖ x̄ + d̄− x∗ ‖>‖ x̄− x∗ ‖ .

If ρ > 0 and 0 < µ < min{1, ρ
2K2L}, then

Gµ,ρ,x∗(x̄+d̄) < Gµ,ρ,x∗(x̄) < 0 = Gµ,ρ,x∗(x∗).

� Let x∗∗ be a strict local minimizer of f with
f(x∗∗) < f(x∗). If ρ > 0 is sufficiently small and
0 < µ < 1, then x∗∗ is a strict local minimizer
of Gµ,ρ,x∗ .

� Let x́ be a local minimizer of Gµ,ρ,x∗ and
suppose that there exists a feasible direction d̄ ∈
D(x́) such that ‖ x́ + d̄ − x∗ ‖>‖ x́ − x∗ ‖.
If ρ > 0 is sufficiently small and 0 < µ <
min{1, ρ

2K2L}, then x́ is a local minimizer of f .
� Assume that every local minimizer of f is strict.
Suppose that ρ > 0 is sufficiently small and 0 <
µ < min{1, ρ

2K2L}. Then, x∗∗ ∈ X \X̃ is a local
minimizer of f with f(x∗∗) < f(x∗) if and only
if x∗∗ is a local minimizer of Gµ,ρ,x∗ .

III. THE STANDARD ALGORITHM

The standard algorithm described in [4] consists of two
phases: the first phase involves finding a local minimum of
f ; the second phase involves finding an improved point from
which the local search can be restarted. These phases are
stated in details as Algorithms 1 and 2 below.

Algorithm 1: (Local search)
1) Choose an initial point x ∈ X .
2) If x is a local minimizer of f , then stop. Otherwise,

find the steepest descent direction d∗ ∈ D(x) of f at
x.

3) Set x := x + d∗. Go to Step 2.
Algorithm 2: (Search for an improved point)
1) Initialize x0 ∈ X , ρ0, µ0, ρL > 0, 0 < ρ̂ < 1, and

0 < µ̂ < 1.
Set ρ := ρ0 and µ := µ0.

2) Starting from x0, minimize f(x) using Algorithm 1 to
obtain a local minimizer x∗ of f .

3) (a) List the neighbouring points of x∗ as N(x∗) =
{w1,w2, . . . ,wq}. Set ` := 1.
(b) Set the current point, xc := w`.

4) (a) If there exists a direction d ∈ D(xc) such that
f(xc+d) < f(x∗), set x0 := xc+d and go to Step 2.
Otherwise, go to (b) below.
(b) Let

D1 = {d ∈ D(xc) : f(xc + d) < f(xc)

and
Gµ,ρ,x∗(xc + d) < Gµ,ρ,x∗(xc)}.

If D1 6= ∅, set d∗ := arg mind∈D1
{f(xc + d) +

Gµ,ρ,x∗(xc + d)}, set xc := xc + d∗ and go to (a)
above. Otherwise, go to (c) below.
(c) Let D2 = {d ∈ D(xc) : Gµ,ρ,x∗(xc +
d) < Gµ,ρ,x∗(xc)}. If D2 6= ∅, set d∗ :=
arg mind∈D2

{Gµ,ρ,x∗(xc + d)}, set xc := xc + d∗

and go to (a) above.
Otherwise, go to Step 5.

5) Let x́ = xc be the local minimizer of Gµ,ρ,x∗ obtained
from Step 4.
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(a) If x́ ∈ X̃ , set ` := ` + 1. If ` > q, go to Step 6.
Otherwise, go to Step 3(b).
(b) If x́ /∈ X̃ , reduce µ by setting µ := µ̂µ and go to
Step 4(b).

6) Reduce ρ by setting ρ := ρ̂ρ. If ρ < ρL, terminate
the algorithm. The current x∗ is taken as a global
minimizer of the problem. Otherwise, set ` := 1 and
go to Step 3(b).

The discrete filled function approach in Algorithm 2
above can be explained as follows. First, an initial point
is chosen before applying a local search to find a discrete
local minimizer. Then, the neighborhood of the discrete
local minimizer is set up. Next, a discrete filled function is
constructed and the local minimizer of the original function
becomes the local maximizer of the discrete filled func-
tion. By minimizing the discrete filled function, a discrete
local minimizer of the discrete filled function is found.
The discrete local minimizer of the discrete filled function
is examined whether it is an improved point or a corner
point. If it is an improved point, the local minimizer of
the discrete filled function transforms to be a new starting
point to minimize the original function in such a way that an
improved local minimizer can be found. In most situations,
the local minimizer of discrete filled function is also a
local minimizer of the original function when some standard
assumption are satisfied. On the other hand, if the discrete
local minimizer of the discrete filled function is a corner
point, the next point in the neighbourhood in Step 3 is chosen
to minimize the discrete filled function, until all points in the
neighbourhood are tested. Then, the parameter ρ is reduced
and the search of the discrete local minimizer of the discrete
filled function is repeated. However, if the local minimizer
of the discrete filled function is neither an improved point
or corner point, the parameter µ is reduced and a new
discrete filled function is constructed at the current point
under the new parameter setting. The parameters reduction
continues until they reached their presetting values, and the
best solution found is treated as the global minimizer.

The algorithm for minimizing Gµ,ρ,x∗ exits prematurely
when an improved point xk with f(xk) < f(x∗) is found
in Step 4 of Algorithm 2. The algorithm sets x0 := xk and
returns to Step 2 to minimize the original function f . Note
that a direction yielding the greatest improvement of f +
Gµ,ρ,x∗ is chosen when minimizing Gµ,ρ,x∗ , assuming that
a direction for improving both f and Gµ,ρ,x∗ simultaneously
exists. If such a direction does not exist, the algorithm uses
the steepest descent direction for Gµ,ρ,x∗ .

IV. THE MODIFIED ALGORITHM

We replace the neighbourhood N(x∗) in Step 3 of
Algorithm 2 with a set of randomly chosen points from
X . Then, an additional step is added to test whether any
one of these random points happens to be an improved
point. The motivation for this modification is to search for
improved points more efficiently by choosing points that
give a broader coverage of X , similar to the approaches
proposed in [5], [11], [12]. In the standard approach, the
initial points are chosen as the neighbouring points of the
current local solution. The modified algorithm is described
formally below.

Algorithm 3: (Modified filled function algorithm with
random starting points)

1) Initialize x0 ∈ X , ρ0, µ0, ρL > 0, 0 < ρ̂ < 1, and
0 < µ̂ < 1.
Let ρ := ρ0 and µ := µ0.

2) Starting from x0, minimize f(x) using Algorithm 1 to
obtain a local minimizer x∗ of f .

3) Let M = {w1,w2, . . . ,wq}, where w`, ` = 1, . . . , q,
are randomly chosen from X and q = 2n.

4) (a) Set ` := 1.
(b) If f(w`) < f(x∗), set x0 := w` and go to Step 2.
Otherwise, go to (c) below.
(c) Set ` := `+1. If ` ≤ q, go to (b) above. Otherwise,
set ` := 1 and go to (d) below.
(d) Set the current point xc := w`.

5) (a) If there exists a direction d ∈ D(xc) such that
f(xc+d) < f(x∗), set x0 := xc+d and go to Step 2.
Otherwise, go to (b) below.
(b) Let

D1 = {d ∈ D(xc) : f(xc + d) < f(xc) and

Gµ,ρ,x∗(xc + d) < Gµ,ρ,x∗(xc)}.

If D1 6= ∅, set d∗ := arg mind∈D1
{f(xc + d) +

Gµ,ρ,x∗(xc + d)}, set xc := xc + d∗ and go to (a)
above.
Otherwise, go to (c) below.
(c) Let D2 = {d ∈ D(xc) : Gµ,ρ,x∗(xc + d) <
Gµ,ρ,x∗(xc)}.
If D2 6= ∅, set d∗ := arg mind∈D2

{Gµ,ρ,x∗(xc + d)},
set xc := xc + d∗ and go to (a) above.
Otherwise, go to Step 6.

6) Let x́ = xc be the local minimizer of Gµ,ρ,x∗ obtained
from Step 5.
(a) If x́ ∈ X̃ , set ` := ` + 1. If ` > q, go to Step 7.
Otherwise, go to Step 4(d).
(b) If x́ /∈ X̃ , reduce µ by setting µ := µ̂µ and go to
Step 5(b).

7) Reduce ρ by setting ρ := ρ̂ρ. If ρ < ρL, terminate
the algorithm. The current x∗ is taken as a global
minimizer of the problem. Otherwise, set ` := 1 and
go to Step 4(d).

V. NUMERICAL RESULTS

We tested both algorithms on Rosenbrock’s and Colville’s
functions on FORTRAN. The adjustable parameters µ and
ρ are both initialized to 0.1. The parameter µ is reduced
if x́ is neither a vertex nor an improved point by setting
µ := µ/10. The other parameter, ρ, is reduced when all
searches in minimizing the filled function end up at vertices.
Note that we set ρL = 0.001 in the numerical computation.

Problem 1: Colville’s Function [13]

min f(x) = 100
(
x2 − x21

)2
+
(
1− x1

)2
+ 90

(
x4 − x23

)2
+
(
1− x3

)2
+ 10.1

[(
x2 − 1

)2
+
(
x4 − 1

)2]
+ 19.8

(
x2 − 1

)(
x4 − 1

)
,

s.t. − 10 ≤ xi ≤ 10, xi integer, i = 1, 2, 3, 4.
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TABLE I
RESULTS OF ALGORITHM 2 - COLVILLE’S FUNCTION.

x0 Ef EG RE

[1, 1, 0, 0]> 1426 5097 0.007332336
[1, 1, 1, 1]> 1422 5076 0.007311768

[−10, 10,−10, 10]> 2674 5979 0.013749415
[−10,−5, 0, 5]> 1567 5134 0.008057342
[−10, 0, 0,−10]> 1557 5098 0.008005923

[0, 0, 0, 0]> 1431 5099 0.007358045

TABLE II
RESULTS OF ALGORITHM 3 - COLVILLE’S FUNCTION.

x0 Ef EG RE NT

[1, 1, 0, 0]> 1092 2812 0.005614944 13
[1, 1, 1, 1]> 1030 2387 0.005296147 1

[−10, 10,−10, 10]> 1106 2659 0.005686931 7
[−10,−5, 0, 5]> 1542 3759 0.007928795 15
[−10, 0, 0,−10]> 1135 3101 0.005836046 2

[0, 0, 0, 0]> 954 3010 0.004905364 12

The Colville’s function has 1.94481 × 105 feasible
points and a global minimum x∗global = [1, 1, 1, 1]>

with f(x∗global) = 0. Six starting points are consid-
ered in Algorithm 2, namely [1, 1, 0, 0]>, [1, 1, 1, 1]>,
[−10, 10,−10, 10]>, [−10,−5, 0, 5]>, [−10, 0, 0,−10]>,
and [0, 0, 0, 0]>. The algorithm succeeded in finding the
global minimum from all starting points, as displayed in
Table I. The total number of original function evaluations,
the total number of discrete filled function evaluations, and
the ratio of the number of original function evaluations to
the total number of feasible points are denoted in the table
by Ef , EG, and RE , respectively.

On the other hand, Algorithm 3 succeeds in determin-
ing the global solution of Colville’s function much more
efficiently with an average Ef = 1143.2, compared with
Ef = 1679.5 obtained by Algorithm 2, which is a reduction
of 31.9% in average total number of original function evalu-
ations (see Table IX). However, several starting points used
in Algorithm 3 were unable to determine the global solution
for the initial choice of the random set M . In these cases,
we repeated the application of the algorithm several times
until the global optimum was obtained (note that the random
set M changes with each new application). Note that the Ef
values in Table II show the number of function evaluations
recorded for the successful application of the algorithm only.
The number of required attempts before reaching the global
solution is denoted by NT in Table II.

Problem 2: Goldstein and Price’s Function [13]

min f(x) = g(x)h(x)

s.t. xi =
yi

1000
− 2000 ≤ yi ≤ 2000, yi integer,

i = 1, 2,

where

g(x) = 1+
(
x1+x2+1)2

(
19−14x1+3x21−14x2+6x1x2+3x22

)
,

and
h(x) =

30+
(
2x1−3x2)2

(
18−32x1+12x21+48x2−36x1x2+27x22

)
.

The Goldstein and Price’s function has 1.6008001 ×

TABLE III
RESULTS OF ALGORITHM 2 - GOLDSTEIN AND PRICE’S FUNCTION.

x0 Ef EG RE

[2,−2]> 25041 151356 0.001564280
[0,−1]> 18995 151356 0.001186594
[−2,−2]> 24472 151356 0.001528736
[−0.5,−1]> 20475 151356 0.001279048
[1,−1.5]> 22533 151356 0.001407609
[1,−1]> 21978 151356 0.001372938

TABLE IV
RESULTS OF ALGORITHM 3 - GOLDSTEIN AND PRICE’S FUNCTION.

x0 Ef EG RE NT

[2,−2]> 20820 66975 0.001300600 1
[0,−1]> 18602 87844 0.001162044 1
[−2,−2]> 21440 64318 0.001339330 1
[−0.5,−1]> 17625 53214 0.001101012 1
[1,−1.5]> 20309 66975 0.001268678 1
[1,−1]> 11419 33463 0.000713331 1

TABLE V
RESULTS OF ALGORITHM 2 - ROSENBROCK’S FUNCTION FOR n = 5.

x0 Ef EG RE

[−5,−5,−5,−5,−5]> 1436 4475 0.45952
[−4,−4,−4,−4,−4]> 1435 4475 0.45920
[−3,−3,−3,−3,−3]> 1395 4475 0.44640
[−2,−2,−2,−2,−2]> 1354 4475 0.43328
[−1,−1,−1,−1,−1]> 1314 4475 0.42048

[0, 0, 0, 0, 0]> 1274 4475 0.40768
[1, 1, 1, 1, 1]> 1252 4415 0.40064
[2, 2, 2, 2, 2]> 1271 4415 0.40672
[3, 3, 3, 3, 3]> 1646 5720 0.52672
[4, 4, 4, 4, 4]> 1666 5720 0.53312
[5, 5, 5, 5, 5]> 1664 5720 0.53248

107 feasible points, with the global minimum solution
f(x∗global) = 3 when x∗global = [0,−1]>. Six initial
points were used in the simulation tests: [2,−2]>, [0,−1]>,
[−2,−2]>, [−0.5,−1]>, [1,−1.5]>, and [1,−1]>. The com-
putational results are summarized in Table III. Algorithm 2
converges to the global minimum solution with an average of
22249 function evaluations. The average RE is 0.0013899.

Unlike the first problem, Algorithm 3 not only show its
efficiency in minimizing the Goldstein and Price’s function
but has no reliability issue where this algorithm succeeded
in finding the global solution with only one attempt for each
of the initial points tested. The average function evaluations
and average ratio total number of function evaluations to total
number of feasible points are 18369.16667 and 0.001147499,
respectively. It is an improvement of 17.44% compared to
Algorithm 2. Numerical results of Algorithm 3 in solving
Goldstein and Price’s function is represented by Table IV.
A comparison between the two algorithms can be found in
Table IX.

Problem 3: Rosenbrock’s Function [13]

min f(x) =
n∑
i=1

[
100
(
xi+1 − x2i

)2
+
(
1− xi

)2]
,

s.t. − 5 ≤ xi ≤ 5, xi integer, i = 1, 2, . . . , n.

Table V gives the numerical results from implementing
Algorithm 2 to minimize Rosenbrock’s function with
n = 5 and 1.61015 × 105 feasible points. The global
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TABLE VI
RESULTS OF ALGORITHM 3 - ROSENBROCK’S FUNCTION FOR n = 5.

x0 Ef EG RE NT

[−5,−5,−5,−5,−5]> 937 2115 0.29984 1
[−4,−4,−4,−4,−4]> 1219 2662 0.39008 1
[−3,−3,−3,−3,−3]> 1445 3279 0.46240 1
[−2,−2,−2,−2,−2]> 923 2060 0.29536 1
[−1,−1,−1,−1,−1]> 1032 2409 0.33024 2

[0, 0, 0, 0, 0]> 936 2447 0.29952 2
[1, 1, 1, 1, 1]> 820 1961 0.26240 1
[2, 2, 2, 2, 2]> 871 2165 0.27872 1
[3, 3, 3, 3, 3]> 1233 2904 0.39456 3
[4, 4, 4, 4, 4]> 1356 3112 0.43392 3
[5, 5, 5, 5, 5]> 980 2269 0.31360 1

TABLE VII
RESULTS OF ALGORITHM 2 - ROSENBROCK’S FUNCTION FOR n = 25.

x0 Ef EG RE

[0, ..., 0]> 171072 444101 1.57893× 10−22

[3, ..., 3]> 312888 644091 2.88783× 10−22

[−5, ...,−5]> 176624 444101 1.63017× 10−22

[2,−2, ..., 2,−2, 2]> 173472 444101 1.60108× 10−22

[3,−3, ..., 3,−3, 3]> 191402 563646 1.76656× 10−22

[5,−5, ..., 5,−5, 5]> 193297 563646 1.78405× 10−22

minimum is x∗global = [1, 1, 1, 1, 1]> with f(x∗global) = 0.
Eleven starting points are used to start Algorithm 2.
These are [−5,−5,−5,−5,−5]>, [−4,−4,−4,−4,−4]>,
[−3,−3,−3,−3,−3]>, [−2,−2,−2,−2,−2]>,
[−1,−1,−1,−1,−1]>, [0, 0, 0, 0, 0]>, [1, 1, 1, 1, 1]>,
[2, 2, 2, 2, 2]>, [3, 3, 3, 3, 3]>, [4, 4, 4, 4, 4]>, and
[5, 5, 5, 5, 5]>. Algorithm 2 was able to determine the
global solution from all starting points.

Table VI shows the numerical results of minimizing
Rosenbrock’s function using Algorithm 3. Note that this
algorithm requires far fewer evaluations of both f and
Gµ,ρ,x∗ when compared with Algorithm 2 discussed earlier.
Similar to Problem 1, the gain in efficiency for Algorithm 3
is offset by reduced reliability, where we have to repeat the
algorithm several times for certain starting points, namely
[−1,−1,−1,−1,−1]>, [0, 0, 0, 0, 0]>, [3, 3, 3, 3, 3]>, and
[4, 4, 4, 4, 4]>, before a global solution is attained as shown in
Table VI. Specifically, when it works, Algorithm 3 succeeds
in finding the global solution of the problem with an average
RE = 0.341876, compared with RE = 0.456931 obtained
by Algorithm 2. In other words, Algorithm 3 is able to
minimize Rosenbrock’s function much more efficiently than
Algorithm 2, with a reduction of 25% in the total number of
original function evaluations.

Besides, we also tested both algorithms on a 25-
dimensional Rosenbrock’s function which has 1.08 × 1026

feasible points and summarized the outcomes in Ta-
bles VII and VIII, respectively. Six starting points are used
in running the problem, which are [0, ..., 0]>, [3, ..., 3]>,
[−5, ...,−5]>, [2,−2, ..., 2,−2, 2]>, [3,−3, ..., 3,−3, 3]>,
and [5,−5, ..., 5,−5, 5]>. The results shows that the pro-
posed Algorithm 3 reduces the original function evaluations
significantly by 43.04% compared to the standard algorithm.
Interestingly, Algorithm 3 also managed to reach the global
solution without repeating the algorithm for each starting
point as shown in Table VIII.

A summary of the computational results from using both

TABLE VIII
RESULTS OF ALGORITHM 3 - ROSENBROCK’S FUNCTION FOR n = 25.

x0 Ef EG RE NT

[0, ..., 0]> 115187 234568 1.06313× 10−22 1
[3, ..., 3]> 116338 234006 1.07375× 10−22 1

[−5, ...,−5]> 111952 211717 1.03327× 10−22 1
[2,−2, ..., 2,−2, 2]> 109246 218561 1.0083× 10−22 1
[3,−3, ..., 3,−3, 3]> 118594 237145 1.09458× 10−22 1
[5,−5, ..., 5,−5, 5]> 122866 231468 1.1340× 10−22 1

TABLE IX
COMPARISON OF ALGORITHMS 2 AND 3

Problems Types Ef,avg EG,avg RE,avg

Colville’s Alg. 2 1679.5 5247.2 0.008635805
function Alg. 3 1143.2 2954.7 0.005878038

Goldstein and Alg. 2 22249 151356 0.0013899
Price’s function Alg. 3 18369.16667 62131.5 0.001147499

Rosenbrock’s Alg. 2 1427.909 4803.636 0.456931
function for n = 5 Alg. 3 1068.364 2489.364 0.341876

Rosenbrock’s Alg. 2 203125.8333 517281 1.87477× 10−22

function for n = 25 Alg. 3 115697.1667 227910.8333 1.06784× 10−22

algorithms to solve Problems 1 to 3 is shown in Table IX.
Both discrete filled function algorithms eventually succeeded
in finding the global solutions of Colville’s, Goldstein and
Price’s, and Rosenbrock’s functions from all starting points,
although the modified algorithm required repeated starts for
some initial points for Colville’s and Rosenbrock’s functions
in the case of n = 5. Clearly, our proposed modification for
the discrete filled function algorithm has shown promising
results in accelerating convergence to the optimal solution.
This is shown through the much lower original function
and filled function evaluations required. Future work will
include applying the new modification in solving application
problems, and keep track a new update in this area such as
[14].
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