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Abstract—Dengue Haemorrhagic Fever (DHF) is a disease
caused by the dengue virus transmitted by the Aedes Aegypti
mosquito. This disease often spreads in residential areas
every year. DHF is a major health problem because it can
affect all age groups and cause death, especially in children.
Some of the triggers for the spread of DHF are the area
geographical conditions, and people’s knowledge and awareness
of environmental hygiene. The occurrence of DHF in a certain
area is caused by the spread of mosquitoes there, so there is
a possibility that other areas will be affected too. Therefore,
to determine the factors affecting DHF patients’ recovery rate
based on the location where the patients seek treatment, the
most fitting model is Spatial Survival with Bayesian MCMC
method. This study aims to understand the predicting factors
of DHF recovery rate based on the patient’s residence (W ),
such as length of hospitalization (Y ), sex (X1), age (X2),
patient participation (X3), hematocrit level (X4), thrombocyte
count (X5), haemoglobin count (X6), body weight (X7) and
patient’s medical record (X8) using lognormal 3 parameter
distribution with normal random effect. The result shows that
sex (X1), age (X2), patient participation (X3), hematocrit level
(X4), thrombocyte count (X5) and patient medical record (X8)
are significant factors that affect DHF recovery rate.

Index Terms—Bayesian; DBD; Lognormal 3 Parameter;
MCMC-Gibbs Sampling; Spatial-Survival.

I. INTRODUCTION

DENGUE hemorrhagic fever (hereafter abbreviated as
DHF) is a disease caused by dengue virus transmitted

by Aedes Aegypti mosquito [1]. Mosquito is one of the
dangerous animal species in the spread of this virus [2].
Its human to human transmission is a major cause of death
[3] mainly in children under 15 years old [4]. The recovery
period for DHF usually ranges from 5 to 7 days [5].
Therefore, a model should be used to understand the recovery
development [6]. A number of studies on this disease confirm
its mortality rate.The rate continues to increase, resulting in
higher costs for treatment, management, and medication [7].
There have been many studies on DHF, but it seems that
spatial survival analysis is the most fitting method to use [8].
This analysis has been widely applied in the health sector and
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is known by various terms, such as event history analysis, in
other sectors [9]. Survival analysis is a mathematical model
for analyzing data in which the response variable is produced
by the time until an event occurs [10]. Its aim is to identify
risk factors of the incidence [11]. Based on this information,
a researcher may aim to determine the predicting factors of
a thing or event with risk factors for the occurrence versus
time, hence a survival model of a tool will be more adequate
[12]. In its development, survival analysis modelling also in-
cludes random effects to overcome the heterogeneity/sources
of variance that cannot be explained [13]. In survival cases,
the timing of an event often depends on the location [14].
Spatial survival analysis is a hazard function to estimate
the probability of an object experiencing an event at t-time
based on location effects [15]. It is called spatial factor
because an event is often related to where it takes place
and is influenced by location factor [16]. This factor takes
into consideration the closest surrounding areas because they
possibly have similar characteristics [13]. To determine the
spatial dependence on the random effect of adjacent areas,
Bayesian Markov Chain Monte Carlo (MCMC) approach can
be used [14]. The research conducted by [16] applied spatial
survival model on DHF incidence in Makassar by modeling
the patients’ length of hospitalization until they discharge for
improved condition or recovery, and identified any censored
or failed data. Survival model is also used in medical events
that trigger death cases which consider spatial effects [17].
A similar study was carried out by [13] who applied spatial
survival model into political science. In this field, death does
not refer to real death but the survival time of a unit before
undergoing a certain political event based on location factors
[14]. Previous studies regarding spatial survival models that
involve spatial effects assumed that the model would produce
good estimates if the survival data in all locations were
assumed to have a similar particular distribution [8]. In fact,
not all survival data distribution in each location exhibits
a clear distribution [18]. Therefore, this study examines
the distribution of survival data, which is the lognormal 3
parameter distribution. It is expected that by considering
the lognormal 3 parameter distribution and including spatial
random effects in the model, the previously unexplained
heterogeneity can be explicated. It can be concluded that the
result of this study is a model that can be used to determine
the factors predicting DHF recovery rate based on where
the patients receive treatment. The result can be presented
in DHF management dissemination to reduce the number of
cases in Tuban Regency.
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II. BAYESIAN MCMC-GIBBS SAMPLING

Bayesian modelling is based on posterior model which
combines past data as prior information and observational
data as likelihood function construction [19]. Bayesian can
overcome the spatial autocorrelation of random effect of time
data until an event occurs in adjacent areas [20]. The esti-
mator in the Bayesian approach is the mean or mode of the
posterior distribution [21]. Bayesian is highly complicated
because of its simulation method which combines Monte
Carlo with Markox Chain properties to obtain sample data
based on certain sampling scenario [22]. The following are
the steps of Monte Carlo Markox Chain simulation method
[23]:

1) Determine the initial value.
2) Iterate sample as many as K.
3) Observe the convergence of the sample data.
4) Carry out the burn-in process by removing the first

sample as many as B. The period will end when
equilibrium condition is reached.

5) Use a parameter as a sample for posterior analysis.
6) Create a posterior distribution plot.
7) Summarize the posterior distribution such as the mean,

median, standard deviation, and standard error.
The previously explained posterior distribution is compli-

cated and difficult to be solved manually, so the parameter
estimation can be done using Gibbs Sampling [24]. The steps
of Gibbs Sampling algorithm process are [25]:

1) Determine the initial value of each parameter.
2) Carry out the simulation process after the initial values

are gained.
3) Construct the parameter and save them as a set of

values iterated by (r + 1)from the algorithm.
4) Obtain the result summary of posterior distribution.

III. SPATIAL SURVIVAL ANALYSIS OF
LOGNORMAL 3 PARAMETER

Spatial statistics is a statistical method used to analyze
spatial data [26]. This method can be used in various fields,
such as economics, social, health, meteorology, and clima-
tology [27]. Spatial data are data that contain the ”location”
information, so it is not only about ”what” is measured but
also where the data are obtained, and the measurement uses
spatial autocorrelation [28].

Survival analysis is a collection of statistical procedures
for analyzing data derived from time response variable [29].
It has three functions, those are the survival function, the
probability density function or the cumulative of data distri-
bution, and the Hazard function [30]. The Cox survival model
is semi parametric because it does not require distribution
information which underlies survival time and the baseline
hazard function does not have to be determined to estimate
the parameter [31].

A spatial survival model is formed by arranging survival
data based on adjacent areas in the Wi frailties. Those
areas possibly have similar characteristics or same level of
risk (hazard) compared to more distant areas [32]. Frailty
spatial survival model asserts that random effect has normal
distribution which can uncover the spatial autocorrelation
cannot be explained in the model [33]. It is loaded with Wi

which has normal distribution with smoothing parameter λ

[16]. In this research, the distribution of DHF hospitalization
period follows lognormal 3 parameter distribution (µ, σ, γ).
This probability density function of this distribution is as
follows [34]:

f(t;µ, σ, γ) =
1

(t− γ)σ
√
2φ
exp

{
− [ln(t− γ)− µ]2

2σ2

}
(1)

where t > γ ≥ 0,−∞ < µ < ∞, σ > 0, and γ
are location parameters. If t is a response variable with
lognormal 3 parameter distribution, then y = ln(t − γ)
has normal distribution with µ mean and variance. When
γ = 0, the distribution changes into lognormal 2 parameter.
Lognormal distribution transformed into standardized normal
distribution can be obtained as follows [35]:

f(t) =
P
(
Z = ln(t−γ)−µ

σ

)
σ(t− γ)

(2)

The equation of cumulative distribution function in log-
normal 3 parameter distribution or F (t) is as follows [36]:

F (t) =

t∫
0

1

(u− γ)τ
√
2π
exp

{
− [ln(u− γ)− µ]2

2σ2

}
du

(3)
Based on 3, survival function of lognormal 3 parameter as

follows is obtained [37]:

S(t) = 1− F (t)

= 1−
t∫

0

1

(u− γ)σ
√
2π
exp

{
− [ln(u− γ)− µ]2

2σ2

}
du

= P

[
Z >

ln(t− γ)− µ
σ

]
(4)

Meanwhile, the hazard function of lognormal 3 parameter
distribution can be determined through [38]:

h(t) =
f(t)

S(t)

=
P
(
Z = ln(t−γ)−µ

σ

)
σ(t− γ)

{
P
[
Z > ln(t−γ)−µ

σ

]} (5)

The general Cox regression in 5 could form the following
lognormal 3 parameter model [39]:

h(t,X) = h0(t)exp(β0 + β1X1 + β2X2 + . . .+

βpXp + Wi)

=
µ

σ(t− γ)

(6)

Next, h0(t) is a function which value depends on t while
is independent from t. Thus, parameter µ can be represented
in the following: µ = (β0+β1X1+β2X2+. . .+βpXp+Wi)
and baseline hazard in the following [40]:

h(t) =
1

σ(t− γ)
(7)
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Therefore, the hazard function is [41]:

h(t) =
µ

σ(t− γ)

=
1

σ(t− γ)
exp(β0 + β1X1 + β2X2 + . . .+

βpXp + Wi)

(8)

Estimation of each parameter is obtained from the full
conditional distribution of each parameter σ, γ, and βi with
prior distribution determination beforehand [42]. The prior
distribution used is the combination between conjugate and
informative priors as follows [19]:

y ∼ Lognormal(µ, τ, γ)
µ = βTXij + εi, εi|ε−i,Wi ∼ Normal(a, b),
β ∼ Normal(v, w)γ ∼ Gamma(r, s),
τ ∼ Gamma(r, s)

(9)

The full conditional distribution of each parameter τ , γ
and β1+i and λ is solved by calculating the integrals of the
related parameter as follows [8]:

p(σ|γ, λ, β1+i) ∝
∫
τ

∫
λ

∫
β1

. . .
∫

β1+p

I(t|γ, λ, β1, . . . βp)

p(γ)p(λ)p(β1) . . . p(βp)
dγdλdβ1 . . . dβp

p(γ|σ, λ, β1+i) ∝
∫
γ

∫
λ

∫
β1

. . .
∫

β1+p

I(t|σ, λ, β1, . . . βp)

p(σ)p(λ)p(β1) . . . p(βp)
dσdλdβ1 . . . dβp

p(λ|σ, γ, β1+i) ∝
∫
λ

∫
γ

∫
β1

. . .
∫

β1+p

I(t|σ, γ, β1, . . . βp)

p(σ)p(γ)p(β1) . . . p(βp)
dσdγdβ1 . . . dβp

p(β1|σ, γ, λ, β1+i 6= 1) ∝
∫
τ

∫
γ

∫
λ

∫
β2

. . .
∫

β1+p

I(t|σ, γ, λ, β2, . . . βp)

p(σ)p(γ)p(λ)p(β2) . . . p(βp)
dσdγdλdβ2 . . . dβp

...

p(βp|σ, γ, λ, β1+i 6= p) ∝
∫
τ

∫
γ

∫
λ

∫
β1

. . .
∫

β1+p

I(t|σ, γ, λ, β1, . . . βp−1)

p(σ)p(γ)p(λ)p(β1) . . . p(βp−1)
dσdγdλdβ1 . . . dβp−1

(10)

The parameter estimation of Bayesian spatial survival
model with lognormal 3 parameter distribution used MCMC
Algorithm and Gibbs Sampling [20]. The parameter update
process in the model was carried through Gibbs Sampler
based on full conditional distribution sample obtained from
equation [43]. The elaborated posterior distribution is quite
complicated and difficult to be manually solved, so the
parameter estimation was done through Gibbs Sampling [44].
The parameter estimation is presented below [45]:

1) Determine the initial value or estimation of each pa-
rameter.
(σ0, γ0, λ0, β0

1 , . . . β
0
p)

2) Then, a random listing is obtained.
γ1 from p(γ|t, σ0, λ0, β0

1 , . . . β
0
p)

σ1 from p(σ|t, γ0, λ0, β0
1 , . . . β

0
p)

λ1 from p(λ|t, γ0, σ0, β0
1 , . . . β

0
p)

β1
1 from p(β1

1 |t, γ0, σ0, λ0, β0
2 , . . . β

0
p)

...
β1
p from p(β1

p |t, γ0, σ0, λ0, β0
2 , . . . β

0
p−1)

3) Iterate the second step until convergence is achieved
(sample for model parameter inference is adequate).

IV. METHOD

This study used secondary data of DHF hospitalization
record of patients’ condition in Koesoma Tuban Hospital
which involves spatial/lattice factors. The data taken is the
length of hospitalization until the patients were permitted
to discharge, which is called the Failure event. The medical
recap time was from January 1, 2019 to July 1, 2020. Spatial
factors were represented by the proximity of one location to
another. Figure 1 presents the map of Tuban Regency.

The variables used were length of hospitalization (Y ), sex
(X1), age (X2), patient participation (X3), hematocrit level
(X4), thrombocyte count (X5), hemoglobin count (X6), body
weight (X7), and medical history (X8). The Table I presents
the description of responses and the predicting variables.

The following are the steps to carry out Bayesian spatial
survival analysis with lognormal 3 parameter distribution:

1) Assess the lognormal 3 parameter survival model by
taking into account the influence of location (spatial)
using a Bayesian approach with the following steps:
add spatial random effects to the proportional hazard
model and determine the prior distribution, or joint
distribution, and determine the estimation of model
parameters using MCMC and Gibbs sampling.

2) Determine the frailty model with normal distribution of
DHF patients in Tuban Regency based on the factors
affecting the recovery rate by following this sequence
of steps: signify the spatial load by inputting Tuban
Regency map into WinBUGS package program, deter-
mine the syntax of the random effects, perform ”spatial
autocorrelation” testing using Moran’s I statistical test,
and test the distribution of survival time data.

3) Determine the model and survival parameters with
a lognormal 3 parameter distribution using Markov
Chain Monte Carlo (MCMC) and Gibb Sampling sim-
ulations.

4) Determine the model and survival parameters with
a lognormal 3 parameter distribution using Markov
Chain Monte Carlo (MCMC) and Gibb Sampling sim-
ulations.

5) Define the mean and variance of the spatial random
effect distribution.

6) Generate T sample θ1, θ2,
ldots . . . θT from the posterior distribution p(θ|x) by
updating T as many as n times with sufficient thin
so that the Marcov Chain process is fulfilled. The
convergent algorithm is described as a state when
the algorithm has reached stationary condition in the
lognormal 3 parameter posterior distribution.

7) Summarize the posterior distribution (mean, median,
standard deviation, MC error, and 95% confidence
interval) on the lognormal 3 parameter distribution.
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Fig. 1: Map of Tuban Regency
.

TABLE I: Research Variables

No Variable Description
1 Time (t) 0 = censored

1 = uncensored
2 Length of Hospitalization (Y) Interval
3 Sex (X1) 1 = male

0 = female
4 Age (X2) 0 = < 25 years old

1 = 25-50 years old
2 = > 50 years old

5 Patient Participation (X3) 0 = with health insurance
1 = general

6 Hematocrit Level (X4) 0 = Hematocrit level < 42
1 = Hematocrit level > 42

7 Thrombocyte Count (X5) 0 = Thrombocyte count < 150.000
1 = Thrombocyte count > 150.000

8 Hemoglobin Count (X6) 0 = Hemoglobin count < 15
1 = Hemoglobin count > 15

9 Body Weight (X7) 0 = Body weight < 50
1 = Body weight 50-65
2 = Body Weight > 65

10 Medical History (X8) 0 = Have suffered DHF
1 = Have never suffered from DHF

11 Location (W ) Location of medication or treatment

8) Build and interpret a spatial survival model with a
lognormal 3 parameter distribution and determine the
predicting factors of DHF recovery rate.

9) Determine the recovery rate (hazard rate) or survival
rate of patients in every regency.

V. RESULT AND DISCUSSION

In this study, an analysis of the factors that affect the length
of stay of Dengue Hemorrhagic Fever will be analyzed with
spatial effects. The first step was carried out by descriptive
analysis to determine the characteristics of the length of stay
of dengue hemorrhagic fever patients at Koesoma Tuban
Hospital, these characteristics can be known based on the
time of stay and observed variables.

Based on Table II, it can be seen that of 227 patients,
most of the length of stay of DHF patients at Koesoma
Tuban Hospital was around 4 days. If seen from the length
of hospitalization of the patient until he is in a better or

TABLE II: Characteristics of Patients Dengue Hemorrhagic
Fever

Variable Min Max Mean Std.Dev Var
Length of Hospitalization (Y) 1 10 3.90 1.58 2.50

Sex (Xi) 1 76 19.11 15.7 247.11
Hematrocrit Level (X4) 11 58 41.34 6.81 46.4

Thrombocyte (X5) 6000 374000 98470 68.61 4709.1
Hemoglobin Count (X6) 8 20 14.20 2.208 4.87

Body Weight (X7) 8 90 40.71 18.01 324.6

better condition, DHF patients are taken to the hospital for
around 2-3 days experiencing fever. The minimum hospi-
talization for patients is 1 day and the longest is 10 days
of hospitalization. Most of the DHF patients in Koesoma
Tuban were 19 years old, the youngest was 1 year old and
the oldest was 58 years old. This disease not only affects
children and adolescents but also adults and even middle age.
The average level of hematrokit in Koesoma Tuban Hospital
patients was 41.34% with the lowest level was 11% and the
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highest level was 58%. The higher the patient’s hematrokit
level, the more severe the patient’s condition and the lower
the patient’s hematrokit level, the patient’s condition tends to
be better provided that the normal limit of hematrokit levels
ranges from 40% to 52%. Increased levels of hematrokit are
usually preceded by a decrease in platelets and will continue
to increase if bleeding always occurs and will decrease after
fluid administration to the patient [16]. It should be noted that
the value of the hematrokit is affected by fluid replacement
[18]. The average number dengue fever patients platelets of
in Tuban Koesoma Hospital for 98470 with the sheer number
of platelets minimum 6000 / µl and the largest platelet count
374000 / µl. The less platelet count a person has, the more
severe the dengue disease is and the more platelet counts a
person has, the better the dengue disease will be provided
that the normal limit of platelet count ranges from 150000
/ µl to 440000 / µl [16]. So it can be concluded that there
are patients who are very unstable because they only have a
platelet count of 6000 / µl, due to a lack of public awareness
of dengue and treatment is only carried out after the condition
is somewhat worse [14]. The mean hemoglobin of dengue
hemorrhagic fever patients was 14.20 and most of the body
weight of the patients who had been hospitalized for the long
period of stay was 41 kg.

Fig. 2: Moran’s I Indeks for the number of patients with
dengue hemorrhagic fever

.

Second step on This study analyzed the spatial survival
of lognormal 3 parameter to determine the variables which
predict survival time of DHF patients during hospitalization
in Koesoma Tuban Hospital until they discharged by consid-
ering spatial factors with autocorrelation. Spatial autocorre-
lation in cases of dengue hemorrhagic fever is a condition
where there are significant similarities or differences between
regions based on the ratio between the number of deaths
(people with dengue hemorrhagic fever) [38] that can last
up to a certain time in each district in Tuban. This study
uses the statistical calculation of Moran’s I global test with
the aim of knowing whether or not there is a relationship
or relationship between the number of dengue hemorrhagic
fever sufferers in a district with neighboring areas can be
seen in Figure 2.

Figure 2 shows the Moran’s I index of 0.179, which
is in the range 0 and 1, so it can be concluded that the
resulting autocorrelation is Positive Spatial autocorrelation,
which means that there is relationship or number of dengue
hemorrhagic fever. This positive autocorrelation identifies
that adjacent sub-districts have different characteristic values
and the ratio of the number of deaths to the number of

people affected by dengue hemorrhagic fever in each district
in Tuban City. So then an assumption arises to model survival
or the rate of recovery of dengue hemorrhagic fever patients
from death by considering the spatial autocorrelation, so that
it is expected that the model obtained is able to explain the
heterogeneity of the data.

In addition to using the Moran’s I index, it is necessary to
test significant spatial autocorrelation through hypotheses in
determining the presence or absence of spatial autocorrela-
tion in the incidence of length of stay of dengue hemorrhagic
fever in Tuban district [14]. The test was performed using
permutations as much as 999 times can be seen in Figure 3
with the following hypothesis:
H0 : I = 0 (No Autocorrelation)

H1 : I 6= 0 (No Autocorrelation)

Based on Figure 3 the p value (0.0380) is smaller than α
= 0.05 (5%) so reject H0 which means sufficient evidence
to say that there is spatial autocorrelation in the incidence of
dengue fever in Tuban Regency. The survival model which
has a significant spatial effect will be tested whether the
spatial effect has a CAR (Conditional Autoregrresive) or
Normal frailty distribution. The following is a comparison
of the spatial survival model in the 3-parameter lognormal
distribution using the DIC value.

Fig. 3: permutations as much as 999 times to the Moran’s I
index

.

TABLE III: DIC Value of Spatial Survival

Model Spatial Survival Random Effect DIC
Lognormal 3 Parameter CAR 8826.240
Lognormal 3 Parameter Normal 7582.980

Based on Table III shows that the model used with
consideration of location effects and taking into account the
proximity matrix between locations is Spatial Survival in
the 3-parameter Lognormal distribution. with Normal frailty
because it has the smallest DIC value. This shows that
the spatial survival model that gives rise to heterogeneity
can be explained by the survival model having a normal
frailty distribution. After selecting the model, the next step
is to determine the factors that affect the hazard or the
rate of survival of dengue hemorrhagic fever hospitalization
from death. The following are the results of the parameter
estimation of the spatial survival model with a lognormal
distribution of 3 parameters with Normal frailty which is
presented in Table IV.

Table IV presents the significant factors in DHF recovery
rate if the values in the range of 2.5% to 97.5% do not
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contain a 0. The variable column lists the factors assumed
to affect the recovery rate, the mean column shows the size
of the model parameters, and the next four columns show
the estimated values at the 97.5% confidence interval. The
predicting factors were sex (X1), age (X2), patient partici-
pation (X3), hematocrit level (X4), thrombocyte count (X5)
and patient medical history (X8). The value of the normal
frailty parameter distribution λ =

√
σ where σ is significant

at 1.287. It means that in this survival lognormal 3 parameter
distribution model, spatial effects were found. The normal
frailty distribution occurs between units of observation in
one group while frailty between groups will be mutually
independent.

Table V shows that all significant Wi* values affected
the patients recovery rate because they did not contain 0
value within 2.5% to 97.5% interval. This indicates that
DHF patients in all districts of Tuban Regency had different
recovery rates. This difference can be seen in the significant
interval width of the recovery rate caused by the normal
random effect parameter (λ). Thus, it can be said that these
DHF cases had spatial dependence on the variance and
mean components, meaning that the different variance and
mean values in each district resulted in the difference of
confidence interval in each district too. Furthermore, to
determine the risk level /tendency of a particular factor, odds
ratio was used. Odds ratio is the comparison of individual
odds in certain factor/predictor (x) condition in the expected
category with the factor/predictor (x) in the comparison
category. Based on the posterior parameters obtained in
Table V, the recovery rate (hazard) of DHF patients in
each district in Tuban Regency could be modeled as follows:

h(t) =
1

σi(t− 1.216)
∗

e(3.198−0.597X1.0−0.265X1.1+...−0.409X8.1+Wi)

(11)

The model can be interpreted as sex (X1) with(β̂ =
−0.597) value significantly affected recovery rate by exp(-
0.597) = 0.550. This shows that female DHF patients tend
to recover 0.55 times more slowly than the male patients. It
explains why the death rate among female patients is higher,
which is because their bodies are more susceptible to dengue
virus [38]. The same interpretation applies for all variables.

The results of the spatial survival analysis with normal
random effects distribution to uncover unexplained hetero-
geneity/sources of variance in the model with the Bayesian
MCMC method showed that the predicting factors of DHF
were sex (X1), age (X2), patient participation (X3), hemat-
ocrit level (X4), thrombocyte count (X5) and patient medical
history (X8). The random effect with normal distribution
in this study showed that the districts in Tuban Regency
were significant for the DHF recovery rate. This means
that in these DHF cases, there was indeed a spatial effect
in the lognormal 3 parameter distribution survival model.
This result can be used as a basis for Tuban District Health
Department in formulating strategic steps to accelerate DHF
recovery rate. Spatial random effect in DHF is also addressed
in [16]. Study by [14] using the Weibull distribution with
random Conditional Autoregressive (CAR) effect was able
to explain the heterogeneity that previously could not be

explained, suggesting that sex, age, and thrombocyte count
are significant factors. However, this study found that loca-
tions were not significant DHF recovery rate, particularly in
Pamekasan. Research on DHF conducted by [16] concluded
that the predicting factors of DHF patients recovery rate are
sex, age, thrombocyte count, and hemoglobin count. It can
be concluded that the large number of DHF cases can be
epidemiologically important for community-focused health
programs because they involve spatial effects. Lognormal
3 parameter spatial survival model with normal random
effect can provide information relevant for DHF management
dissemination so that the cases number in Tuban Regency can
be reduced.

VI. CONCLUSION

Based on the analysis results, it can be concluded that
the survival time lognormal 3 parameter distribution can
be applied to spatial survival model which indicates six
predicting factors of DHF recovery rate in Tuban Regency.
Those factors are sex (X1), age (X2), patient participation
(X3), hematocrit level (X4), thrombocyte count (X5) and
patient medical history (X8). The spatial dependence on
random effects with normal distribution was because of
the significant relationship between the patients well being
and environmental discomfort at 1.28. The value of normal
random effect shows that in DHF cases, there is a spatial
dependence of variance and mean differences from spatial
random effects in each district, resulting in different con-
fidence intervals of recovery rate in each district in Tuban
City.
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