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Abstract—In recent years, various mathematicians (such as
Ernst, U. Duran) introduced an extension of Apostol Type
polynomials of order α. Recently, W. A. Khan introduced a new
class of q- Hermite based Apostol type polynomials. Motivated
by their research, this article introduces a new class of (p,q)-
analogue of Hermite based Apostol type polynomials of order
α and investigate its characteristics.In particular, it establishes
the generating function, series expression and explicit relation
for these polynomials. It also explores the relationship between
generalized Bernoulli, Euler and Genocchi polynomials.

Index Terms—(p, q)-Calculus, (p, q)-Hermite based Apostol
polynomials, Generating function, Cauchy product.

I. INTRODUCTION

QUANTUM calculus is an old area of research that
holds its applications widely in the field of physics,

mathematics and engineering sciences. In 2011, Kim [1]
derived various identities based on q Bernstein and q-
Hermite polynomials. Later in 2014, Ernst [2] introduced
q-Apostol type numbers of order α. Very recently, Khan
[3] introduced generalized q-Hermite based Apostol type
polynomials. Motivated by the fundamental importance of
q-calculus in numerous areas, the theory of Post Quantum
Calculus, also known as (p, q)-Calculus, was developed. It
is the extension of q-Calculus. It should be noted that (p, q)-
numbers cannot be derived by swapping q with q/p in q-
numbers. However, q-calculus can be derived from (p, q)-
calculus by substituting p = 1.

For p ̸= q, the (p, q)-numbers are defined as:

[n]p,q =
pn − qn

p− q
. (1)

Also, [n]p,q = pn−1[n]q/p.

It should be noted that [n]1,q = [n]q are called q-numbers.
For n ≥ 1, the (p, q)-factorial is defined by:

[n]p,q! =
n∏

m=1

[m]p,q , (2)

with initial condition [0]p,q! = 1.
For n ∈ N, the (p, q)-binomial coefficient, is given by:(

n

m

)
p,q

=
[n]p,q!

[m]p,q![n−m]p,q!
, 0 ≤ m ≤ n.

Consider p = q = 1, the (p, q)-binomial coefficient reduces
to standard binomial coefficient

(
n
k

)
.
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The two types of (p, q)-exponential functions (see [4], [5])
are defined by:

ep,q(x) =
∞∑

n=0

p(
n
2) xn

[n]p,q!
(3)

and

Ep,q(x) =
∞∑

n=0

q(
n
2) xn

[n]p,q!
, (4)

where 0 <
∣∣∣ qp ∣∣∣ < 1; |x| < 1.

The above-mentioned exponential functions satisfy the
following relation:

ep,q(x)Ep,q(x) = 1.

For x ̸= 0, the (p, q)-derivative is given as:

Dp,qf(x) =
f(px)− f(qx)

(p− q)x
. (5)

The Hermite polynomial is (see [6]) defined as:

Hn(x) =

[n2 ]∑
r=0

(−1)rn!

r!(n− 2r)!
(2x)

n−2r
.

The generating function of these polynomials is given by:

e2xt−t2 =

∞∑
n=0

Hn(x)
tn

n!
. (6)

The q-analogue of Hermite polynomial, known as q-Hermite
polynomial (see [1]), is defined as:

Hn,q(x) = n!

[n2 ]∑
l=0

(−1)
l
2n−2l[x]

n−2l
q

l!(n− 2l)!
.

The generating function of these polynomials is given by:

e2t[x]q−t2 =
∞∑

n=0

Hn,q(x)
tn

n!
.

A new q-analogue of Hermite polynomial was introduced by
Mahmudov (see [7], [3]) as follows:

Fq(x, t) = Fq(t)eq(xt) =
∞∑

n=0

Hn,q(x, t)
tn

[n]q!
, (7)

where Fq(t) =
∞∑

n=0
(−1)nq(

n
2) t2n

[2n]q !!
and

[2n]q!! = [2n]q[2n− 2]q . . . [2]q .

Apostol type polynomials were first introduced by Apostol
(see [8]) and investigated by Srivastava (see [9]). Sub-
sequently, Luo (see [10], [11]) established the general-
ized Apostol-Bernoulli polynomials B

(α)
n (x) of order α.
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Further, Luo et al. (see [12], [13]) derived the general-
ized Apostol-Euler polynomials E

(α)
n (x) and generalized

Apostol-Genocchi polynomials G
(α)
n (x), both of order α.

Later, in 2014 Ernst (see [2]) introduced the generalized
q-Apostol type polynomials of order α using the following
generating function:(

2µtν

λeq(t) + ab

)α

eq(xt) =
∞∑

n=0

Fα
n,q(x; a, b;λ)

tn

[n]q!
, (8)

where α ∈ N0, λ, a, b ∈ C, |t| < | log(−λ)|.

It should be noted that Fα
n,q(a, b;λ) = Fα

n,q(0; a, b;λ) are
known as q-Apostol-type numbers of order α.

Consider µ = 0 and ν = 1 in (8), the generalized q-
Apostol-Bernoulli polynomial of order α is defined by the
following generating function:(

t

λeq(t)− 1

)α

eq(xt) =
∞∑

n=0

Bα
n,q(x; a, b;λ)

tn

[n]q!
, (9)

where α ∈ N0, λ ∈ C, |t| < | log(−λ)|.

Take µ = 1 and ν = 0 in (8), the generalized q-Apostol-
Euler polynomial of order α is defined by the following
generating function:(

2

λeq(t) + 1

)α

eq(xt) =
∞∑

n=0

Eα
n,q(x; a, b;λ)

tn

[n]q!
, (10)

where α ∈ N0, λ ∈ C, |t| < | log(−λ)|.
Let µ = 1 and ν = 1 in (8), the generalized q-Apostol-

Genocchi polynomial of order α is defined by the following
generating function:(

2t

λeq(t) + 1

)α

eq(xt) =

∞∑
n=0

Gα
n,q(x; a, b;λ)

tn

[n]q!
, (11)

where α ∈ N0, λ ∈ C, |t| < | log(−λ)|.

Recently, Khan et al. introduced generalized q-Hermite
based Apostol type polynomials (see [3]) with the following
generating function:(

2µtν

λeq(t) + ab

)α

Fq(t)eq(xt)

=
∞∑

n=0

HFα
n,q(x; a, b;λ;µ, ν)

tn

[n]q!
, (12)

where α ∈ N0, λ, µ, ν, a, b, q, p ∈ C, 0 < |q| < |p| < 1 and
|t| < | log(−λ)|.

Inspired by their research, this paper derives generalized
(p,q)-Hermite-based Apostol type polynomials and investi-
gate their properties.

II. (p, q)-HERMITE POLYNOMIAL

This section derives a (p, q)-Hermite polynomials and
discusses few exceptional cases.

The generating function for generalized (p, q)-analogue of
Hermite polynomial is defined as:

Fp,q(x, t) = Fp,q(t)ep,q(xt)

=
∞∑

n=0

Hn,p,q(x)
tn

[n]p,q!
, (13)

where 0 < |q| < |p| < 1, n ∈ N0, q, p ∈ C, and

Fp,q(t) =
∞∑

n=0

(−1)
n
q

n(n−1)
2 p

n(n+1)
2 t2n

[2n]p,q!!
. (14)

Remark 1. Consider p = 1, equation (13) reduces to the
generalized q-polynomial (see [3])

Fq(x, t) = Fq(t)eq(xt) =
∞∑

n=0

Hn,q(x)
tn

[n]q!
, (15)

where 0 < |q| < |p| < 1, n ∈ N0, q, p ∈ C, and

Fq(t) =
∞∑

n=0

(−1)
n
q

n(n−1)
2 t2n

[2n]p,q!!
. (16)

Remark 2. Consider p = 1 and q → 1− then

lim
q→1−

Fq(x, t) = ext−
t2

2 =
∞∑

n=0

Hn(x)
tn

n!
.

Theorem 1. The explicit expression of generalized (p, q)-
Hermite polynomial is given by:

Hn,p,q(x) =

[n2 ]∑
m=0


(−1)n[n]p,q!q

m(m−1)
2

×p
m(m+1)+(n−2m)(n−2m−1)

2

×xn−2m


[2m]p,q!! [n− 2m]p,q!

, (17)

where 0 < |q| < |p| < 1, n ∈ N0, q, p ∈ C.

Proof: Using (16) and (3) in (13) we get,

∞∑
n=0

Hn,p,q(x)
tn

[n]p,q!

=
∞∑

m=0

(−1)
n
q

m(m−1)
2 p

m(m+1)
2 t2m

[2m]p,q!!

∞∑
n=0

p(
n
2) (xt)

n

[n]p,q!
.

(18)

On using the Cauchy product (18) transforms as follows:

∞∑
n=0

Hn,p,q(x)
tn

[n]p,q!

=
∞∑

n=0

[n2 ]∑
m=0

(−1)nq
m(m−1)

2 p
m(m+1)+(n−2m)(n−2m−1)

2 t2m

[2m]p,q!!

× xn−2mtn−2m

[n− 2m]p,q!
. (19)

Now equating the coefficients of tn in (19), we get the
desired result.
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III. (p, q)-APOSTOL TYPE POLYNOMIALS

This section defines the (p, q)-analogue of Apostol type
polynomials and investigates certain exceptional cases.

For q, p ∈ C and 0 < |q| < |p| < 1, α, n ∈ N0,
a, b ∈ R \ {0}, β, µ, ν ∈ C the generating function for
generalized (p, q)-Apostol type polynomial of order α is
defined as follows:(

2µtν

βep,q(t) + ab

)α

ep,q(xt)

=
∞∑

n=0

Fα
n,p,q(x; a, b;β;µ, ν)

tn

[n]p,q!
. (20)

The conditions of convergence of generalized (p, q)-
Apostol type polynomial are:

(i) If ab > 0 and β = 1 then |t| < π; β ̸= 1, then |t| <
| log(−β)|, 1α = 1.

(ii) If ab < 0 and β = 1 then |t| < 2π; β ̸= 1, then
|t| < | log(β)|, 1α = 1.

For x = 0, Fα
n,p,q(0; a, b;β;µ, ν) = Fα

n,p,q(a, b;β;µ, ν)
are known as (p, q)-Apostol type numbers.

Remark 3. Here we investigate few special cases of
Fα
n,p,q(x; a, b;β;µ, ν) as follows:

Case 1: Let a = −1, b = 1, µ = 0 and ν = 1 in (20),
we get the generating function of generalized (p, q)-Apostol-
Bernoulli polynomial of order α (see [14]) as follows:(

t

βep,q(t)− 1

)α

ep,q(xt) =
∞∑

n=0

Bα
n,p,q(x;β)

tn

[n]p,q!
, (21)

where β = 1, then |t| < 2π; β ̸= 1, then |t| < | log(β)|.

Case 2: Assume a = 1, b = 1, µ = 1 and ν = 0 in (20),
we get the generating function of generalized (p, q)-Apostol-
Euler polynomial of order α (see [14]) as follows:(

2

βep,q(t) + 1

)α

ep,q(xt) =
∞∑

n=0

Eα
n,p,q(x;β)

tn

[n]p,q!
, (22)

where β = 1, then |t| < π; β ̸= 1, then |t| < | log(−β)|.

Case 3: Consider a = 1, b = 1, µ = 1 and ν = 1 in
(20), we establish the generating function of generalized
(p, q)-Apostol-Genocchi polynomial of order α (see [14]) as
follows:(

2t

βep,q(t) + 1

)α

ep,q(xt) =
∞∑

n=0

Gα
n,p,q(x;β)

tn

[n]p,q!
, (23)

where β = 1, then |t| < π; β ̸= 1, then |t| < | log(−β)|.

Remark 4. For p = 1, the equation (20) reduces to
generalized q-Apostol type polynomial of order α, mentioned
in (8).

Remark 5. For p = 1 and q → 1− in (20), the following
cases hold:

lim
q→1−

Fα
n,1,q(x;−1, 1;β; 0, 1) = Bα

n (x;β),

lim
q→1−

Fα
n,1,q(x; 1, 1;β; 1, 0) = Eα

n (x;β),

lim
q→1−

Fα
n,1,q(x; 1, 1;β; 1, 1) = Gα

n (x;β),

where Bα
n (x;β), Eα

n (x;β) and Gα
n t(x;β) are defined as

the generalization of Apostol-Bernoulli, Apostol-Euler and
Apostol-Genocchi polynomials of order α (see [11], [12],
[13]).

IV. (p, q)-HERMITE BASED APOSTOL TYPE
POLYNOMIALS

For p, q ∈ C, 0 < |q| < |p| < 1, α, n ∈ N0, a, b ∈ R\{0},
β, µ, ν ∈ C the generating function of generalized (p, q)-
Hermite based Apostol type polynomial is defined as follows:(

2µtν

βep,q(t) + ab

)α

Fp,q(t)ep,q(xt)

=

∞∑
n=0

HFα
n,p,q(x; a, b;β;µ, ν)

tn

[n]p,q!
. (24)

The conditions of convergence of generalized (p, q)-Hermite
based Apostol type polynomial are:
(iii) If ab > 0 and β = 1 then |t| < π; β ̸= 1, then |t| <

| log(−β)|, 1α = 1.
(iv) If ab < 0 and β = 1 then |t| < 2π; β ̸= 1, then

|t| < | log(β)|, 1α = 1.

Remark 6. For x = 0 in (24) we get,

HFα
n,p,q(a, b;β;µ, ν)

= HFα
n,p,q(0; a, b;β;µ, ν) , (25)

where HFα
n,p,q(a, b;β;µ, ν) are known as (p, q)-Hemite

based Apostol type numbers of order α.

Remark 7. On setting β = 1 in (24) we have,

HFα
n,p,q(x; a, b;µ, ν)

= HFα
n,p,q(x; a, b; 1;µ, ν) , (26)

where HFα
n,p,q(x; a, b;µ, ν) is known as unified (p, q)-

Hemite based Apostol type polynomial of order α.

Remark 8. If we take α = β = 1 in (24) we get,

HFn,p,q(x; a, b;µ, ν)

= HF 1
n,p,q(x; a, b; 1;µ, ν) , (27)

where HFn,p,q(x; a, b;µ, ν) is denoted as unified (p, q)-
Hemite based Apostol type polynomial.

Let us now investigate few special cases of (p, q)-Hermite
based Apostol type polynomials that are summarized in
Table I.
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TABLE I
SPECIAL CASES OF (p, q)-HERMITE BASED APOSTOL TYPE POLYNOMIALS

Assumptions Generating function Name of the polynomial

A. µ = 0, ν = 1,
a = −1 and b =
1

(
t

βep,q(t)−1

)α
Fp,q(t)ep,q(xt) =

∞∑
n=0

HBα
n,p,q (x;β)

tn

[n]p,q !
,

where HBα
n,p,q (x;β) = H

F
α

n,p,q
(x;−1, 1;β; 0, 1)

(p, q)-Hermite based
Apostol type Bernoulli
polynomial of order α

µ = 0, ν = 1,
a = −1, b = 1
and β = 1

(
t

ep,q(t)−1

)α
Fp,q(t)ep,q(xt)=

∞∑
n=0

HBα
n,p,q(x)

tn

[n]p,q !
,

where HBα
n,p,q(x) = H

F
α

n,p,q
(x;−1, 1; 1; 0, 1)

Unified (p, q)-Hermite
based Apostol type
Bernoulli polynomial of
order α

µ = 0, ν = 1,
a = −1, b = 1,
α = β = 1

(
t

ep,q(t)−1

)
Fp,q(t)ep,q(xt) =

∞∑
n=0

HBn,p,q(x)
tn

[n]p,q !
,

where HBn,p,q(x) = H
F

1

n,p,q
(x;−1, 1; 1; 0, 1)

Unified (p, q)-Hermite
based Apostol type
Bernoulli polynomial

B. µ = 1, ν = 0,
a = b = 1

(
2

βep,q(t)+1

)α
Fp,q(t)ep,q(xt)=

∞∑
n=0

HEα
n,p,q (x;β)

tn

[n]p,q !
,

where HEα
n,p,q (x;β) = H

F
α

n,p,q
(x; 1, 1;β; 1, 0)

(p, q)-Hermite based
Apostol type Euler
polynomial of order α

µ = 1, ν = 0,
a = b = 1 and
β = 1

(
2

ep,q(t)+1

)α
Fp,q(t)ep,q(xt)=

∞∑
n=0

HEα
n,p,q(x)

tn

[n]p,q !
,

where HEα
n,p,q(x) = H

F
α

n,p,q
(x; 1, 1; 1; 1, 0)

Unified (p, q)-Hermite
based Apostol type Euler
polynomial of order α

µ = 1, ν = 0,
a = b = 1, α =
β = 1

(
2

ep,q(t)+1

)
Fp,q(t)ep,q(xt)=

∞∑
n=0

HEn,p,q(x)
tn

[n]p,q !
,

where HEn,p,q(x) = H
F

1

n,p,q
(x; 1, 1; 1; 1, 0)

Unified (p, q)-Hermite
based Apostol type Euler
polynomial

C. µ = ν = 1, a =
b = 1

(
2t

βep,q(t)+1

)α
Fp,q(t)ep,q(xt)=

∞∑
n=0

HGα
n,p,q (x;β)

tn

[n]p,q !
,

where HGα
n,p,q (x;β) = H

F
α

n,p,q
(x; 1, 1;β; 1, 1)

(p, q)-Hermite based
Apostol type Genocchi
polynomial of order α

µ = ν = 1, a =
b = 1 and β = 1

(
2t

ep,q(t)+1

)α
Fp,q(t)ep,q(xt)=

∞∑
n=0

HGα
n,p,q(x)

tn

[n]p,q !
,

where HGα
n,p,q(x) = H

F
α

n,p,q
(x; 1, 1; 1; 1, 1)

Unified (p, q)-Hermite
based Apostol type
Genocchi polynomial of
order α

µ = ν = 1, a =
b = 1, α = β = 1

(
2t

ep,q(t)+1

)
Fp,q(t)ep,q(xt)=

∞∑
n=0

HGn,p,q(x)
tn

[n]p,q !
,

where HGn,p,q(x) = H
F

1

n,p,q
(x; 1, 1; 1; 1, 1)

Unified (p, q)-Hermite
based Apostol type
Genocchi polynomial
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Theorem 2. For q, p ∈ C, 0 < |q| < |p| < 1, the explicit
expression of generalized (p, q)-Hermite based Apostol type
polynomial is given by:

HFα
n,p,q(x; a, b;β;µ, ν)

=
n∑

k=0

(
n

k

)
p,q

p(
n−k

2 )
HFα

k,p,q(a, b;β;µ, ν)x
n−k, (28)

HFα
n,p,q(x; a, b;β;µ, ν)

=
n∑

k=0

(
n

k

)
p,q

Fα
k,p,q(a, b;β;µ, ν)Hn−k,p,q(x) , (29)

where n, α ∈ N0, β, µ, ν, a, b ∈ C.

Proof: Substituting (25) and (3) in (24), we have:
∞∑

n=0

HFα
n,p,q(x; a, b;β;µ, ν)

tn

[n]p,q!

=
∞∑
k=0

HFα
k,p,q(a, b;β;µ, ν)

tk

[k]p,q!

∞∑
n=0

p(
n
2) (xt)

n

[n]p,q!
.

(30)

On using the Cauchy product and equating the coefficients
of tn in (30), we get the desired result mentioned in (28).
On using (17) and (20) in (24), we get:

∞∑
n=0

HFα
n,p,q(x; a, b;β;µ, ν)

tn

[n]p,q!

=
∞∑
k=0

Fα
k,p,q(a, b;β;µ, ν)

tk

[k]p,q!

∞∑
n=0

Hn,p,q(x)
tn

[n]p,q!
.

(31)

On using the Cauchy product and equating the coefficients
of tn in (31), we get the desired result mentioned in (29).

Theorem 3. For q, p ∈ C, 0 < |q| < |p| < 1, the following
relation holds:

HFα+γ
n,p,q(x; a, b;β;µ, ν)

=
n∑

k=0

(
n

k

)
p,q

HFα
k,p,q(a, b;β;µ, ν)

× F γ
n−k,p,q(x; a, b;β;µ, ν) , (32)

where n, α, γ ∈ N0, β, µ, ν, a, b ∈ C.

Proof: In view of (24), (25) and (20), we have:
∞∑

n=0

HFα+γ
n,p,q(x; a, b;β;µ, ν)

tn

[n]p,q!

=
∞∑
k=0

HFα
k,p,q(a, b;β;µ, ν)

tk

[k]p,q!

×
∞∑

n=0

F γ
n,p,q(x; ab;β;µ, ν)

tn

[n]p,q!
. (33)

Applying the Cauchy product and equating the coefficients
of tn in (33), we get the desired result.

Theorem 4. For q, p ∈ C, 0 < |q| < |p| < 1, the following
differential equation holds:

Dp,q,xHFα
n,p,q(x; a, b;β;µ, ν)

= [n]p,qHFα
n−1,p,q(x; a, b;β;µ, ν), (34)

where n, α ∈ N0, β, µ, ν, a, b ∈ C.

Proof: Differentiating (24) with respect to x, we get:

Dp,q,x

∞∑
n=0

HFα
n,p,q(x; a, b;β;µ, ν)

tn

[n]p,q!

=

(
2µtν

βep,q(t) + ab

)α

Fp,q(t)Dp,q,x(ep,q(xt))

= t

(
2µtν

βep,q(t) + ab

)α

Fp,q(t)ep,q(pxt). (35)

Using Cauchy product and comparing the coefficients of tn

in (35), we get the desired result.

Theorem 5. The following relation hold:

HFα
n,p,q(x; a, b;β;µ, ν)

=

[n2 ]∑
k=0

(−1)
k
q

k(k−1)
2 p

k(k+1)
2 Fα

n−2k,p,q(x; a, b;β;µ, ν)

[2k]p,q!! [n− 2k]p,q!
,

(36)

where q, p, β, µ, ν, a, b∈C, 0 < |q| < |p| < 1 and n, α∈N0.

Proof: Applying (14) and (20) in (24), we have:
∞∑

n=0

HFα
n,p,q (x; a, b;β;µ, ν)

tn

[n]p,q!

=
∞∑

n=0

Fα
n,p,q(x; a, b;β;µ, ν)

tn

[n]p,q!

×
∞∑
k=0

(−1)kq
k(k−1)

2 p
k(k+1)

2 t2k

[2k]p,q!!
. (37)

Using Cauchy product and equating the coefficients of tn in
(37) , we arrive at the desired result (36).

V. RELATIONSHIPS BETWEEN BERNOULLI, EULER AND
GENOCCHI POLYNOMIALS

In this section, we derive explicit relationships between
(p, q)-Hermite based Apostol type polynomials with (p, q)
Apostol Bernoulli, (p, q) Apostol Euler and (p, q) Apostol
Genocchi polynomials.

Theorem 6. The following identity holds:

HFα
n,p,q(x; a, b;β;µ, ν)

=
HFα

m,p,q(a,b;β;µ,ν)

[n+ 1]p,q!

×
[(

β
n+1∑
m=0

((
n+ 1

m

)
p,q

n+1−m∑
r=0

p(
r
2)
(
n+ 1−m

r

)
p,q

× Bn+1−m−r,p,q(x;β)

))
−

(
n+1∑
m=0

(
n+ 1

m

)
p,q

Bn+1−m,p,q(x;β)

)]
(38)

Proof: Multiplying both sides of (24) with
(

t
βep,q(t)−1

)
,

we have
∞∑

n=0

HFα
n,p,q (x; a, b;β;µ, ν)

tn

[n]p,q!
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=

(
2µtν

βep,q(t) + ab

)α(
t

βep,q(t)− 1

)
Fp,q(t)

×
(
βep,q(t)− 1

t

)
ep,q(xt)

=

(
2µtν

βep,q(t) + ab

)α

Fp,q(t)

(
t

βep,q(t)− 1
ep,q(xt)

)
× βep,q(t)

t
− 1

t

(
2µtν

βep,q(t) + ab

)α

× Fp,q(t)

(
t

βep,q(t)− 1
ep,q(xt)

)
=

1

t

[(
β

∞∑
m=0

HFα
m,p,q(a, b;β;µ, ν)

tm

[m]p,q!

×
∞∑

n=0

Bn,p,q(x;β)
tn

[n]p,q!

∞∑
r=0

p(
r
2) tr

[r]p,q!

)
−
( ∞∑

m=0

HFα
m,p,q(a, b;β;µ, ν)

tm

[m]p,q!

×
∞∑

n=0

Bn,p,q(x;β)
tn

[n]p,q!

)]

=
1

t

[(
β

∞∑
n=0

n∑
m=0

n−m∑
r=0

(
p(

r
2)Bn−m−r,p,q(x;β)

×HFα
m,p,q(a, b;β;µ, ν)

)
[n−m− r]p,q![m]p,q![r]p,q!

tn
)

−
( ∞∑

n=0

n∑
m=0

(
Bn−m,p,q(x;β)

×HFα
m,p,q(a, b;β;µ, ν)

)
[n−m]p,q![m]p,q!

tn
)]

.

(39)

Replacing n with n + 1 and equating the coefficients of tn

in (39), we get the desired result.

Corollary 1. The following relations hold for (p, q)-Apostol
Euler and (p, q)-Apostol Genocchi polynomials.

HFα
n,p,q(x; a, b;β;µ, ν)

=
1

2

[(
β

n∑
m=0

(
n

m

)
p,q

n−m∑
r=0

p(
r
2)

×
(
n−m

r

)
p,q

En−m−r,p,q(x;β)

)
−
( n∑

m=0

(
n

m

)
p,q

En−m,p,q(x;β)

)]
× HFα

m,p,q(a, b;β;µ, ν). (40)

and

HFα
n,p,q(x; a, b;β;µ, ν)

=
1

2[n+ 1]p,q!

×
[
β

n+1∑
m=0

((
n+ 1

m

)
p,q

n+1−m∑
r=0

(
p(

r
2)
(
n+ 1−m

r

)
p,q

× Gn+1−m−r,p,q(x;β)

)
× HFα

m,p,q(a, b;β;µ, ν)

)

−
( n+1∑

m=0

(
n+ 1

m

)
p,q

Gn+1−m,p,q(x;β)

× HFα
m,p,q(a, b;β;µ, ν)

)]
(41)

Theorem 7. The following relation holds:

HGα
n,p,q(x; a, b;β)

=
1

2

n∑
k=0

(
n

m

)
p,q

[ n−k∑
r=0

βp(
r
2)
(
n− k

r

)
p,q

× HEn−k−r,p,q(0;β) + HEn−k,p,q(0;β)

]
× HGα

k,p,q(a, b;β;µ, ν). (42)

Proof: Multiplying both sides of (24) with
(

2
βep,q(t)+1

)
,

we get:
∞∑

n=0

HGα
n,p,q(x; a, b;β)

tn

[n]p,q!

=

(
2t

βep,q(t) + ab

)α(
2

βep,q(t) + 1

)
Fp,q(t)

×
(
βep,q(t) + 1

2

)
ep,q(xt)

=
1

2

[
β

∞∑
k=0

HGα
k,p,q(x; a, b;β)

tk

[k]p,q!

×
∞∑

n=0

En,p,q(0;β)
tn

[n]p,q!

∞∑
r=0

p(
r
2) tr

[r]p,q!

]
+

1

2

[ ∞∑
k=0

HGα
k,p,q(x; a, b;β)

tk

[k]p,q!

×
∞∑

n=0

HEn,p,q(0;β)
tn

[n]p,q!

]

=
1

2

[
β

∞∑
n=0

n∑
k=0

n−k∑
r=0

×
p(

r
2)HEn−k−r,p,q(0;β)HGα

k,p,q(x; a, b;β)

[k]p,q![n− k − r]p,q![r]p,q!
tn
]

+
1

2

[ ∞∑
k=0

n∑
k=0

HGα
k,p,q(x; a, b;β)HEn−k,p,q(0;β)

[n− k]p,q![k]p,q!
tn
]
.

(43)

On equating the coefficients of tn in (43), we get the desired
result.

Theorem 8. The following relation holds:

HEα
n,p,q(x; a, b;β)

=
β

(n+ 1)p,q

[ n∑
k=0

(
n+ 1

k

)
p,q

×
k∑

s=0

(
k

s

)
p,q

p(
k−s
2 )

(
Bn−k,p,q(mx; a, b;β)

HEα
s,p,q(0; a, b;β)

)
mk−s−1

]
− ab

(n+ 1)p,q

[ ∞∑
s=0

mBn−s,p,q(mx; a, b;β)

× HEα
s,p,q(0; a, b;β)

]
(44)
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Proof: Multiplying both sides of (22) with(
βep,q( t

m )−ab

t
m

)
, we get:

∞∑
n=0

HEα
n,p,q(x; a, b;β)

tn

[n]p,q!

=

(
2

βep,q(t) + ab

)α

Fp,q(t)

(
βep,q

(
t
m

)
− ab

t
m

)

×

(
t
m

βep,q
(

t
m

)
− ab

)
ep,q

(
mx

t

m

)
=

[
mβ

t

∞∑
s=0

HEα
s,p,q(0; a, b;β)

ts

[s]p,q!

×
∞∑

n=0

Bn,p,q(mx; a, b;β)
tn

[n]p,q!

∞∑
k=0

p(
k
2) tk

mk[k]p,q!

]
×−ab

m

t

[ ∞∑
s=0

HEα
s,p,q(0; a, b;β)

ts

[s]p,q!

×
∞∑

n=0

Bn,p,q(mx; a, b;β)
tn

[n]p,q!

]

= β

[ ∞∑
n=0

n∑
k=0

k∑
s=0

p(
k−s
2 )

(
Bn−k,p,q(mx; a, b;β)

HEα
s,p,q(0; a, b;β)

)
(
mk−s−1[k − s]p,q!

[s]p,q![n− k]p,q!

) tn−1
]

−m× ab
[ k∑

s=0

∞∑
s=0

(
Bn−s,p,q(mx; a, b;β)

HEα
s,p,q(0; a, b;β)

)
[s]p,q![n− s]p,q!

tn−1

]
.

(45)

Replacing n with n+1 and then comparing the coefficients
of tn in (45), we get the desired result mentioned in (44).

Now we define the (p, q)-Stirling polynomials
S2,p,q(n, v;β) of the second kind of order υ with the
following generating function:

∞∑
n=0

S2,p,q (n, v;β)
tn

[n]p,q!
=

(βep,q(t) + ab)
ν

[ν]p,q!
. (46)

Remark 9. When q → p and p = β = 1, the above
polynomials reduce to standard Stirling numbers of second
kind (see [15]):

∞∑
n=0

S(n, v)
tn

n!
=

(et − 1)ν

v!
. (47)

Theorem 9. The relationship between generalized (p, q)-
Hermite based Bernoulli polynomial and (p, q)-Stirling poly-
nomials is derived as follows:

HBα
n−v,p,q(x; a, b;β)

=
[v]p,q![n− v]p,q!

[n]p,q!

n∑
k=0

(
n

k

)
HBα−v

k,p,q(x; a, b;β)

× S2,p,q(n− k, v;β). (48)

Proof: Multiplying both sides of (24) with

(
(βep,q(t)+ab)v

[v]p,q !

)
, we get:

∞∑
n=0

HBα
n,p,q(x; a, b;β)

tn

[n]p,q!

=

(
t

βep,q(t) + ab

)α

ep,q(x, t)Fp,q(t)
(βep,q(t) + ab)v

[v]p,q!

× [v]p,q!

(βep,q(t) + ab)v

=
[v]p,q!

tv

∞∑
k=0

HBα−v
k,p,q(x; a, b;β)

tk

[k]p,q!

×
∞∑

n=0

S2,p,q(n, v;β)
tn

[n]p,q!
. (49)

Applying Cauchy product rule in (49), it follows:
∞∑

n=0

HBα
n,p,q(x; a, b;β)

tn+v

[n]p,q!

= [v]p,q!
∞∑

n=0

n∑
k=0

(
n

k

)
HBα−v

k,p,q(x; a, b;β)

× S2,p,q(n− k, v;β)
tn

[n]p,q!
. (50)

Making the powers identical and equating the coefficients in
(50), we get the desired result in (48).

VI. CONCLUSION

The present paper defines (p, q) analogue of Hermite based
Apostol type polynomials of order α, multifarious new and
exciting relations of extended Hermite-Apostol polynomials
with Bernoulli, Euler and Genocchi polynomials were ob-
tained. Moreover, the (p, q) calculus has been efficaciously
used in numerous sciences such as physical sciences, field
theory, hypergeometric series, lie group, oscillator alge-
bra, differential equations. Hence, approximation functions
through polynomials based on basic twin numbers would
have a pivotal role. Thus, the (p, q) polynomials derived
in the present paper can be investigated and examined in
approximation theory.
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