A Novel Approach Based on Modified and Hybrid Flower Pollination Algorithm to Solve Multi-objective Optimal Power Flow

Gonggui Chen, Qilin Qin, Zhou Ping, Kang Peng, Xianjun Zeng, Hongyu Long* and Mi Zou

Abstract

In this paper, a modified and hybrid flower pollination algorithms (MHFPA) is proposed for dealing with the multi-objective optimal power flow (MOOPF) problem with conflictive objectives. The algorithm combines the mutation and crossover process in the differential evolution (DE) algorithm, introduces the sinusoidal nonlinear dynamic switching probability (SNDSP) and the elite strategy of elder generation (ESEG), which can improve the shortcomings of the original pollen algorithm that it is easy to fall into the local optimum and the diversity is insufficient. A screening approach with Pareto-dominant rule (SAPR) is proposed to ensure that the state variable can satisfy the inequality constraints of the power system. A uniformly distributed Pareto optimal set (POS) is obtained by the non-dominant sorting with elite strategy (NSES) based on Rank and Density estimation, and the best trade-off solution (BTS) is determined from the POS obtained by the fuzzy affiliation theory. For practicality, the total fuel cost, active power loss, emissions and voltage deviation are selected as objective functions. Due to the limitations of the actual power system, the valve point effect is also considered. The IEEE30-, 57- and IEEE118-bus test systems are used to verify the performance of the proposed MHFPA. In addition, two

Manuscript received June 7, 2021; revised October 15, 2021. This work was supported by the National Natural Science Foundation of China (51207064), the Chongqing Natural Science Foundation (cstc2020jcyj-msxmX0368), the Science and Technology Research Program of Chongqing Municipal Education Commission (KJQN201900627), the Natural Science Foundation of Chongqing(cstc2020jcyj-msxmX0693), the National Natural Science Foundation of China(52007022), and the China Postdoctoral Science Foundation(2021M693930).

Gonggui Chen is a professor of Key Laboratory of Industrial Internet of Things and Networked Control, Ministry of Education, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; Chongqing Key Laboratory of Complex Systems and Bionic Control, Chongqing University of Posts and Telecommunications, Chongqing 400065, China (e-mail: chenggpower@ 126.com).

Qilin Qin is a master degree candidate of Chongqing University of Posts and Telecommunications, Chongqing 400065, China (e-mail: 15084418828@163.com).

Ping Zhou is a senior engineer of Economic and Technology Research Institute, State Grid Chongqing Electric Power Company, Chongqing 401120, China(e-mail: 153326062@qq.com) .

Peng Kang is a senior engineer of Economic and Technology Research Institute, State Grid Chongqing Electric Power Company, Chongqing 401120, China(e-mail: 1060846892@qq.com).

Xianjun Zeng is a senior engineer of State Grid Chongqing Electric Power Company, Chongqing 400015, China (e-mail: 13594255525@139.com).

Hongyu Long is a professor level senior engineer of Chongqing Key Laboratory of Complex Systems and Bionic Control, Chongqing University of Posts and Telecommunications, Chongqing 400065, China(corresponding author to provide phone: +8613996108500 ; e-mail: longhongyu20@163.com).

Mi Zou is an assistant professor of Chongqing Key Laboratory of Complex Systems and Bionic Control, Chongqing University of Posts and Telecommunications, Chongqing 400065, China(e-mail: zoumi@cqupt.edu.cn).
performance indicators, Hypervolume (HV) and Spacing (SP), quantitatively evaluate the diversity and uniformity of the POS obtained by MHFPA. The simulation results show that, compared with the classic MOPSO and NSGA-II algorithms, the method proposed in this paper shows a greater competitive advantage in dealing with different scales and non-convex optimization problems.

Index Terms-Modified and hybrid FPA, Pareto optimal set, optimal power flow, non-dominant sorting, performance indicators

I. Introduction

THE Optimal Power Flow (OPF) proposed by Carpentier in 1962 is one of the challenges of the economic operation of the power system, which has attracted wide attention from many experts and scholars [1]. The optimal power flow problem is one of the basic problems of a given or fixed load power. It involves the dispatching of the actual power of all generators, the generator bus voltage, the tap ratio of the transformer and the setting of VAR, and it is subject to the physical properties and electrical constraints of the system. At the same time, it is also a non-linear problem, trying to minimize the fuel cost or active power loss by adjusting the value of the control variable, while satisfying the equality and inequality constraints in the power system [2, 3]. However, with the continuous growth of power demand and people's more and more concerns about the environment, the traditional single-objective optimal power flow model can not meet the demand. To simulate OPF model more realistically, the voltage deviation and emission must be taken as part of the objective function of OPF. Therefore, this paper takes a novel methods to address the multi-objective problems in the power system [4-8].

Multi-objective optimization power flow is a large-scale, highly nonlinear and non-convex optimization problem [9]. Different from the single objective optimization problem, the solution of the multi-objective optimization problem is composed of a set of solutions rather than only one solution. It's very difficult to solve this problem, because it requires very clever technology [10]. In the past, in order to solve large-scale non-convex nonlinear constrained optimization problems, different parameters were set for objective functions on the basis of the priority of objective functions, which was transformed into an optimization problem with only one objective function by weighted sum [11]. However, the weight coefficients are artificially decided, which will have a great impact on the final result. In addition, it is almost
impossible to find a well-distributed POS with a traditional method in the face of high-dimensional and complex systems.

In recent years, with the rapid development of computer technology, some classical heuristic algorithms have come to the fore [12-15]. Many researchers have tried to solve the MOOPF problem with heuristic algorithms, such as: improved bat algorithm [16], hybrid self-adaptive FAHSPSO DE algorithm [17], quasi-oppositional modified Jaya algorithm [18], multi-object beetle antennae search algorithm with BAS-BP fuel cost forecast network [19], dynamic population artificial bee colony algorithm [20], improved moth-flame optimization algorithm [21], modified pigeon-inspired optimization algorithm [22], dimension based firefly algorithm [23], hybrid Firefly-Bat Algorithm [24]. The results show that the heuristic algorithms are very feasible methods to solve the MOOPF problem.
Flower pollination algorithm (FPA) was put forward to solve the MOOPF problem by Xin-She Yang in 2014 [25]. Due to the simple structure and few parameters of FPA, the algorithm is widely used in various fields [26]. However, the original FPA algorithm still has the disadvantages of slow convergence speed, easy to fall into local optimality and insufficient diversity [27]. In response of the above weaknesses, this paper proposes a modified and hybrid flower pollination algorithm based on the mutation and crossover process of DE algorithm, SNDSP and ESEG to deal with the MOOPF problem. As far as we know, this improved method is the first time used to solve the MOOPF problem. In order to verify the performance and practicability of the proposed algorithm, MHFPA is tested on three different dimensional test systems of IEEE30, IEEE57 and IEEE118, and the results obtained are compared with the recently published literatures. The results show that the proposed method has better performance.
The rest of this paper is organized as follows: The mathematical formulation of MOOPF problem and three multi-objective optimization strategies are presented in Section II. Section III introduces the application of MHFPA algorithm in MOOPF. Simulating studies on three different-scale systems and the performance analysis are given in Section IV. Finally, Section V concludes this work.

II. Formulation of Moopf Problem

The MOOPF problem generally considers two or more objectives, including voltage deviation, fuel cost, active power loss, emission and fuel cost with valve-point, etc. On the premise of satisfying the equality constraints and inequality constraints, the objective functions needed by decision-makers are optimized simultaneously [28-30]. The mathematical model of MOOPF is as follows:

$$
\begin{gather*}
\operatorname{Min} J(x, u)=\left\{J_{1}(x, u), \cdots J_{i}(x, u), \cdots J_{m}(x, u)\right\} \tag{1}\\
G_{i}(x, u)=0, \quad i=1,2, \cdots G L \tag{2}\\
H_{j}(x, u) \leq 0, \quad j=1,2, \cdots H L \tag{3}
\end{gather*}
$$

where J_{1}, J_{2}, and J_{m} are the objective functions to be optimized. m is the count of objectives. $G_{i}(x, u)$ and $H_{j}(x, u)$ represent the i th equality constraint and the j th inequality constrain, respectively. $G L$ is the number of equality limits, and $H L$ is the count of inequality limits.
x^{T} represents the vector of state variables, including active power output of the slack bus, $P_{\text {Gslack }}$ load bus voltage magnitude V_{L}, reactive output power of generators $Q_{G e}$, transmission line loading $S_{T L}$. It can be defined as:

$$
\begin{equation*}
x^{\mathrm{T}}=\left[P_{G s l a c k}, V_{L_{1}} \ldots V_{L_{N P Q}}, Q_{G e_{1}} \ldots Q_{G e_{N G}}, S_{T L_{1}} \ldots S_{T L_{N L L}}\right] \tag{4}
\end{equation*}
$$

u^{T} is the vector of control variables including the output active power of generators except the slack bus $P_{G e}$, the voltage magnitude of generators $V_{G e}$, the injected reactive power of shunt compensators $Q_{C o}$, the tap setting of the transformers T, It can be written as:

$$
\begin{equation*}
u^{\mathrm{T}}=\left[P_{G e_{2}}, \ldots, P_{G e_{N G}}, V_{G e_{1}}, \ldots, V_{G e_{N G}}, Q_{C o_{1}}, \ldots, Q_{C o_{N C}}, \ldots, T_{1}, . . T_{N T}\right] \tag{5}
\end{equation*}
$$

where $N P Q$ is the number of load buses. $N T L$ is the number of transmission lines. $N G$ is the count of generators. $N C$ is the count of shunt compensators, and $N T$ is the count of regulating transformers.

A. Objective Functions

In this paper, basic fuel cost, fuel cost with value-point loading, emission, active power loss and voltage magnitude deviation are considered to demonstrate the performance of the proposed method.

1) Basic Fuel Cost Minimization

This is the most commonly used mathematical model to calculate the total fuel cost in OPF problems. It is expressed as:

$$
\begin{equation*}
J_{\text {fcost }}=\sum_{i=1}^{N G}\left(a_{i}+b_{i} P_{G e i}+c_{i} P_{G e i}{ }^{2}\right) \$ / \mathrm{h} \tag{6}
\end{equation*}
$$

where $J_{\text {fcost }}$ is basic fuel cost. a_{i}, b_{i} and c_{i} are the cost coefficients of the i th generator, and $P_{G e i}$ is the active power of the i th generator.

2) Fuel Cost with Valve-point Loadings Minimization

Due to the consideration of the valve point effect, this objective function is significantly different from (6). In other words, the model is more realistic.

$$
\begin{equation*}
J_{\text {cost-vp }}=\sum_{i=1}^{N G}\left[a_{i}+b_{i} P_{G e i}+c_{i} P_{G e i}^{2}+\left|d_{i} \sin \left(e_{i}\left(P_{G e i}^{\min }-P_{\text {Gei }}\right)\right)\right|\right] \$ / \mathrm{h} \tag{7}
\end{equation*}
$$

where $J_{\text {cost-vp }}$ is the fuel cost with value-point loadings of the tested system. d_{i} and e_{i} represent cost coefficients of the i th generator.

3) Emission Objective Minimization

The emission of SOx and NOx from thermal power plants is the main cause of environmental pollution. In this paper, the exhaust emission model is established based on the appropriate weighted summation of these two types of emission gases. The objective function can be stated as follows:

$$
\begin{equation*}
J_{\text {enission }}=\sum_{i=1}^{N G}\left[\alpha_{i} P_{G e i}^{2}+\beta_{i} P_{\text {Gei }}+\gamma_{i}+\zeta_{i} \exp \left(\lambda_{i} P_{\text {Gei }}\right)\right] \text { ton } / \mathrm{h} \tag{8}
\end{equation*}
$$

where $\alpha_{i,} \beta_{i,} \gamma_{i}, \zeta_{i}$ and λ_{i} are the emission coefficients of i th generator.

4) Active Power Loss Minimization

Transmission loss is inevitable in the process of power transmission. Reducing actual transmission loss is one of the important goals of the OPF problem.

$$
\begin{equation*}
J_{\text {Ploss }}=\sum_{k=1}^{N T L} G_{k(i, j)}\left[V_{i}^{2}+V_{j}^{2}-2 V_{i} V_{j} \cos \left(\delta_{i}-\delta_{j}\right)\right] \mathrm{MW} \tag{9}
\end{equation*}
$$

where $J_{\text {ploss }}$ is the total active power losses of the power
system. G_{k} is the conductance of the k th line. δ_{i} and δ_{j} are the voltage angle of node i and j, respectively. $V i$ and V_{j} are the voltage magnitude of node i and j, respectively.

5) Voltage Magnitude Deviation Minimization

Voltage deviation is an important quality and safety index, and its magnitude has a direct influence on the stability and economic benefit of the power system. It can be described as below:

$$
\begin{equation*}
J_{V D}=\sum_{i=1}^{N P Q}\left|V_{i}-1.0\right| \tag{10}
\end{equation*}
$$

where $J_{V D}$ represents the total voltage deviation of the tested system.

B. Problem Constrains

It makes sense to optimize the five objective functions only when both equality and inequality constraints of the power system are satisfied.

1) Equality Constrains

Equality constraints include active and reactive power balance [31, 32], which can be depicted as:

$$
\begin{gather*}
P_{G i}-P_{D i}=V_{i} \sum_{j=1}^{N b} V_{j}\left(G_{i j} \cos \left(\delta_{i}-\delta_{j}\right)-B_{i j} \sin \left(\delta_{i}-\delta_{j}\right)\right) \quad \forall i \in N b \\
Q_{G i}-Q_{D i}=V_{i} \sum_{j=1}^{N b} V_{j}\left(G_{i j} \sin \left(\delta_{i}-\delta_{j}\right)+B_{i j} \cos \left(\delta_{i}-\delta_{\mathrm{j}}\right)\right) \quad \forall i \in N b \tag{11}
\end{gather*}
$$

where $P_{G i}$ and $Q_{G i}$ are the value of active and reactive power of i th generator. $P_{D i}$ and $Q_{D i}$ stand for the demand of active and reactive power at load bus $i . G_{i j}$ and $B_{i j}$ represent the conductance and susceptance between node i and j, respectively. Nb denotes the count of all buses of the power system.

2) Inequality Constrains

Inequality constraints are composed of state variable constraints and control variable constraints to limit the system variables within the effective range [33].
(1) Inequality constrains of control variables
(i) Active power P_{G} constrains

$$
\begin{align*}
& P_{G e i}^{\max }-P_{G e i} \geq 0 \tag{13}\\
& P_{G e i}-P_{G e i}^{\min } \geq 0
\end{align*}, i \in N G(i \neq \text { slack })
$$

(ii) Voltage V_{G} constrains

$$
\begin{align*}
& V_{G i}^{\max }-V_{G e i} \geq 0 \tag{14}\\
& V_{G e i}-V_{G e i}^{\min } \geq 0
\end{align*}, i \in N G
$$

(iii) Transformer tap-settings T constrains

$$
\begin{align*}
& T_{i}^{\max }-T_{i} \geq 0 \tag{15}\\
& T_{i}-T_{i}^{\min } \geq 0
\end{align*}, i \in N T
$$

(iv) Reactive power sources Q_{C} constrains

$$
\begin{align*}
& Q_{C o i}^{\max }-Q_{C o i} \geq 0 \tag{16}\\
& Q_{C o i}-Q_{C o i}^{\min } \geq 0
\end{align*}, i \in N C
$$

(2) Inequality constrains of state variables
(i) Active power at slack bus $P_{\text {Gslack }}$ constrains

$$
\begin{equation*}
P_{\text {Gslack }}{ }^{\max } \leq P_{\text {Gslack }} \leq P_{\text {Gslack }}{ }^{\min } \tag{17}
\end{equation*}
$$

(ii) Voltages at load buses $V L$ constrains

$$
\begin{align*}
& V_{L i}^{\max }-V_{L i} \geq 0 \tag{18}\\
& V_{L i}-V_{L i}^{\min } \geq 0
\end{align*}, i \in N P Q
$$

(iii) Apparent power S constrains

$$
\begin{equation*}
S_{i j}^{\max } \geq S_{i j}, \quad i j \in N T L \tag{19}
\end{equation*}
$$

(iv) Reactive power Q_{G} constrains

$$
\begin{align*}
& Q_{G e i}^{\max }-Q_{G e i} \geq 0 \tag{20}\\
& Q_{G e i}-Q_{G e i}^{\min } \geq 0
\end{align*}, i \in N G
$$

C. Multi-objective Problem Solving Strategies

In the actual MOOPF problem, the objectives are often interacting, competing, and coupled together. In addition, their solutions are a set of solutions, and the decision maker cannot make a choice on the optimal solution. In order to obtain POS with high quality and uniform distribution and the BTS, three strategies are proposed to solve the above problems.

1) Constraint Handling Strategies

The Newton-Raphson flow calculation can verify whether each solution violates the equality constraints (11) and (12). Control variable and state variable constraints are called inequality constraints. Once the constraints are violated, the solution is invalid. For the control variable constraints, once any individual control variable exceeds its own constraint range, it is updated and adjusted in the following way:

$$
u_{i}=\left\{\begin{array}{lc}
u_{i} & \text { if } u_{i, \text { min }}<u_{i}<u_{i, \text { max }} \tag{21}\\
u_{i, \text { min }} & \text { if } u_{i}<u_{i, \min } \\
u_{i, \text { max }} & \text { if } u_{i}>u_{i, \max }
\end{array}\right.
$$

For the inequality constraint processing of state variables, SAPR is proposed to solve this problem, and it is obviously different from the traditional penalty coefficient method. Its core steps are as follows:

Step1: Calculate the violation of inequality constrains for i th individual total_vio(u_{i}) based on(22).

$$
\begin{equation*}
\text { total_} \quad \operatorname{vio}\left(u_{i}\right)=\sum_{j=1}^{H L} \max \left(\mathrm{G}_{j}\left(x, u_{i}\right), 0\right) \tag{22}
\end{equation*}
$$

where $H L$ is the count of inequality constrains on state variables.

Step2: Two different control variables u_{1} and u_{2} are randomly selected, and their total constraint violation total_vio $\left(u_{1}\right)$ and total_vio $\left(u_{2}\right)$ are compared.

Step3: Judge the dominant relationships of the vectors u_{1} and u_{2}. The key theory can be described as below:

$$
\begin{cases}\forall i \in(1,2, \ldots, m), & J_{i}\left(x, u_{2}\right) \leq J_{i}\left(x, u_{1}\right) \tag{23}\\ \exists j \in(1,2, \ldots, m), & J_{j}\left(x, u_{2}\right)<J_{j}\left(x, u_{1}\right)\end{cases}
$$

Step4: if u_{2} dominates u_{1}, u_{2} is regarded as the Pareto optimum solution.

2) Non-dominant Sorting with Elite Strategy

In 2002, Deb proposed a non-dominated sorting with elite strategy, and obtained a uniformly distributed Pareto front [14]. In this approach, Deb put forward two important concepts: Rank and Density Estimation.
(1) Rank

Let's assume that each pollen individual i has two parameters $o(i)$ and $m(i) . o(i)$ is the quantity of individuals that dominate individual $i . m(i)$ is the quantity of individuals dominated by individual i. The rules to determine the Rank are defined as below:
(i) Find all individuals with $o(i)=0$ in the population, and put them into the set G and marked as $\operatorname{Rank}=1$;
(ii) For each individual j in the current G, we investigate the
number of individual $m(j)$ it dominate, and subtract 1 from $o(k)$ of each individual k in the set $m(j)$. If $o(k)-1=0$, then individual k is put into another set E and marked as Rank=2;
(iii) Repeat steps (i) and (ii) until all pollen have their own Rank.

(2) Density Estimation

By calculating the average distance of each objective of the two adjacent points of a certain solution in the population, the density estimate $D_{\text {estimation }}$ of the point can be obtained, which is also called the crowding distance. After determining the ranks of the solution set, some ranks may contain multiple optimal Pareto solutions, in which case, the density estimate $D_{\text {estimation }}$ can be used as the basis for screening. Usually, there are multiple optimal Pareto solutions at the same rank, and the individuals with larger density estimates are preferred. $D_{\text {estimation }}$ can be calculated according to formula (24).

$$
\begin{equation*}
D_{\text {estimation }}(i)=\sum_{j=1}^{H} \frac{J_{j}(i+1)-J_{j}(i-1)}{J_{j, \max }-J_{j, \text { min }}} \tag{24}
\end{equation*}
$$

where H is the number of objective functions. $J_{j}(i)$ represents the value of the j th objective function of the i th solution. $J_{i \text {,max }}$ and $J_{j, \text { min }}$ are the maximum and minimum values of the j th objective function in the Pareto front solution set, respectively.
(3) Best Trade-off Solution

The Pareto front solution set can be considered as optimal results, and there are no superior or inferior relations. In actual engineering practice, according to the current needs of decision makers, the most suitable solution is determined from the POS set, which is called the best trade-off solution (BTS). In this paper, the fuzzy theory based on satisfaction is used to determine the BTS of MOOPF problem. The satisfaction function $M_{i, j}$ and the satisfaction value $\operatorname{Sat}(j)$ of the j th pollen on the i th objective can be calculated by formulas (25) and (26).

$$
\begin{gather*}
M_{i, j}=\left\{\begin{array}{cc}
1 & J_{i}<J_{i, \text { min }} \\
\frac{J_{i, \text { max }}-J_{i}}{J_{i, \text { max }}-J_{i, \text { min }}} & J_{i, \text { min }}<J_{i}<J_{i, \text { max }} \\
0 & J_{i}<J_{i, \text { max }}
\end{array}\right. \tag{25}\\
i=1,2, \ldots, H \\
j=1,2, \ldots N \tag{26}
\end{gather*}
$$

where N is the size of the POS set. $J_{i, \text { max }}$ and $J_{i, \text { min }}$ are the maximum and minimum values of the i th objective, respectively. The solution with the largest satisfaction value $\operatorname{Sat}(j)$ in the POS set is the BTS solution determined by the fuzzy affiliation theory.

III. Proposed Hybrid Approach

The basic flower pollination algorithm has advantages such as simplicity and flexibility. In terms of parameters, the FPA has only a few parameters, including the switching probability P and scaling factor γ and ζ. It has been used to solve economic scheduling problems [34] and wind speed prediction problems [35]. However, the FPA still has the
shortcomings of slow convergence speed, easy to fall into local optimum and insufficient diversity. To address these deficiencies, the improved and hybrid flower pollination algorithm is proposed.

A. Overview of Standard Flower Pollination Algorithm

Inspired by the pollination process of flowering plants in nature, Yang first proposed a new intelligence optimization algorithm FPA in 2012. In the normative FPA, the pollen represents the optimal solution. To mimic pollination, FPA follows four rules, and the details are shown in literature [36].

The pollination process of FPA is divided into local and global pollination. If the switching probability P is greater than the random number rand, the algorithm performs global pollination. The global pollination process can be described by formula (27):

$$
\begin{equation*}
F_{i}(t+1)=F_{i}(t)+\gamma L(\lambda)\left(F_{\text {elite }}(t)-F_{i}(t)\right) \tag{27}
\end{equation*}
$$

where $F_{i}(t)$ is the pollen i at iteration $t . F_{\text {elite }}(t)$ is the best solution among all solutions of the current generation. γ is a scaling factor to control the step size.

The introduction of parameter $L(\lambda)$ can better simulate the trajectory of pollinators. $L(\lambda)$ is the Lévy-flights based step size, that corresponds to the pollination power. It obeys a Lévy distribution:

$$
\begin{equation*}
L \sim \frac{\lambda \Gamma(\lambda) \sin (\pi \lambda / 2)}{\pi} \frac{1}{s^{1+\lambda}}, \quad\left(s \gg s_{0}>0\right) \tag{28}
\end{equation*}
$$

where $\Gamma(\lambda)$ is called the standard gamma function and the distribution factor λ is set to 1.5 in basic FPA [36].

During local pollination, each flower updates its own position based on the differences between its current position and the positions of two neighboring flowers. It can also be expressed according to Eq (29):

$$
\begin{equation*}
F_{i}(t+1)=F_{i}(t)+\zeta\left(F_{m}(t)-F_{n}(t)\right) \tag{29}
\end{equation*}
$$

where $F_{m}(t)$ and $F_{n}(t)$ represent pollen from different flowers of the same plant species. ζ represents a random number controlling local walk, which is selected from a uniform distribution $[0,1]$. The switching probability P is a key parameter, which coordinates the global search and local search of the algorithm. In reference [37], the value of P is set to 0.8 . Preliminary research shows that $P=0.8$ may be better for most problems.

B. Proposed MHFPA

Three strategies of SNDSP, ESEG and SAPR are proposed to modify the FPA algorithm

1) Sinusoidal nonlinear dynamic switching probability

In the normative FPA, Yang believes that $P=0.8$ has the best optimization effect after many tests. However, Salgotra studies show that dynamic switching probability is more conducive to coordinating global and local optimization. In this paper, the SNDSP is proposed. It can be described as below:

$$
\begin{equation*}
P=\left(P_{\max }-P_{\min }\right) \sin \left(\frac{\pi}{2} \frac{t}{T_{\max }}\right)+P_{\min } \tag{30}
\end{equation*}
$$

where $T_{\text {max }}$ corresponds to the maximum number of iterations. t is the number of current iterations. $P_{\text {min }}$ and $P_{\text {max }}$ are set as 0.2 and 0.8 , respectively. Compared with P in literature [38], the switching probability P in this paper has a wider variation
range, which makes the algorithm have different optimization focuses on different iteration stages.

2) Elite Strategy of Elder Generation

The local optimization process is highly random. In the face of high-dimensional, non-convex nonlinear MOOPF problem, the basic FPA is easy to fall into the local optimal, resulting in inaccurate results. In view of these defects, elite pollen is introduced to increase the ability of pollen to search for the best and to jump out of the local optimal. The above process can be expressed by formula (31):

$$
\begin{gather*}
F_{i}(t+1)=F_{i}(t)+\zeta\left(F_{m}(t)-F_{n}(t)\right)+\mathrm{G}_{\text {corr }} \tag{31}\\
G_{\text {corr }}=\operatorname{rand}\left(\sigma_{1}\left|F_{\text {elite }}(t)-F_{i}(t)\right|+\sigma_{2}\left|F_{\text {elite }}(t-1)-F_{i}(t)\right|\right) \tag{32}\\
\sigma_{1}=\sigma_{\min }+\left(t / T_{\max }\right)\left(\sigma_{\max }-\sigma_{\min }\right) \tag{33}\\
\sigma_{2}=\sigma_{\max }-\left(t / T_{\max }\right)\left(\sigma_{\max }-\sigma_{\min }\right)
\end{gather*}
$$

where $F_{\text {elite }}(t)$ and $F_{\text {elite }}(t-1)$ are the best pollens at t th and $(t-1)$ th iteration, respectively. σ_{1} and σ_{2} are the scale factors. $G_{\text {corr }}$ represents the correction factor.

3) Mutation and Crossover Operator of DE Algorithm

The mutation and crossover process of DE algorithm are introduced into global search to improve the insufficient of diversity in the original FPA [39].

Its updated formula of the mutation process of DE algorithm is as follows:

$$
\begin{equation*}
M_{-} F_{i}(t+1)=F_{l 1}(t)+\psi\left(F_{l 2}(t)-F_{l 3}(t)\right) \tag{34}
\end{equation*}
$$

where $l 1, l 2$ and $l 3$ are random numbers different from i. $M_{-} F_{i}(t+1)$ represents the mutated individual $i . \Psi$ is a real constant, which controls the process of mutation. $F_{l l}(t), F_{l 2}(t)$ and $F_{13}(t)$ represent random individuals different from individual i, respectively.

The corresponding updated formula of the crossover process is as follows:

$$
\begin{align*}
F_{i, d}(t+1) & =\left\{\begin{array}{cc}
M_{-} F_{i, d}(t+1), & \text { if rand }(0,1) \leq c r \| d=d_{\text {rand }} \\
F_{i, d}(t), & \text { otherwise }
\end{array}\right. \\
d & =1,2, \ldots, D \tag{35}
\end{align*}
$$

where D and d represent the dimension of the control variable and the d th control variable, respectively. $c r$ is the crossover constant, which represents the possibility of crossover. $d_{\text {rand }}$ is a random number in $\{1,2, \ldots, \mathrm{D}\}$.

It is worth noting that mutation is not an inevitable process in nature. In this paper, we set the probability of mutation P_{m} as 0.5 , which not only keeps the original pollen individuals, but also increases the diversity of pollen and improves the global search ability.

The pseudo-code of MHFPA is presented in TABLE I.

IV. Simulation Results And Discussion

In order to verify the effectiveness of MHFPA, the performance of the proposed algorithm is tested on three power systems with different scales: IEEE30, IEEE57 and IEEE118, and ten different cases are listed TABLE II. The process of dealing with the MOOPF problem with the proposed method is shown in Fig. 1. Source code of three optimized algorithms are implemented in MATLAB R2018b software in a PC with Intel(R) Core(TM) i5-7400CPU @ 3.00 GHz with 8 GB RAM.

A. Test Systems

Fig. 2 shows the structure of the IEEE30 standard test system. The system has 6 generators, 30 buses, 4 transformers, 9 reactive power compensation devices and a set of 24-dimensional control variables. Detailed data such as fuel cost coefficient and emission coefficient can be found in the literature [24, 40]. The voltage variation range of generator and load bus are both 0.95 to $1.1 \mathrm{p} . \mathrm{u}$, and the lower limit of the transformer tap is $0.9 \mathrm{p} . \mathrm{u}$ and the upper limit is $1.1 \mathrm{p} . \mathrm{u}$.

Fig. 3 shows the structure of the IEEE57 standard test system, and its detailed data refers to literature [23, 24]. The system contains a set of 33 -dimensional control variables, 7 generators and 17 transformers. The upper and lower limits of the transformer tap, the voltage of PQ and PV node are 1.1 p.u and 0.9 p.u, respectively. Finally, the variation range of the shunt capacitors is controlled between 0 and 0.3 p.u.

TABLE I
PSEUDO-CODE OF MHFPA METHOD
Input: objective function: $J(x, u)=\left\{J_{1}(x, u), \ldots, J_{i}(x, u), \ldots, J_{m}(x, u)\right\}$;
The pollen population is randomly initialized within the constraint range;Set MHFPA parameters: switch probability P, maximum number of iterations $T_{\max }, \gamma, \zeta$, etc;
$t=0$;
while ($t<T_{\text {max }}$)
Identify the elite pollen $F_{\text {elite }}(t)$ in current iteration and the elite pollen
$F_{\text {elite }}(t-1)$ in previous iteration;
for $i=1,2 \ldots, N p$
if rand $>P$
Perform global search by formula (27);
if rand $<P_{m}$
Mutate the position of pollen i by formula (34);
for $j=1,2 \ldots, N c$ (The dimension of the control variable)
if rand $<c r \| d=d_{\text {rand }}$
Cross the j-th position of pollen i by formula (35); else
Randomly cross over the j-th position of pollen i; end else Perform local search by formula (31); end
Record the best individual of the previous generation $F_{\text {elite }}(t-1)$; Update overall pollen positions;
$t=t+1$;
end while
output the best control variable set;

TABLE II
NINE DIFFERENT COMBINATIONS

Cases	$J_{\text {fcost }}$	$J_{\text {emission }}$	$J_{\text {cost }- \text { vp }}$	$J_{\text {ploss }}$	$J_{V D}$	Test systems
Case 1	\checkmark			\checkmark		
Case 2	\checkmark	\checkmark				
Case 3			\checkmark	\checkmark		IEEE 30
Case 4		\checkmark		\checkmark		
Case 5	\checkmark	\checkmark		\checkmark		
Case 6				\checkmark	\checkmark	
Case 7	\checkmark	\checkmark				IEEE 57
Case 8	\checkmark			\checkmark		
Case 9	\checkmark			\checkmark		IEEE 118
Case 10	\checkmark	\checkmark				

Fig. 4 shows the structure of the IEEE118 standard test system. The system contains a set of 128 -dimensional control variables, 54 generators and 9 transformers. The voltage of PV node is limited to 0.9-1.1 p.u. The range of shunt capacitor and transformer tap is the same as that of IEEE57.

IAENG International Journal of Applied Mathematics, 51:4, IJAM_51_4_18

Fig. 1.the process of dealing with the MOOPF problem

Fig. 2.the structure of the IEEE30 standard test system

B. Algorithm Parameters

Whether the parameter selection is appropriate or not will directly affect the results of the algorithm optimization, so it is necessary to adjust the algorithm parameters through experiments to optimize the efficiency of the algorithm.

Fig. 3.the structure of the IEEE57 standard test system
Taking the combination of $J_{\text {ploss }}$ and $J_{\text {fcost }}$ on IEEE 30 standard test system as an example, the dual-objective experiments with a population size of 100 and different iterations from 100 to 500 are performed respectively. Fig. 5 shows the Pareto fronts obtained by different iterations. As can be seen from Fig. 5, the PFs obtained by iteration 100
generation is the worst, and the Pareto fronts obtained by 300 , 400 , and 500 iterations are well distribute. Considering comprehensively, it is determined that the number of iterations $T_{\text {max }}$ of 300 is considered optimal. Fig. 6 shows the experimental results of 300 iterations with different population sizes $N_{P}[30,50,100,150]$. It can be seen from Fig. 6 that the experimental results with population sizes of 100 and 150 are the best. In order to reduce the running time of the program, the population size N_{P} of the algorithm is determined to be 100. The detailed parameters of the algorithms are summarized in TABLE III.

Fig. 4.the structure of the IEEE118 standard test system

Fig. 5.PFs in different $T_{\max }$ with N_{P} of 100

C. IEEE30-bus System

The MOOPF cases 1-6 are carried out on the IEEE30 standard test system.

1) Case 1

In case 1, the basic fuel cost and active power loss are optimized by three algorithms simultaneously. The Pareto fronts are shown in Fig. 7. As can be seen in Fig. 7 that the Pareto front obtained by MHFPA is more uniform and continuous. TABLE III shows the 24-dimension control
variables obtained by the three algorithms and the BTS solutions obtained based on equation (26). Among them, the BTS obtained by MHFPA algorithm includes the fuel cost of $833.1646 \$ / \mathrm{h}$ and the active power loss of 5.0266 MW, which are all less than the BTS obtained by MOPSO and NSGA-II algorithm. Furthermore, TABLE IV shows the BTS of Case 1 obtained by different methods proposed by various scholars in recent years. By comparing with other literatures, it further illustrates the superiority of the MHFPA algorithm dealing with the MOOPF problem.

Fig. 6.PFs in different N_{P} with $T_{\max }$ of 300

Fig. 7.PFs of Case 1
2) Case 2

In Case 2, the MOPSO, NSGA-II and MHFPA algorithms are used to optimize fuel cost and emission simultaneously, and the obtained BTS and its corresponding control variables are shown in TABLE VI. It can be seen from TABLE VI that the BTS obtained by MHFPA with $831.6277 \$ / \mathrm{h}$ of fuel cost and 0.2468 ton $/ \mathrm{h}$ of emission dominant the ones obtained by MOPSO and NSGA-II approaches. Fig. 8 shows the Pareto fronts obtained by using three algorithms. It can be seen from Fig. 8 that the three algorithms can obtain the Pareto fronts.

TABLE III
THE DETAIL PARAMETERS OF THE ALGORITHMS

Methods	Parameters	Case1~Case6	Case7	Case8	Case9~10
MHFPA	Population size N_{P}	100	100	100	100
	Maximum Iteration $T_{\text {max }}$	300	500	500	500
	Switch probability $P_{\max } / P_{\text {min }}$	0.8/0.2	0.8/0.2	0.8/0.2	0.8/0.2
	crossover constant Cr	0.8	0.8	0.8	0.8
	Real constant factor $\Psi_{\max } / \Psi_{\text {min }}$	0.8/0.2	0.8/0.2	0.8/0.2	0.8/0.2
	λ	1.5	1.5	1.5	1.5
MOPSO	Population size N_{P}	100	100	100	-
	Maximum Iteration $T_{\text {max }}$	300	500	500	-
	Inertia weight factor $w_{\max } / w_{\text {min }}$	0.9/0.4	0.9/0.4	0.9/0.4	-
	Learning factor c_{l} / c_{2}	2/2	2/2	2/2	-
NSGA-II	Population size N_{P}	100	100	100	100
	Maximum Iteration $T_{\text {max }}$	300	500	500	500
	Mutation index/percentage	20/0.1	20/0.1	20/0.1	20/0.1
	Crossover index/percentage	20/0.1	20/0.1	20/0.1	20/0.1

TABLE IV
THE BEST SOLUTIONS OF CASE 1

control variables	MHFPA	NSGA-II	MOPSO
$\mathrm{P}_{\mathrm{Ge} _2}$ (MW)	55.9490	51.1739	55.2040
$\mathrm{P}_{\mathrm{Ge}}{ }^{5}$	31.8608	32.8422	33.2515
PGe_8	35.0000	34.8975	35.0000
PGe_11	24.1388	27.9880	28.8730
PGe_13	24.8255	23.6356	22.9246
$\mathrm{VGe}_{\text {- }}$ (p.u.)	1.1000	1.0999	1.0994
$\mathrm{V}_{\mathrm{Ge} _}$2	1.0907	1.0868	1.0913
$\mathrm{V}_{\text {Ge_5 }}$	1.0685	1.0524	1.0641
$V_{\text {Ge_8 }}$	1.0773	1.0711	1.0766
$\mathrm{V}_{\text {Ge_11 }}$	1.0763	1.0982	1.0893
$\mathrm{V}_{\text {Ge_13 }}$	1.0962	1.0948	1.0413
T_{11} (p.u.)	1.0363	1.0006	1.0489
T_{12}	0.9150	0.9240	1.0513
T_{15}	1.0001	1.0094	1.0768
T_{36}	0.9697	0.9799	1.1000
Qco_10(p.u.)	0.0500	0.0247	0.0000
QCo_12	0.0335	0.0064	0.0170
QCo_15	0.0380	0.0320	0.0299
QCo_17	0.0500	0.0245	0.0000
QCo_20	0.0317	0.0203	0.0364
QCo_21	0.0500	0.0221	0.0439
QCo_23	0.0322	0.0344	0.0445
QCo_24	0.0496	0.0121	0.0471
QCo_29	0.0304	0.0191	0.0486
$J_{\text {fcost }}(\$ / \mathrm{h})$	833.1646	835.5818	840.0079
$J_{\text {ploss }}(\mathrm{M} \mathrm{W})$	5.0265	5.0451	5.0257

TABLE V
COMPARISON OF LITERATURE IN CASE 1

Comparison	Fuel cost(\$/h)	Active power loss(MW)
MHFPA	$\mathbf{8 3 3 . 1 6 4 6}$	$\mathbf{5 . 0 2 6 5}$
NSGA-II	835.5818	5.0451
MOPSO	840.0079	5.0257
NMBAS[19]	831.1550	5.0707
MSA[31]	859.1915	4.5404
MOTLBO[10]	830.7813	5.2742
MODFA[23]	833.9365	4.9561
NSGA-III[23]	836.8076	5.1775

Although the gap is small, the Pareto front obtained by MHFPA algorithm is better than the other two algorithms according to the Pareto dominance rule.

TABLE VII shows the BTS of Case 2 obtained by different methods proposed by scholars in recent years. As can be seen from the table, the BTS obtained by MHFPA is superior to AGSO and ESDE algorithms, and is of the same priority as those obtained by MODFA and HFBA-COFS algorithms. All in all, the proposed MHFPA has competitive advantages compared with other algorithms.

3) Case 3

MOOPF case 3 optimizes $J_{\text {ploss }}$ and $J_{\text {cost-vp }}$ concurrently, and the optimization results are shown in Fig. 9. It can be seen from Fig. 9 that the diversity of PF solution sets of the three algorithms are similar, but MHFPA has a better potential to obtain evenly distributed PF and the obtained PF is closer to the real front. TABLE VIII gives the BTS of Case 3 and its corresponding decision variables. Through data comparison, the BTS obtained by MHFPA algorithm, including fuel cost of $867.8158 \$ / \mathrm{h}$ (valve point) and power loss of 5.6303 MW, is superior to the other two algorithms. In addition, the result is better than NHBA [8], which further strongly illustrates the effectiveness of the proposed method.

Fig. 8.PFs of Case 2

4) Case 4

In Case 4, power loss and emissions are optimized simultaneously, and the PFS obtained by the three algorithms are shown in Fig. 10. As we can see from Fig. 10, the red curve is closer to the real Pareto front, and the three curves are significantly different. Obviously, the simulation results obtained by the MHFPA algorithm are far superior to the other two algorithms, and regardless of the uniformity and diversity of the distribution, the performance of MHFPA is significantly better.

TABLE IX summarizes the experimental results of Case 4. It can be seen from the data that the emission data obtained by the three algorithms are the same, and the BTS of power loss and emission obtained by MHFPA algorithm are 2.8830 MW and 0.2054 ton $/ \mathrm{h}$ respectively, which dominates MOPSO, NSGA-II and the MODFA algorithm in literature [23].

TABLE VI
THE BEST SOLUTIONS OF CASE 2

control variables	MHFPA	NSGA-II	MOPSO
PGe_2 (MW)	58.3160	58.4837	62.1311
PGe_5	27.1604	27.3802	29.1484
PGe_8	35.0000	35.0000	35.0000
$\mathrm{P}_{\text {Ge_11 }}$	25.7353	27.1388	27.6693
PGe_13	26.0175	24.4721	18.5859
$\mathrm{V}_{\mathrm{Ge}-1}$ (p.u.)	1.1000	1.0561	1.1000
$\mathrm{V}_{\mathrm{Ge} _}$2	1.0816	1.0501	1.0809
V_{Ge} 5	1.0545	1.0143	1.0280
$V_{\text {Ge_8 }}$	1.0590	1.0169	1.0481
$\mathrm{V}_{\text {Ge_11 }}$	1.0472	1.0999	1.0736
$\mathrm{V}_{\text {Ge_13 }}$	1.0995	1.0562	1.0294
T_{11} (p.u.)	1.0675	1.0381	0.9000
T_{12}	0.9024	0.9001	1.0215
T15	0.9902	0.9250	1.0002
T36	0.9792	0.9531	0.9899
Qco_10 (p.u.)	0.0318	0.0494	0.0293
Qco_12	0.0085	0.0499	0.0020
QCo_15	0.0023	0.0491	0.0111
QCo_17	0.0331	0.0395	0.0054
QCo_20	0.0500	0.0438	0.0313
QCo_21	0.0500	0.0130	0.0123
Qco_23	0.0500	0.0005	0.0440
QCo_24	0.0243	0.0413	0.0221
QCo_29	0.0397	0.0062	0.0242
$J_{\text {fcost }}(\$ / \mathrm{h})$	831.6277	833.2228	833.7139
$J_{\text {emission }}(\mathrm{ton} / \mathrm{h})$	0.2468	0.2470	0.2492

TABLE VII
COMPARISON OF LITERATURE IN CASE 2

Comparison	Fuel cost(\$/h)	Emission (ton/h)
MHFPA	$\mathbf{8 3 1 . 6 2 7 7}$	$\mathbf{0 . 2 4 6 8}$
NSGA-II	833.2228	0.2470
MOPSO	833.7139	0.2492
AGSO[9]	843.5473	0.2539
ESDE[33]	833.4743	0.2540
MODFA[23]	831.6652	0.2432
NSGA-III[23]	832.5323	0.2483
HFBA-COFS[24]	833.0155	0.2329
DE-PFA[24]	833.5200	0.2332

Fig. 9.PFs of Case 3

5) Case 5

Compared with dual-objective optimization, the simultaneous optimization of tri-objective will undoubtedly increase the difficulty of solving. In Case 5, the three conflicting objective functions of power loss, emission, and fuel cost are simultaneously optimized to illustrate the performance of MHFPA. Fig. 11 shows the optimal PF distributions of MHFPA, MOPSO, and NSGA-II. It again strongly illustrates that the PF of the MHFPA algorithm is more uniform than the other two algorithms, and the overall performance is the best.

TABLE VIII
THE BEST SOLUTIONS OF CASE 3

control variables	MHFPA	NSGA-II	MOPSO	NHBA[8]
$\mathrm{P}_{\mathrm{Ge} _2}$ (MW)	46.5349	41.9419	44.6724	52.3984
$\mathrm{P}_{\mathrm{Ge}}{ }^{5}$	34.8918	30.8531	32.7786	31.9677
PGe_8	34.9847	33.7896	34.0735	34.6347
PGe_11	25.6527	29.4862	25.4938	19.6335
PGe_13	12.0000	17.7004	18.5716	20.2407
$\mathrm{V}_{\mathrm{Ge}} \mathrm{l} 1$ (p.u.)	1.1000	1.0801	1.1000	1.0992
VGe_2	1.0875	1.0623	1.0887	1.0992
VGe_5	1.0655	1.0427	1.0611	1.0697
$V_{\text {Ge_8 }}$	1.0824	1.0483	1.0678	1.0804
$\mathrm{V}_{\text {Ge_11 }}$	1.1000	1.0888	1.0600	1.0972
$\mathrm{V}_{\text {Ge_13 }}$	1.0962	1.0752	1.0489	1.0707
T_{11} (p.u.)	1.0571	1.0416	1.0869	1.0257
T_{12}	0.9825	0.9130	0.9345	0.9754
T_{15}	1.0041	1.0150	1.0522	0.9818
T_{36}	1.0094	0.9725	1.0130	0.9868
QCo_10(p.u.)	0.0464	0.0395	0.0203	0.0276
Qco_12	0.0000	0.0400	0.0436	0.0277
Qco_15	0.0500	0.0486	0.0411	0.0242
Qco_17	0.0459	0.0438	0.0254	0.0256
QCo_20	0.0468	0.0054	0.0330	0.0397
Qco_21	0.0220	0.0318	0.0500	0.0310
QCo_23	0.0334	0.0439	0.0000	0.0315
Qco_24	0.0488	0.0218	0.0383	0.0269
QCo_29	0.0326	0.0040	0.0380	0.0205
$J_{\text {fcost-vp }}(\$ / \mathrm{h})$	867.8159	868.5625	869.3050	868.9526
$J_{\text {ploss }}$ (MW)	5.6303	5.8794	5.6504	5.6761

Fig. 10. PFs of Case 4
TABLE X shows the BTS obtained by the fuzzy affiliation theory. It can be seen from the results that the BTS solution of the MHFPA algorithm dominates the MOPSO and NSGA-II algorithms. Among them, the BTS of fuel cost, power loss and
emission obtained by the MHFPA algorithm are 879.4391 \$/h, 3.9070 MW and 0.2167 ton/h, respectively. Compared with the MOFA-PFA in literature [5], the BTS of the MHFPA algorithm have superior $J_{\text {fcost }}$ and $J_{\text {ploss }}$, and the $J_{\text {emission }}$ is almost the same.
6) Case 6

The voltage deviation plays a vital role in the normal operation of the power system. If the voltage fluctuation of the

TABLE IX
THE BEST SOLUTIONS OF CASE 4

control variables	MHFPA	NSGA-II	MOPSO	MODFA[23]
$\mathrm{P}_{\text {Ge_2 }}$ (MW)	74.2742	73.9428	74.0868	74.1405
P_{Ge} 5	49.9979	49.9999	50.0000	49.9999
PGe_8	34.9978	34.9947	35.0000	35.0000
$\mathrm{P}_{\text {Ge_11 }}$	30.0000	29.9998	30.0000	29.9998
$\mathrm{P}_{\text {Ge_13 }}$	40.0000	39.9990	40.0000	39.9999
$\mathrm{V}_{\mathrm{Ge} _} \mathrm{l}^{\text {(p.u. }}$)	1.0999	1.0921	1.1000	1.1000
$\mathrm{V}_{\mathrm{Ge} \text { _2 }}$	1.0967	1.0854	1.1000	1.0967
$V_{\text {Ge_5 }}$	1.0789	1.0672	1.1000	1.0784
VGe_8	1.0860	1.0742	1.0942	1.0860
VGe_11	1.0998	1.0996	1.1000	1.0999
VGe_13	1.0999	1.0999	1.1000	1.1000
T_{11} (p.u.)	1.0580	1.0176	1.0735	1.0549
T_{12}	0.9000	0.9160	0.9000	0.9007
T_{15}	0.9873	0.9712	0.9948	0.9878
T_{36}	0.9724	0.9639	0.9820	0.9725
QCo_10(p.u.)	0.0490	0.0391	0.0500	0.0480
QCo_12	0.0491	0.0267	0.0500	0.0490
QCo_15	0.0432	0.0404	0.0500	0.0444
QCo_17	0.0492	0.0497	0.0500	0.0495
QCo_20	0.0378	0.0325	0.0406	0.0373
QCo_21	0.0497	0.0500	0.0500	0.0500
Qco_23	0.0243	0.0362	0.0184	0.0231
Qco_24	0.0499	0.0497	0.0500	0.0500
Qco_29	0.0215	0.0245	0.0242	0.0222
$\begin{aligned} & J_{\text {emission }} \\ & \text { (ton/h) } \end{aligned}$	0.2054	0.2054	0.2054	0.2054
$J_{\text {ploss }}$ (MW)	2.8830	2.9298	2.9741	2.8841

TABLE X
THE BEST SOLUTIONS OF CASE 5

control variables	MHFPA	NSGA-II	MOPSO	$\begin{gathered} \hline \hline \text { MOFA-PFA } \\ {[5]} \\ \hline \end{gathered}$
PGe _2 $^{\text {(MW) }}$	63.8440	62.4853	63.9466	57.8900
PGe_5	38.1260	42.9497	39.5116	36.2900
PGe_8	34.7302	34.0751	34.5969	35.0000
PGe_11	30.0000	28.6734	27.7020	29.2710
$\mathrm{P}_{\text {Ge_ }} 13$	33.8685	30.4050	33.8351	40.0000
$\mathrm{V}_{\mathrm{Ge}-1}$ (p.u.)	1.0979	1.0516	1.1000	1.0985
$\mathrm{V}_{\text {Ge_2 }}$	1.0896	1.0396	1.0937	1.0869
$\mathrm{V}_{\text {Ge_5 }}$	1.0705	1.0154	1.0849	1.0625
$\mathrm{V}_{\mathrm{Ge} \text { _ } 8}$	1.0836	1.0295	1.0917	1.0767
$\mathrm{V}_{\text {Ge_11 }}$	1.0936	1.0856	1.0913	1.0857
$\mathrm{V}_{\text {Ge_13 }}$	1.1000	1.0398	1.0974	1.0386
T_{11} (p.u.)	1.0180	1.0240	1.1000	1.0860
T_{12}	0.9592	0.9027	0.9290	0.9930
T_{15}	1.0222	0.9609	1.0262	1.0520
T36	0.9786	0.9787	0.9802	1.0770
Qco_10(p.u.)	0.0319	0.0140	0.0046	0.0140
Qco_12	0.0000	0.0229	0.0102	0.0220
Qco_15	0.0500	0.0266	0.0500	0.0080
Qco_17	0.0397	0.0425	0.0451	0.0250
QCo_20	0.0137	0.0180	0.0337	0.0390
$\mathrm{Q}_{\text {Co_21 }}$	0.0500	0.0353	0.0328	0.0270
Qco_23	0.0500	0.0031	0.0305	0.0100
QCo_24	0.0389	0.0241	0.0500	0.0170
QCo_29	0.0369	0.0233	0.0500	0.0500
$J_{\text {emission }}$ (ton/h)	0.2167	0.2183	0.2178	0.2165
$J_{\text {ploss }}$ (MW)	3.9070	4.2617	4.0056	4.2179
$J_{\text {fcost }}(\$ / \mathrm{h})$	879.4391	885.1467	879.9349	879.9100

system is too large, it may cause the phenomenon of the frequency instability of the system, and even lead to the breakdown of the power system in serious cases.

Case 6 optimizes the voltage deviation and power loss on the IEEE30 standard system at the same time. Fig. 12 shows the Pareto fronts obtained by the MHFPA, MOPSO and NSGA-II algorithms, and TABLE XI lists the detailed simulation results. According to the above results, the BTS of power loss and voltage deviation obtained by MHFPA algorithm are 3.0366 MW and 0.5267 respectively, which are superior to MOPSO and NSGA-II algorithms.

Fig. 11. PFs of Case 5

TABLE XI
THE BEST SOLUTIONS OF CASE 6

control variables	MHFPA	NSGA-II	MOPSO
$\mathrm{P}_{\mathrm{Ge} _2}$ (MW)	80.0000	79.9842	80.000
P_{Ge} 5	49.9969	49.9999	5.0000
PGe_8	34.9826	34.9931	35.0000
$\mathrm{P}_{\text {Ge_11 }}$	29.9864	29.9996	30.0000
PGe_13	39.9388	40.0000	40.0000
$\mathrm{V}_{\mathrm{Ge} _} 1$ (p.u.)	1.1000	1.0999	1.1000
$V_{\text {Ge_2 }}$	1.0949	1.0968	1.1000
$V_{\text {Ge_5 }}$	1.0729	1.0813	1.0854
VGe_8	1.0798	1.0853	1.1000
VGe_11	1.0063	1.0682	1.1000
VGe_13	1.0348	1.0262	1.0224
T_{11} (p.u.)	1.0934	1.1000	1.1000
T_{12}	0.9771	1.0346	1.1000
T15	1.0727	1.0662	1.0685
T_{36}	1.0373	1.0357	1.0521
$\mathrm{Q}_{\text {co_10 }}$ (p.u.)	0.0456	0.0070	0.0000
QCo_12	0.0222	0.0260	0.0000
QCo_15	0.0368	0.0243	0.0000
QCo_17	0.0324	0.0461	0.0261
QCo_20	0.0500	0.0369	0.0500
QCo_21	0.0500	0.0245	0.0500
QCo_23	0.0245	0.0405	0.0500
QCo_24	0.0500	0.0432	0.0500
Qco_29	0.0208	0.0201	0.0193
$J_{V D}$	0.5267	0.5661	0.6117
$J_{\text {ploss }}$ (MW)	3.0366	3.0339	3.0843

D. IEEE57-bus System

Two dual-objective MOOPF optimization experiments are carried out on IEEE57 standard test system. Compared with
the IEEE30 system, the system is harder to find the best solution, and it is also a test of the proposed algorithm.

1) Case 7

Simultaneous optimization of total fuel cost functions and emission functions is the core of Case 7. TABLE XII lists the control variables and BTS obtained by the three methods. Among them, the BTS of fuel costs and emissions obtained by the MHFPA algorithm are $42939.6926 \$ / \mathrm{h}$ and 1.3033 ton $/ \mathrm{h}$, respectively. It still can be concluded from the table that MHFPA obtains the best results. The Pareto optimal fronts obtained by MHFPA, MOPSO and NSGA-II are shown in Fig. 13. It can be clearly seen from the figure that MHFPA obtains a uniformly distributed Pareto solution set, and a better Pareto front than the other two methods.

Fig. 12. PFs of Case 6

Fig. 13. PFs of Case 7

2) Case 8

In case 8, the total fuel cost and power loss are considered concurrently. The experimental results are shown in Fig. 14. It can be clearly seen from the figure that MHFPA has better Pareto front than MOPSO and NSGA-II, and the distribution is more uniform and continuous. TABLE XII shows the BTS
and control variables of the three algorithms and MOIBA in the literature [6] in case 8 . Among them, the BTS calculated by the MHFPA algorithm includes the fuel cost of $42092.6602 \$ / \mathrm{h}$ and the power loss of 10.8947 MW . The comparison shows that MHFPA has obtained the least fuel cost and network loss.

Fig. 14. PFs of Case 8

Fig. 15. PFs of Case 9

E. IEEE118-bus System

The IEEE118-bus test system is more complicated than the above two systems in terms of the system structure and the dimensionality of control variables. In recent years, few scholars have used the 118 -bus test system for testing, and many algorithms can hardly find well-distributed Pareto fronts in this system, such as MOPSO.

1) Case 9

In case 9, the basic fuel cost and loss are optimized at the same time. As the PF front obtained by MOPSO method in solving this MOOPF case is extremely scattered and disorderly, it is not presented in this paper. Fig. 15 shows that the PF obtained by the MHFPA algorithm has a better

TABLE XII
THE BEST SOLUTIONS OF CASE 7 AND CASE 8

Fig. 16. PFs of Case 10
distribution uniformity, and its performance has obvious advantages compared with the NSGA-II method. The BTS of MHFPA, NSGA-II are given in TABLE XV. It can be seen from TABLE XV that the BTS searched by MHFPA algorithm, including the fuel cost of $58061.7674 \$ / \mathrm{h}$ and the power loss of 46.4566 MW dominate other algorithms. TABLE XIII shows the BTS of Case 9 obtained by different
methods proposed by scholars in recent years. As we can see from the data in the table, even in the face of large-scale system, the proposed method is still reliable and has a large competitive edge.

TABLE XIII
COMPARISON OF LITERATURE IN CASE 9

Algorithms	Fuel $\operatorname{cost}(\$ / \mathrm{h})$	Active power loss(MW)
MHFPA	$\mathbf{5 8 0 6 1 . 7 6 7 4}$	$\mathbf{4 6 . 4 5 6 6}$
NSGA-II	58991.1959	47.3533
HFBA-COFS[24]	59624.0613	61.0362
MONIWCA[7]	58258.0000	49.7308

TABLE XIV
COMPARISON OF LITERATURE IN CASE 10

Algorithms	Fuel $\operatorname{cost}(\$ / \mathrm{h})$	Emission $($ ton $/ \mathrm{h})$
MHFPA	$\mathbf{5 9 4 5 5 . 5 0 1 6}$	$\mathbf{2 . 2 2 2 0}$
NSGA-II	60271.7117	2.8592
MODFA[23]	59590.5889	2.4971

2) Case 10

Case 10 also considers optimizing emissions and fuel costs at the same time on the IEEE118-bus system. It can be seen from Fig. 16 that the Pareto optimal solutions obtained by the proposed MHFPA are diverse, uniform, and closer to the real Pareto front. Experimental data are summarized in TABLE XIV and TABLE XVIII, from which we can see that BTS obtained by MHFPA includes $59455.5016 \$ / \mathrm{h}$ fuel cost and

TABLE XV
THE BEST SOLUTIONS OF CASE 9

control variables	MHFPA	NSGA-II	control variables	MHFPA	NSGA-II
$\mathrm{P}_{\text {Ge_4 }}$ (MW)	9.6456	13.0025	$\mathrm{V}_{\text {Ge_26 }}$	1.0173	1.0060
$\mathrm{P}_{\text {Ge_6 }}$	5.0919	17.3434	$\mathrm{V}_{\text {Ge_27 }}$	0.9992	0.9919
$\mathrm{P}_{\text {Ge_8 }}$	5.1944	11.1114	$\mathrm{V}_{\text {Ge_31 }}$	1.0097	1.0015
$\mathrm{P}_{\text {Ge_10 }}$	167.2912	199.3599	$\mathrm{V}_{\text {Ge_32 }}$	1.0372	0.9970
$\mathrm{P}_{\text {Ge_12 }}$	270.6777	246.3299	$\mathrm{V}_{\text {Ge_34 }}$	1.0392	0.9925
PGe_15	12.4749	10.5972	VGe_36	1.0065	0.9792
PGe_18	95.6150	92.3543	VGe_40	1.0024	0.9810
PGe_19	8.0322	6.8328	VGe_42	1.0114	1.0162
PGe_24	5.2829	6.8095	VGe_46	1.0221	1.0044
$\mathrm{P}_{\text {Ge } 25}$	101.7980	111.5554	$\mathrm{V}_{\text {Ge_49 }}$	1.0048	0.9942
PGe_26	257.6937	253.7497	$\mathrm{V}_{\text {Ge_ }}$ 54	1.0030	1.0014
$\mathrm{P}_{\text {Ge } 27}$	8.1901	13.4359	$\mathrm{V}_{\text {Ge_ }} 5$	1.0014	0.9943
$\mathrm{P}_{\mathrm{Ge} \text { _31 }}$	10.8714	8.9979	$\mathrm{V}_{\text {Ge_ }}$ 56	0.9993	1.0101
PGe_32	73.2077	28.7453	$\mathrm{V}_{\text {Ge_59 }}$	1.0050	1.0170
PGe_34	8.0000	8.8022	$\mathrm{V}_{\text {Ge_61 }}$	0.9966	1.0060
PGe_36	28.5055	41.1790	$V_{\text {Ge_62 }}$	1.0177	1.0307
$\mathrm{P}_{\text {Ge_40 }}$	11.1848	17.9461	$V_{\text {Ge_65 }}$	1.0261	1.0052
PGe_42	8.0222	9.5616	VGe_66	1.0146	1.0270
PGe_46	39.9499	35.3158	VGe_69	1.0023	1.0412
PGe_49	244.7500	231.4941	$V_{G e}{ }^{\text {_70 }}$	1.0395	1.0098
PGe_54	237.8432	249.4761	VGe_72	1.0186	1.0304
PGe_55	31.6294	48.2464	VGe_73	0.9750	1.0195
PGe_56	27.9347	30.5565	VGe_74	0.9928	0.9798
$\mathrm{P}_{\text {Ge_ }} 59$	193.9127	138.4071	$\mathrm{V}_{\text {Ge_76 }}$	1.0250	1.0090
PGe_61	193.6305	132.6099	$V_{\text {Ge_77 }}$	1.0463	1.0152
PGe_62	25.1129	30.6604	$V_{\text {Ge_80 }}$	1.0157	1.0171
PGe_65	235.1790	255.4845	$\mathrm{V}_{\text {Ge_ }}$ 85	0.9978	0.9838
$\mathrm{P}_{\text {Ge_ } 66}$	203.4983	215.9670	$V_{\text {Ge_87 }}$	0.9298	0.9320
PGe_69	39.6294	71.9656	VGe_89	1.0125	1.0042
PGe_70	10.1322	15.7263	$\mathrm{V}_{\text {Ge_90 }}$	1.0049	1.0045
$\mathrm{P}_{\text {Ge_72 }}$	7.6457	16.4490	$\mathrm{V}_{\text {Ge_91 }}$	0.9981	1.0173
PGe_73	5.1153	7.0109	VGe_92	1.0122	1.0157
PGe_74	77.3687	40.5503	VGe_99	0.9935	1.0181
PGe_76	27.0217	30.3313	VGe_100	1.0143	1.0062
PGe_77	211.7708	203.0969	VGe_103	1.0089	0.9977
PGe_80	45.3373	69.8253	$\mathrm{V}_{\text {Ge_104 }}$	0.9955	0.9878
PGe_85	10.1467	10.0146	V_{Ge} _105	0.9877	0.9947
$\mathrm{P}_{\text {Ge_ } 87}$	100.2394	100.1037	$\mathrm{V}_{\mathrm{Ge} \text { _107 }}$	0.9503	0.9758
$\mathrm{PGe}_{\text {G9 }}$	52.5193	73.3158	$\mathrm{V}_{\text {Ge_110 }}$	1.0036	1.0514
PGe_90	9.8722	10.9635	$\mathrm{V}_{\text {Ge_111 }}$	1.0147	1.0671
PGe_91	20.1829	20.4534	V_{Ge} _112	0.9988	1.0590
$\mathrm{P}_{\text {Ge_92 }}$	123.5968	109.6392	$\mathrm{V}_{\text {Ge_113 }}$	1.0346	0.9984
PGe_99	100.9328	101.1900	$\mathrm{V}_{\text {Ge_1 }} 116$	1.0022	1.0306
PGe_100	103.8077	104.6278	T8 (p.u.)	1.0356	0.9927
PGe_103	8.5464	12.0017	T_{32}	0.9346	1.0571
PGe_104	29.6680	34.4245	T36	0.9243	1.0663
$\mathrm{PGe}_{\mathrm{Ge}} 105$	26.0217	37.8337	T51	0.9659	1.0180
$\mathrm{P}_{\mathrm{Ge} _107}$	8.8591	8.2530	T93	1.0358	0.9476
$\mathrm{P}_{\mathrm{Ge} _110}$	25.5086	35.8354	T_{95}	1.0205	0.9826
$\mathrm{P}_{\mathrm{Ge} _} 111$	26.5214	25.5422	T_{102}	0.9474	1.0424
$\mathrm{P}_{\mathrm{Ge} _112}$	27.4697	25.0449	T_{107}	1.0027	1.0055
$\mathrm{P}_{\text {Ge_113 }}$	25.9396	41.9077	T_{127}	0.9002	0.9550
$\mathrm{P}_{\mathrm{Ge} _} 116$	25.0017	25.0739	Qco_34 (p.u.)	0.0862	0.2460
$\mathrm{V}_{\text {Ge_1 }}$ (p.u.)	1.0266	1.0022	Qco_44	0.1346	0.2467
V_{Ge} 4	1.0292	1.0066	$\mathrm{Q}_{\text {Co_45 }}$	0.2108	0.3000
VGe_6	1.0415	1.0188	Qco_46	0.0369	0.2763
VGe_8	1.0541	1.0445	Qco_48	0.0541	0.0886
VGe_10	1.0285	0.9991	Qco_74	0.2013	0.0603
VGe_12	1.0290	0.9829	Qco_79	0.0473	0.1521
VGe_15	1.0238	0.9871	QCo_82	0.01191	0.1141
VGe_18	1.0140	0.9852	Qco_83	0.0230	0.2910
$\mathrm{V}_{\text {Ge_19 }}$	1.0102	0.9849	QCo_105	0.2987	0.1459
$\mathrm{V}_{\text {Ge_24 }}$	1.0265	1.0237	QCo_107	0.3000	0.1512
$\mathrm{V}_{\mathrm{Ge} \text {-25 }}$	0.9582	0.9865	QCo_110	0.2843	0.0230
			$J_{\text {fcost }}(\$ / \mathrm{h})$	58061.7674	58991.1959
			$J_{\text {ploss }}$ (MW)	46.4566	47.3533

2.2220 ton/h emission, which is superior to NSGA-II and MODFA algorithm in literature [23].

Through the simulation experiments of Cases 1-10, we can find that the results of MHFPA also have a competitive advantage compared with many methods in literature.

F. Performance Evaluation

Spacing (SP) and hypervolume (HV) provide quantitative indicators for evaluating the quality of the PF solution sets obtained by different algorithms to deal with MOOPF

Fig. 17. Box plots of SP

Fig. 18. Box plots of HV

TABLE XVI
DETAILED DATA OF THE BOX PLOT OF THE THREE ALGORITHMS

Indexes	Cases	MHFPA		MOPSO		NSGA-II	
		Mean	Deviation	Mean	Deviation	Mean	Deviation
SP	Case 1	0.8453	0.0550	0.9124	0.2782	0.8653	0.1009
	Case 2	0.8573	0.0571	0.5789	0.2154	0.8651	0.0845
	Case 3	0.9586	0.0809	0.8099	0.2846	1.0239	0.0719
	Case 4	0.0006	$9.1 \mathrm{E}-05$	0.0012	0.0008	0.0006	$9.6 \mathrm{E}-05$
	Case 5	1.1594	0.0606	0.7812	0.2896	1.1670	0.1006
	Case 6	0.0137	0.0096	0.1414	0.2081	0.0104	0.0029
	Case 7	37.2516	7.4955	100.9377	47.6488	39.5981	10.0045
HV	Case 8	12.1516	6.8862	63.0804	42.1731	41.5510	27.7388
	Case 1	968.0628	5.4799	858.6444	192.6302	956.9300	16.2336
	Case 2	26.3313	0.2155	22.4569	8.4844	19.8159	0.3081
	Case 3	1415.9543	15.9290	1262.4783	279.3751	1404.8571	35.4639
	Case 4	0.0012	$1.9 \mathrm{E}-05$	0.0008	0.0002	0.0008	0.0001
	Case 5	131.2993	1.2541	108.8925	32.2528	124.7196	2.7010
	Case 6	13.7659	0.3423	10.3615	2.7929	13.6254	0.1453
	Case 7	14022.7038	209.2153	13180.9795	1491.0045	13683.3289	439.0254
	Case 8	29253.4445	2944.9541	25983.6193	7547.0732	23893.4368	5345.2839

TABLE XVI
THE AVERAGE ELAPSED TIME

Algorithms	the average elapsed time (second)									
	Case 1	Case 2	Case 3	Case 4	Case 5	Case 6	Case 7	Case 8	Case 9	Case 10
MHFPA	194.585	190.379	189.642	193.938	230.887	199.520	495.278	489.382	1441.446	1506.057
NSGA-II	216.852	219.469	193.980	206.600	241.549	196.369	503.592	478.379	1496.931	1657.499
MOPSO	224.766	229.502	185.914	237.663	248.277	202.895	518.947	499.232	-	-

problems. This paper takes eight optimization experiments performed on IEEE30 and IEEE57 bus systems as examples to study the optimization performance of MHFPA, MOPSO and NSGA-II algorithms more comprehensively.

1) $S P$

SP index represents the standard deviation of adjacent solutions in non-dominant solutions. A detailed introduction of SP is given in Reference [11]. The calculation formula of SP is as follows:

$$
\begin{gather*}
S P=\sqrt{\frac{1}{n-1} \sum_{i=1}^{n}\left(D_{\text {mean }}-d_{i}\right)^{2}} \tag{36}\\
d_{i}=\min _{j=1,2, \ldots n}\left(\sum_{k=1}^{M}\left|f_{k}^{i}-f_{k}^{j}\right|\right) \tag{37}\\
D_{\text {mean }}=\frac{1}{n} \sum_{i}^{n} d_{i} \tag{38}
\end{gather*}
$$

where $D_{\text {mean }}$ is the average value of all d_{i}. The SP index reflects the distribution of POS set on the simulation graph. In general, the smaller the value of this index is, the more evenly distributed the solutions in the POS are. If $\mathrm{SP}=0$, it means that there are equal intervals among the solutions in the Pareto optimal front.

2) HV

HV measures the coverage of Pareto front in the feasible region space. The larger the value of this index is, the more widely the solution set of the Pareto front is distributed in the feasible region. The detailed introduction of HV is given in Reference [19]. The definition of HV index is shown in Equation (39).

$$
\begin{equation*}
H V=\operatorname{volume}\left(\bigcup_{i=1}^{n} v_{i}\right) \tag{39}
\end{equation*}
$$

where v_{i} represents the area or volume formed by each individual i in the solution set and the selected reference point.

3) Statistical Analysis

All the above analyses are the best simulation results of 20 independent running experiments for MHFPA, MOPSO and NSGA-II algorithms. In this section, we will calculate the SP and HV performance indicators of the 20 running results of the three algorithms in case 1 -case 8 , and use box plots to visually express the statistical data of the SP and HV. TABLE XVI shows the detailed evaluation results of the SP and HV indicators. In the box plot, there is a line in the middle of the box, which represents the median of the data. Its height reflects the volatility of the data, and the top and bottom represent the maximum and minimum values of this set of data, respectively. Sometimes there are dots on the outside of the box that can be interpreted as outliers.

Fig. 17 shows the box plots of the SP indicators of 8 cases. It can be seen from the figure, the fluctuation of SP index data of MHFPA is the least, and its average values are the lowest in most cases. This shows that the proposed algorithm is more stable and the distribution of the solution set is more uniform than the other two algorithms. In Case2, Case3 and Case5, although the MHFPA algorithm fails to obtain the minimum SP mean value, MHFPA has fewer outliers than other methods, and the Pareto front and BTS obtained by this algorithm in the simulation cases are superior to the two comparison algorithms.

Fig. 18 shows the box plots of the HV indicators of 8 cases. It can be seen from the figure that MHFPA algorithm obtained the minimum HV standard deviation value, indicating that the diversity difference of Pareto front obtained by this algorithm in 20 independent experiments is smaller than other algorithms. In addition, the HV index data of this algorithm has fewer outliers, and its average value is larger than that of other methods, which proves that the PF solution set obtained by this algorithm has better diversity.

IAENG International Journal of Applied Mathematics, 51:4, IJAM_51_4_18

TABLE XVIII
THE BEST SOLUTIONS OF CASE 10

control variables	MHFPA	NSGA-II	control variables	MHFPA	NSGA-II
$\mathrm{P}_{\mathrm{Ge} \text { _4 }}$ (MW)	5.1945	6.1521	$\mathrm{V}_{\text {Ge_26 }}$	1.0309	1.0013
$\mathrm{P}_{\mathrm{Ge} _} 6$	8.0653	12.2689	$\mathrm{V}_{\text {Ge_27 }}$	1.0473	1.0410
P_{Ge} 8	5.0000	11.8057	$\mathrm{V}_{\text {Ge_31 }}$	1.0471	1.0236
PGe_10	282.1645	189.4110	$V_{\text {Ge_32 }}$	1.0092	0.9712
$\mathrm{P}_{\text {Ge_12 }}$	286.4341	181.1385	$\mathrm{V}_{\text {Ge_34 }}$	1.0024	0.9897
PGe_15	10.0725	20.6620	$\mathrm{V}_{\text {Ge_36 }}$	1.0418	1.0195
PGe_18	31.0743	51.0332	VGe_40	1.0303	0.9317
PGe_19	5.8439	7.6006	VGe_42	0.9793	1.0135
PGe_24	5.7036	6.3380	VGe_46	1.0411	1.0011
PGe_25	100.8793	100.1967	VGe_49	1.0130	1.0256
$\mathrm{P}_{\text {Ge_26 }}$	100.0000	154.5302	$V_{\text {Ge_ }}$ 54	1.0080	1.0146
$\mathrm{P}_{\text {Ge } 27}$	8.0000	13.2450	$V_{\text {Ge_ } 55}$	1.0153	1.0286
PGe_31	8.0555	9.8663	$\mathrm{V}_{\text {Ge_56 }}$	1.0197	1.0057
$\mathrm{P}_{\text {Ge } 32}$	52.4531	25.3440	$\mathrm{V}_{\text {Ge_ }}$ 59	1.0355	0.9942
$\mathrm{P}_{\text {Ge_34 }}$	8.0000	15.7428	$\mathrm{V}_{\text {Ge_61 }}$	1.0491	1.0044
$\mathrm{P}_{\text {Ge_36 }}$	27.2354	32.3629	$V_{\text {Ge_62 }}$	1.0398	1.0423
PGe_40	9.9334	13.9711	$V_{\text {Ge_65 }}$	1.0402	0.9840
PGe_42	8.3585	17.6326	$\mathrm{V}_{\text {Ge_66 }}$	1.0547	1.0305
PGe_46	61.4959	35.4225	VGe_69	1.0070	0.9844
PGe_49	248.1737	249.9834	$\mathrm{V}_{\text {Ge_70 }}$	0.9901	1.0293
PGe_54	51.1580	151.2727	VGe_72	1.0367	0.9938
PGe_55	33.2710	50.2628	VGe_73	0.9941	1.0697
PGe_56	26.1296	30.7026	VGe_74	1.0064	0.9282
PGe_59	63.0469	50.0540	VGe_76	1.0038	1.0172
PGe_61	200.0000	176.7912	$V_{\text {Ge_77 }}$	1.0393	1.0322
$\mathrm{P}_{\text {Ge_62 }}$	29.5615	90.7788	$\mathrm{V}_{\text {Ge_80 }}$	1.0247	0.9884
PGe_65	410.5184	304.1519	$\mathrm{V}_{\text {Ge_85 }}$	0.9765	1.0262
$\mathrm{P}_{\text {Ge _66 }}$	244.6302	245.9660	$V_{\text {Ge_87 }}$	1.0120	1.0024
PGe_69	34.4022	53.0422	$\mathrm{V}_{\text {Ge_89 }}$	1.0438	1.0085
$\mathrm{P}_{\text {Ge_70 }}$	10.1921	10.4304	$\mathrm{V}_{\text {Ge_90 }}$	0.9962	1.0274
PGe_72	5.3894	7.5431	VGe_91	1.0180	1.0109
PGe_73	5.0496	5.0374	$\mathrm{V}_{\mathrm{Ge} \text {-92 }}$	1.0470	1.0036
PGe_74	31.5602	60.1638	VGe_99	1.0801	1.0535
PGe_76	31.3947	51.0609	V_{Ge} 100	1.0114	1.0281
PGe_77	238.4564	221.5711	VGe_103	0.9861	0.9976
PGe_80	34.9182	71.4405	V_{Ge} 104	1.0066	0.9819
PGe_85	10.0000	16.7094	$\mathrm{V}_{\text {Ge_1 }} 105$	0.9994	0.9772
$\mathrm{P}_{\mathrm{Ge} _ \text {- } 7}$	186.6442	236.9483	V_{Ge} _107	0.9387	0.9543
PGe_89	118.5274	82.2049	V_{Ge} _110	0.9998	1.0087
$\mathrm{P}_{\text {Ge } _0}$	8.0615	9.3205	$\mathrm{V}_{\mathrm{Ge} \text { _111 }}$	0.9467	1.0928
PGe_91	20.0000	25.3201	V_{Ge} _112	1.0305	0.9781
$\mathrm{P}_{\text {Ge } _92}$	130.9848	173.5649	$\mathrm{V}_{\text {Ge_113 }}$	1.0477	0.9918
$\mathrm{P}_{\mathrm{Ge} \text {-99 }}$	153.4428	114.5672	$\mathrm{V}_{\text {Ge_1 }} 116$	1.0775	1.0030
$\mathrm{P}_{\mathrm{Ge} _100}$	172.2901	111.4755	T_{8} (p.u.)	0.1100	0.0250
PGe_103	8.0000	10.2722	T32	0.0346	0.1639
PGe_104	26.2246	25.2439	T36	0.1090	0.0365
$\mathrm{PGe}_{\mathrm{Ge} 105}$	34.9555	25.0000	T51	0.0864	0.1171
$\mathrm{PGe}_{\mathrm{G}} 107$	8.4857	8.1347	T93	0.0013	0.1504
$\mathrm{P}_{\mathrm{Ge} _110}$	25.2492	32.1845	T_{95}	0.1504	0.1755
$\mathrm{P}_{\text {Ge_111 }}$	25.0000	40.1529	T_{102}	0.0436	0.1790
$\mathrm{P}_{\mathrm{Ge}-112}$	27.3803	49.7732	T_{107}	0.0108	0.0663
$\mathrm{P}_{\mathrm{Ge} \text { _113 }}$	39.8090	48.8245	T_{127}	0.0291	0.1621
$\mathrm{P}_{\mathrm{Ge} _} 116$	26.2157	32.1997	QCo_34 (p.u.)	0.0053	0.1413
$\mathrm{V}_{\text {Ge_1 }}$ (p.u.)	1.0926	1.0364	Qco_44	0.1064	0.0670
$\mathrm{V}_{\text {Ge_4 }}$	1.0868	1.0256	QCo_45	0.2682	0.1577
$V_{\text {Ge_6 }}$	1.0882	0.9701	Qco_46	0.0470	0.1611
VGe_8	0.9790	0.9757	Qco_48	0.2373	0.0995
$V_{\text {Ge_10 }}$	1.0564	0.9900	Qco_74	0.2703	0.1676
VGe_12	1.0090	0.9951	QCo_79	0.2277	0.2532
VGe_15	1.0243	0.9566	QCo_82	0.0000	0.2972
$\mathrm{V}_{\text {Ge_1 }} 18$	1.0112	1.0013	Qco_83	0.2184	0.2250
VGe_19	0.9354	1.0153	QCo_105	0.1333	0.1695
VGe_24	1.0803	0.9428	QCo_107	0.2528	0.0882
$\mathrm{V}_{\mathrm{Ge} \text { _ } 25}$	0.9176	1.0335	Qco_110	0.0136	0.0026
			$J_{\text {fcost }}(\$ / \mathrm{h})$	59455.5016	60271.7117
			$J_{\text {emission }}(\mathrm{ton} / \mathrm{h})$	2.2220	2.8592

G. Algorithm Complexity

The algorithm complexity can be used as the evaluation index of algorithm efficiency, which is indirectly expressed by the average running time in this paper. In the face of practical engineering problems, the dispatcher definitely
hopes that the algorithm can be efficient in solving the power flow optimization problem. TABLE XVII shows the average elapsed time of the three algorithms running independently 20 times in cases 1-10. It can be seen from the table that MHFPA takes less time to solve the MOOPF problem than the

NSGA-II and MOPSO algorithms, thus further verifying the efficiency of the algorithm.

V. CONCLUSION

This paper proposes a modified and hybrid flower pollination algorithms named MHFPA, including the mutation and crossover process in the DE algorithm, the sinusoidal nonlinear dynamic switching probability and the elite strategy of elder generation to solve the MOOPF problem. In this paper, different multi-objectives, which consider the total fuel cost, active power loss, total fuel cost with valve point, emissions and voltage deviation impacts, for OPF problem are formed. The IEEE30-, 57- and IEEE118-bus test systems with ten cases under the condition of satisfying the equality and inequality constraints are used to test the effectiveness of the proposed MHFPA. In order to obtain a well-distributed Pareto front, three multi-objective optimization strategies are introduced: SPA, NSES and BTS. Two performance indicators, HV and SP, comprehensively evaluate the performance of the proposed algorithm. Compared with the experimental results, MHFPA has more competitive advantages than MOPSO and NSGA-II algorithms in solving MOOPF problems. Therefore, the proposed MHFPA algorithm is a good candidate to solve the MOOPF problem in the real power system.

References

[1] E. Naderi, M. Pourakbari-Kasmaei and H. Abdi, "An efficient particle swarm optimization algorithm to solve optimal power flow problem integrated with FACTS devices," Applied Soft Computing, vol. 80, pp. 243-262, 2019.
[2] A. Attia, R. A. El Sehiemy and H. M. Hasanien, "Optimal power flow solution in power systems using a novel Sine-Cosine algorithm," International Journal of Electrical Power \& Energy Systems, vol. 99, pp. 331-343, 2018.
[3] S. Rahmani and N. Amjady, "Enhanced goal attainment method for solving multi-objective security-constrained optimal power flow considering dynamic thermal rating of lines," Applied Soft Computing, vol. 77, pp. 41-49, 2019.
[4] S. A. El-Sattar, S. Kamel, R. A. El Sehiemy, F. Jurado, J. Yu and L. Mei, et al., "Single- and multi-objective optimal power flow frameworks using Jaya optimization technique," Neural Computing \& Applications, vol. 31, no. 12, pp. 8787-8806, 2019.
[5] G. Chen, X. Yi, Z. Zhang and H. Lei, "Solving the Multi-Objective Optimal Power Flow Problem Using the Multi-Objective Firefly Algorithm with a Constraints-Prior Pareto-Domination Approach," Energies, vol. 11, no. 12, pp. 3438, 2018.
[6] G. Chen, J. Qian, Z. Zhang and Z. Sun, "Multi-objective Improved Bat Algorithm for optimizing fuel cost, emission and active power loss in power system," IAENG International Journal of Computer Science, vol. 46, no. 1, pp. 118-133, 2019.
[7] G. Chen, Y. Han, Z. Zhang, X. Zeng and S. Li, "Research on Multi-objective Active Power Optimization Simulation of Novel Improved Water Cycle Algorithm," IAENG International Journal of Applied Mathematics, vol. 51, no. 1, pp. 250-263, 2021.
[8] G. Chen, J. Qian, Z. Zhang and Z. Sun, "Applications of Novel Hybrid Bat Algorithm With Constrained Pareto Fuzzy Dominant Rule on Multi-Objective Optimal Power Flow Problems," IEEE Access, vol. 7, pp. 52060-52084, 2019.
[9] N. Daryani, M. T. Hagh and S. Teimourzadeh, "Adaptive group search optimization algorithm for multi-objective optimal power flow problem," Applied Soft Computing, vol. 38, pp. 1012-1024, 2016.
[10] R. V. Rao, D. P. Rai and J. Balic, "Multi-objective optimization of machining and micro-machining processes using non-dominated sorting teaching-learning-based optimization algorithm," Journal of Intelligent Manufacturing, vol. 29, no. 8, pp. 1715-1737, 2018.
[11] T. Ding, C. Li, F. Li, T. Chen and R. Liu, "A bi-objective DC-optimal power flow model using linear relaxation-based second order cone programming and its Pareto Frontier," International Journal of

Electrical Power \& Energy Systems, vol. 88, pp. 13-20, 2017.
[12] R. Storn andK. Price, "Differential evolution - A simple and efficient heuristic for global optimization over continuous spaces," Journal of Global Optimization, vol. 11, no. 4, pp. 341-359, 1997.
[13] S. Mirjalili, "Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm," Knowledge-Based Systems, vol. 89, pp. 228-249, 2015.
[14] K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, "A fast and elitist multiobjective genetic algorithm: NSGA-II," IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182-197, 2002.
[15] M. Clerc and J. Kennedy, "The particle swarm - Explosion, stability, and convergence in a multidimensional complex space," IEEE Transactions on Evolutionary Computation, vol. 6, no. 1, pp. 58-73, 2002.
[16] Y. Yuan, Y. Yuan, X. Wu and X. Wu, et al., "Application of improved bat algorithm in optimal power flow problem," Applied intelligence (Dordrecht, Netherlands), vol. 48, no. 8, pp. 2304-2314, 2018.
[17] E. Naderi, M. Pourakbari-Kasmaei, F. V. Cerna and M. Lehtonen, "A novel hybrid self-adaptive heuristic algorithm to handle single- and multi-objective optimal power flow problems," International Journal of Electrical Power \& Energy Systems, vol. 125, article. 106492 (1-17), 2021.
[18] W. Warid, H. Hizam, N. Mariun and N. I. Abdul Wahab, "A novel quasi-oppositional modified Jaya algorithm for multi-objective optimal power flow solution," Applied Soft Computing, vol. 65, pp. 360-373, 2018.
[19] J. Qian, P. Wang, C. Pu and G. Chen, "Joint application of multi-object beetle antennae search algorithm and BAS-BP fuel cost forecast network on optimal active power dispatch problems," Knowledge-Based Systems, vol. 226, article. 107149 (1-21), 2021.
[20] M. Ding, H. Chen, N. Lin, S. Jing, F. Liu and X. Liang, et al., "Dynamic population artificial bee colony algorithm for multi-objective optimal power flow," Saudi Journal of Biological Sciences, vol. 24, no. 3, pp. 703-710, 2017.
[21] M. A. Taher, S. Kamel, F. Jurado and M. Ebeed, "An improved moth-flame optimization algorithm for solving optimal power flow problem," International Transactions on Electrical Energy Systems, vol. 29, no. 3, article. e2743 (1-28), 2019.
[22] G. Chen, J. Qian, Z. Zhang and S. Li, "Application of modified pigeon-inspired optimization algorithm and constraint -objective sorting rule on multi-objective optimal power flow problem," Applied Soft Computing, vol. 92, article. 106321 (1-19), 2020.
[23] G. Chen, X. Yi, Z. Zhang and H. Wang, "Applications of multi-objective dimension-based firefly algorithm to optimize the power losses, emission, and cost in power systems," Applied Soft Computing, vol. 68, pp. 322-342, 2018.
[24] G. Chen, J. Qian, Z. Zhang and Z. Sun, "Multi-Objective Optimal Power Flow Based on Hybrid Firefly-Bat Algorithm and Constraints-Prior Object-Fuzzy Sorting Strategy," IEEE Access, vol. 7, pp. 139726-139745, 2019.
[25] X. Yang, M. Karamanoglu and X. He, "Flower pollination algorithm: A novel approach for multiobjective optimization," Engineering Optimization, vol. 46, no. 9, pp. 1222-1237, 2014.
[26] M. Abdel-Basset, M. Abdel-Basset, L. A. Shawky and L. A. Shawky, "Flower pollination algorithm: a comprehensive review," Artificial Intelligence Review, vol. 52, no. 4, pp. 2533-2557, 2019.
[27] A. Fouad and X. Gao, "A novel modified flower pollination algorithm for global optimization," Neural Computing \& Applications, vol. 31, no. 8, pp. 3875-3908, 2019.
[28] P. P. Biswas, P. N. Suganthan, R. Mallipeddi and G. A. J. Amaratunga, "Multi-objective optimal power flow solutions using a constraint handling technique of evolutionary algorithms," Soft computing (Berlin, Germany), vol. 24, no. 4, pp. 2999-3023, 2020.
[29] S. R. Salkuti, "Optimal power flow using multi-objective glowworm swarm optimization algorithm in a wind energy integrated power system," International Journal of Green Energy, vol. 16, no. 15, pp. 1547-1561, 2019.
[30] B. Ji, X. Yuan and Y. Yuan, "Modified NSGA-II for Solving Continuous Berth Allocation Problem: Using Multiobjective Constraint-Handling Strategy," IEEE Transactions on Cybernetics, vol. 47, no. 9, pp. 2885-2895, 2017.
[31] A. A. Mohamed, Y. S. Mohamed, A. A. M. El-Gaafary and A. M. Hemeida, "Optimal power flow using moth swarm algorithm," Electric Power Systems Research, vol. 142, pp. 190-206, 2017.
[32] S. Rahmani and N. Amjady, "Improved normalised normal constraint method to solve multi-objective optimal power flow problem," IET generation, transmission \& distribution, vol. 12, no. 4, pp. 859-872, 2018.
[33] H. Pulluri, R. Naresh and V. Sharma, "An enhanced self-adaptive differential evolution based solution methodology for multiobjective optimal power flow," Applied Soft Computing, vol. 54, pp. 229-245, 2017.
[34] A. Sundaram, "Multiobjective multi-verse optimization algorithm to solve combined economic, heat and power emission dispatch problems," Applied Soft Computing, vol. 91, article. 106195 (1-24), 2020.
[35] W. Zhang, Z. Qu, K. Zhang, W. Mao, Y. Ma and X. Fan, "A combined model based on CEEMDAN and modified flower pollination algorithm for wind speed forecasting," Energy Conversion and Management, vol. 136, pp. 439-451, 2017.
[36] V. Porkodi, A. R. Singh, A. R. W. Sait, K. Shankar, E. Yang and C. Seo, et al, "Resource Provisioning for Cyber-Physical-Social System in Cloud-Fog-Edge Computing Using Optimal Flower Pollination Algorithm," IEEE Access, vol. 8, pp. 105311-105319, 2020.
[37] X. Liang, W. Liang and J. Xiong, "Intelligent diagnosis of natural gas pipeline defects using improved flower pollination algorithm and artificial neural network," Journal of Cleaner Production, vol. 264, article. 121655 (1-16), 2020.
[38] R. Salgotra and U. Singh, "Application of mutation operators to flower pollination algorithm," Expert Systems with Applications, vol. 79, pp. 112-129, 2017.
[39] W. Deng, J. Xu, Y. Song and H. Zhao, "Differential evolution algorithm with wavelet basis function and optimal mutation strategy for complex optimization problem," Applied Soft Computing, vol. 100, article. 106724 (1-16), 2021.
[40] T. Niknam, M. R. Narimani, M. Jabbari and A. R. Malekpour, "A modified shuffle frog leaping algorithm for multi-objective optimal power flow," Energy, vol. 36, no. 11, pp. 6420-6432, 2011.

