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Abstract—In this paper, a modified and hybrid flower 

pollination algorithms (MHFPA) is proposed for dealing with 

the multi-objective optimal power flow (MOOPF) problem with 

conflictive objectives. The algorithm combines the mutation and 

crossover process in the differential evolution (DE) algorithm, 

introduces the sinusoidal nonlinear dynamic switching 

probability (SNDSP) and the elite strategy of elder generation 

(ESEG), which can improve the shortcomings of the original 

pollen algorithm that it is easy to fall into the local optimum and 

the diversity is insufficient. A screening approach with 

Pareto-dominant rule (SAPR) is proposed to ensure that the 

state variable can satisfy the inequality constraints of the power 

system. A uniformly distributed Pareto optimal set (POS) is 

obtained by the non-dominant sorting with elite strategy (NSES) 

based on Rank and Density estimation, and the best trade-off 

solution (BTS) is determined from the POS obtained by the 

fuzzy affiliation theory. For practicality, the total fuel cost, 

active power loss, emissions and voltage deviation are selected as 

objective functions. Due to the limitations of the actual power 

system, the valve point effect is also considered. The IEEE30-, 

57- and IEEE118-bus test systems are used to verify the 

performance of the proposed MHFPA. In addition, two 
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performance indicators, Hypervolume (HV) and Spacing (SP), 

quantitatively evaluate the diversity and uniformity of the POS 

obtained by MHFPA. The simulation results show that, 

compared with the classic MOPSO and NSGA-II algorithms, 

the method proposed in this paper shows a greater competitive 

advantage in dealing with different scales and non-convex 

optimization problems. 

Index Terms—Modified and hybrid FPA, Pareto optimal set, 

optimal power flow, non-dominant sorting, performance 

indicators 

 

I. INTRODUCTION 

HE Optimal Power Flow (OPF) proposed by Carpentier 

in 1962 is one of the challenges of the economic 

operation of the power system, which has attracted wide 

attention from many experts and scholars [1]. The optimal 

power flow problem is one of the basic problems of a given or 

fixed load power. It involves the dispatching of the actual 

power of all generators, the generator bus voltage, the tap 

ratio of the transformer and the setting of VAR, and it is 

subject to the physical properties and electrical constraints of 

the system. At the same time, it is also a non-linear problem, 

trying to minimize the fuel cost or active power loss by 

adjusting the value of the control variable, while satisfying the 

equality and inequality constraints in the power system [2, 3]. 

However, with the continuous growth of power demand and 

people's more and more concerns about the environment, the 

traditional single-objective optimal power flow model can not 

meet the demand. To simulate OPF model more realistically, 

the voltage deviation and emission must be taken as part of the 

objective function of OPF. Therefore, this paper takes a novel 

methods to address the multi-objective problems in the power 

system [4-8]. 

Multi-objective optimization power flow is a large-scale, 

highly nonlinear and non-convex optimization problem [9]. 

Different from the single objective optimization problem, the 

solution of the multi-objective optimization problem is 

composed of a set of solutions rather than only one solution. 

It's very difficult to solve this problem, because it requires 

very clever technology [10]. In the past, in order to solve 

large-scale non-convex nonlinear constrained optimization 

problems, different parameters were set for objective 

functions on the basis of the priority of objective functions, 

which was transformed into an optimization problem with 

only one objective function by weighted sum [11]. However, 

the weight coefficients are artificially decided, which will 

have a great impact on the final result. In addition, it is almost 
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impossible to find a well-distributed POS with a traditional 

method in the face of high-dimensional and complex systems. 

In recent years, with the rapid development of computer 

technology, some classical heuristic algorithms have come to 

the fore [12-15]. Many researchers have tried to solve the 

MOOPF problem with heuristic algorithms, such as: 

improved bat algorithm [16], hybrid self-adaptive FAHSPSO 

DE algorithm [17], quasi-oppositional modified Jaya 

algorithm [18], multi-object beetle antennae search algorithm 

with BAS-BP fuel cost forecast network [19], dynamic 

population artificial bee colony algorithm [20], improved 

moth-flame optimization algorithm [21], modified 

pigeon-inspired optimization algorithm [22], dimension 

based firefly algorithm [23], hybrid Firefly-Bat Algorithm 

[24]. The results show that the heuristic algorithms are very 

feasible methods to solve the MOOPF problem. 

Flower pollination algorithm (FPA) was put forward to 

solve the MOOPF problem by Xin-She Yang in 2014 [25]. 

Due to the simple structure and few parameters of FPA, the 

algorithm is widely used in various fields [26]. However, the 

original FPA algorithm still has the disadvantages of slow 

convergence speed, easy to fall into local optimality and 

insufficient diversity [27]. In response of the above 

weaknesses, this paper proposes a modified and hybrid flower 

pollination algorithm based on the mutation and crossover 

process of DE algorithm, SNDSP and ESEG to deal with the 

MOOPF problem. As far as we know, this improved method 

is the first time used to solve the MOOPF problem. In order to 

verify the performance and practicability of the proposed 

algorithm, MHFPA is tested on three different dimensional 

test systems of IEEE30, IEEE57 and IEEE118, and the results 

obtained are compared with the recently published literatures. 

The results show that the proposed method has better 

performance. 

The rest of this paper is organized as follows: The 

mathematical formulation of MOOPF problem and three 

multi-objective optimization strategies are presented in 

Section Ⅱ. Section Ⅲ introduces the application of MHFPA 

algorithm in MOOPF. Simulating studies on three 

different-scale systems and the performance analysis are 

given in Section Ⅳ. Finally, Section Ⅴ concludes this work. 

II. FORMULATION OF MOOPF PROBLEM 

The MOOPF problem generally considers two or more 

objectives, including voltage deviation, fuel cost, active 

power loss, emission and fuel cost with valve-point, etc. On 

the premise of satisfying the equality constraints and 

inequality constraints, the objective functions needed by 

decision-makers are optimized simultaneously [28-30]. The 

mathematical model of MOOPF is as follows: 

  
1

( , )= ( , ), ( , ), ( , )
i m

Min J x u J x u J x u J x u   (1) 

 ( , ) 0, 1, 2,
i

G x u i GL    (2) 

 ( , ) 0, 1,2,
j

H x u j HL    (3) 

where J1, J2, and Jm are the objective functions to be 

optimized. m is the count of objectives. Gi(x,u) and Hj(x,u) 

represent the ith equality constraint and the jth inequality 

constrain, respectively. GL is the number of equality limits, 

and HL is the count of inequality limits.  

xT represents the vector of state variables, including active 

power output of the slack bus, PGslack load bus voltage 

magnitude VL, reactive output power of generators QGe, 

transmission line loading STL. It can be defined as: 

 
1 1 1

T , , ,
NPQ NG NTLGslack L L Ge Ge TL TLx P V V Q Q S S 

 
  (4) 

uT is the vector of control variables including the output 

active power of generators except the slack bus PGe, the 

voltage magnitude of generators VGe, the injected reactive 

power of shunt compensators QCo, the tap setting of the 

transformers T, It can be written as:  

 
2 1 1

T

1,.., , ,.., , ,.., ,.., ,..
NG NG NCGe Ge Ge Ge Co Co NTu P P V V Q Q T T     (5) 

where NPQ is the number of load buses. NTL is the number of 

transmission lines. NG is the count of generators. NC is the 

count of shunt compensators, and NT is the count of 

regulating transformers.  

A. Objective Functions 

In this paper, basic fuel cost, fuel cost with value-point 

loading, emission, active power loss and voltage magnitude 

deviation are considered to demonstrate the performance of 

the proposed method. 

1) Basic Fuel Cost Minimization  

This is the most commonly used mathematical model to 

calculate the total fuel cost in OPF problems. It is expressed 

as: 

 
2

1

( ) $ / h
NG

fcost i i Gei i Gei

i

J a b P c P


     (6) 

where Jfcost is basic fuel cost. ai, bi and ci are the cost 

coefficients of the ith generator, and PGei is the active power of 

the ith generator. 

2) Fuel Cost with Valve-point Loadings Minimization 

Due to the consideration of the valve point effect, this 

objective function is significantly different from (6). In other 

words, the model is more realistic. 

 min

1

[ sin( ( )) ] $/h
NG

2

cost -vp i i Gei i Gei i i Gei Gei

i

J a +b P +c P d e P P


    (7) 

where Jcost-vp is the fuel cost with value-point loadings of the 

tested system. di and ei represent cost coefficients of the ith 

generator. 

3) Emission Objective Minimization 

The emission of SOx and NOx from thermal power plants is 

the main cause of environmental pollution. In this paper, the 

exhaust emission model is established based on the 

appropriate weighted summation of these two types of 

emission gases. The objective function can be stated as 

follows: 

 2

e

1

[ exp( )] ton/h
NG

mission i Gei i Gei i i i Gei

i

J P P P    


      (8) 

where αi, βi, γi, ζi and λi are the emission coefficients of ith 

generator. 

4) Active Power Loss Minimization 

Transmission loss is inevitable in the process of power 

transmission. Reducing actual transmission loss is one of the 

important goals of the OPF problem.  

 2 2

( , )

1

[ 2 cos( )] MW
NTL

Ploss k i j i j i j i j

k

J G V V VV  


      (9) 

where Jploss is the total active power losses of the power 
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system. Gk is the conductance of the kth line. δi and δj are the 

voltage angle of node i and j, respectively. Vi and Vj are the 

voltage magnitude of node i and j, respectively. 

5) Voltage Magnitude Deviation Minimization 

Voltage deviation is an important quality and safety index, 

and its magnitude has a direct influence on the stability and 

economic benefit of the power system. It can be described as 

below: 

 
1

1.0
NPQ

VD i

i

J V


    (10) 

where JVD represents the total voltage deviation of the tested 

system. 

B. Problem Constrains 

It makes sense to optimize the five objective functions only 

when both equality and inequality constraints of the power 

system are satisfied. 

1) Equality Constrains 

Equality constraints include active and reactive power 

balance [31, 32], which can be depicted as: 

 
=1

= ( cos( ) sin( ))
Nb

Gi Di i j ij i j ij i j

j

P P V V G B i Nb          

(11) 

 
j

=1

= ( sin( ) cos( ))
Nb

Gi Di i j ij i j ij i

j

Q Q V V G B i Nb           

(12) 

where PGi and QGi are the value of active and reactive power 

of ith generator. PDi and QDi stand for the demand of active 

and reactive power at load bus i. Gij and Bij represent the 

conductance and susceptance between node i and j, 

respectively. Nb denotes the count of all buses of the power 

system. 

2) Inequality Constrains 

Inequality constraints are composed of state variable 

constraints and control variable constraints to limit the system 

variables within the effective range [33]. 

(1) Inequality constrains of control variables 

(ⅰ) Active power PG constrains 

 

max

min

0
,  

0

Gei Gei

Gei Gei

P P
i NG i slack

P P

 
 

 
（ ）  (13) 

(ⅱ) Voltage VG constrains 

 

max

min

0
,  

0

Gei Gei

Gei Gei

V V
i NG

V V

 


 
  (14) 

(ⅲ) Transformer tap-settings T constrains 

 

max

min

0
,  

0

i i

i i

T T
i NT

T T

 


 
  (15) 

(ⅳ) Reactive power sources QC constrains 

 

max

min

0
,  

0

Coi Coi

Coi Coi

Q Q
i NC

Q Q

 


 
  (16) 

(2) Inequality constrains of state variables 

(ⅰ) Active power at slack bus PGslack constrains 

 max min

Gslack Gslack GslackP P P    (17) 

(ⅱ) Voltages at load buses VL constrains 

 

max

min

0
,  

0

Li Li

Li Li

V V
i NPQ

V V

 


 
  (18) 

(ⅲ) Apparent power S constrains 

 max ,  ij ijS S ij NTL    (19) 

(ⅳ) Reactive power QG constrains 

 

max

min

0
,  

0

Gei Gei

Gei Gei

Q Q
i NG

Q Q

 


 
  (20) 

C. Multi-objective Problem Solving Strategies 

In the actual MOOPF problem, the objectives are often 

interacting, competing, and coupled together. In addition, 

their solutions are a set of solutions, and the decision maker 

cannot make a choice on the optimal solution. In order to 

obtain POS with high quality and uniform distribution and the 

BTS, three strategies are proposed to solve the above 

problems. 

1) Constraint Handling Strategies 

The Newton-Raphson flow calculation can verify whether 

each solution violates the equality constraints (11) and (12). 

Control variable and state variable constraints are called 

inequality constraints. Once the constraints are violated, the 

solution is invalid. For the control variable constraints, once 

any individual control variable exceeds its own constraint 

range, it is updated and adjusted in the following way: 

 

,min ,max

,min ,min

,max ,max

i i i i

i i i i

i i i

u if u u u

u u if u u

u if u u

  


 
 

  (21) 

For the inequality constraint processing of state variables, 

SAPR is proposed to solve this problem, and it is obviously 

different from the traditional penalty coefficient method. Its 

core steps are as follows: 

Step1: Calculate the violation of inequality constrains for 

ith individual total_vio(ui) based on(22). 

 
1

_ ( ) max(G ( , ),0)
HL

i j i

j

total vio u x u


   (22) 

where HL is the count of inequality constrains on state 

variables. 

Step2: Two different control variables u1 and u2 are 

randomly selected, and their total constraint violation 

total_vio(u1) and total_vio(u2) are compared. 

Step3: Judge the dominant relationships of the vectors u1 

and u2. The key theory can be described as below: 

 
2 1

2 1

(1,2, , ), ( , ) ( , )

(1,2, , ), ( , ) ( , )

i i

j j

i m J x u J x u

j m J x u J x u

  

  

  (23) 

Step4: if u2 dominates u1, u2 is regarded as the Pareto 

optimum solution. 

2) Non-dominant Sorting with Elite Strategy 

In 2002, Deb proposed a non-dominated sorting with elite 

strategy, and obtained a uniformly distributed Pareto front 

[14]. In this approach, Deb put forward two important 

concepts: Rank and Density Estimation. 

(1) Rank 

Let’s assume that each pollen individual i has two 

parameters o(i) and m(i). o(i) is the quantity of individuals 

that dominate individual i. m(i) is the quantity of individuals 

dominated by individual i. The rules to determine the Rank 

are defined as below: 

(i) Find all individuals with o(i)=0 in the population, and 

put them into the set G and marked as Rank=1; 

(ii) For each individual j in the current G, we investigate the 
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number of individual m(j) it dominate, and subtract 1 from o(k) 

of each individual k in the set m(j). If o(k)-1=0, then 

individual k is put into another set E and marked as Rank=2; 

(iii) Repeat steps (i) and (ii) until all pollen have their own 

Rank. 

(2) Density Estimation 

By calculating the average distance of each objective of the 

two adjacent points of a certain solution in the population, the 

density estimate Destimation of the point can be obtained, which 

is also called the crowding distance. After determining the 

ranks of the solution set, some ranks may contain multiple 

optimal Pareto solutions, in which case, the density estimate 

Destimation can be used as the basis for screening. Usually, there 

are multiple optimal Pareto solutions at the same rank, and the 

individuals with larger density estimates are preferred. 
Destimation can be calculated according to formula (24). 

 es

1 ,max ,min

( 1) ( 1)
( )=

H
j j

timation

j j j

J i J i
D i

J J

  


   (24) 

where H is the number of objective functions. Jj(i) represents 

the value of the jth objective function of the ith solution. Ji,max 

and Jj,min are the maximum and minimum values of the jth 

objective function in the Pareto front solution set, 

respectively. 

(3) Best Trade-off Solution 

The Pareto front solution set can be considered as optimal 

results, and there are no superior or inferior relations. In 

actual engineering practice, according to the current needs of 

decision makers, the most suitable solution is determined 

from the POS set, which is called the best trade-off solution 

(BTS). In this paper, the fuzzy theory based on satisfaction is 

used to determine the BTS of MOOPF problem. The 

satisfaction function Mi,j and the satisfaction value Sat(j) of 

the jth pollen on the ith objective can be calculated by 

formulas (25) and (26). 
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,max ,min
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i
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M
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M


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

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where N is the size of the POS set. Ji,max and Ji,min are the 

maximum and minimum values of the ith objective, 

respectively. The solution with the largest satisfaction value 

Sat(j) in the POS set is the BTS solution determined by the 

fuzzy affiliation theory. 

III. PROPOSED HYBRID APPROACH 

The basic flower pollination algorithm has advantages such 

as simplicity and flexibility. In terms of parameters, the FPA 

has only a few parameters, including the switching probability 

P and scaling factor γ and ζ. It has been used to solve 

economic scheduling problems [34] and wind speed 

prediction problems [35]. However, the FPA still has the 

shortcomings of slow convergence speed, easy to fall into 

local optimum and insufficient diversity. To address these 

deficiencies, the improved and hybrid flower pollination 

algorithm is proposed. 

A. Overview of Standard Flower Pollination Algorithm 

Inspired by the pollination process of flowering plants in 

nature, Yang first proposed a new intelligence optimization 

algorithm FPA in 2012. In the normative FPA, the pollen 

represents the optimal solution. To mimic pollination, FPA 

follows four rules, and the details are shown in literature [36]. 

The pollination process of FPA is divided into local and 

global pollination. If the switching probability P is greater 

than the random number rand, the algorithm performs global 

pollination. The global pollination process can be described 

by formula (27): 

 ( 1) ( ) ( )( ( ) ( ))i i elite iF t F t L F t F t       (27) 

where Fi(t) is the pollen i at iteration t. Felite(t) is the best 

solution among all solutions of the current generation. γ is a 

scaling factor to control the step size.  

The introduction of parameter L(λ) can better simulate the 

trajectory of pollinators. L(λ) is the Lévy-flights based step 

size, that corresponds to the pollination power. It obeys a 

Lévy distribution: 

 
01

( )sin( / 2) 1
, ( 0)L s s

s 

  

 


    (28) 

where Г(λ) is called the standard gamma function and the 

distribution factor λ is set to 1.5 in basic FPA [36]. 

During local pollination, each flower updates its own 

position based on the differences between its current position 

and the positions of two neighboring flowers. It can also be 

expressed according to Eq (29): 

 ( 1) ( ) ( ( ) ( ))i i m nF t F t F t F t      (29) 

where Fm(t) and Fn(t) represent pollen from different flowers 

of the same plant species. ζ represents a random number 

controlling local walk, which is selected from a uniform 

distribution [0, 1]. The switching probability P is a key 

parameter, which coordinates the global search and local 

search of the algorithm. In reference [37], the value of P is set 

to 0.8. Preliminary research shows that P=0.8 may be better 

for most problems. 

B. Proposed MHFPA 

Three strategies of SNDSP, ESEG and SAPR are proposed 

to modify the FPA algorithm 

1) Sinusoidal nonlinear dynamic switching probability 

In the normative FPA, Yang believes that P=0.8 has the 

best optimization effect after many tests. However, Salgotra 

studies show that dynamic switching probability is more 

conducive to coordinating global and local optimization. In 

this paper, the SNDSP is proposed. It can be described as 

below: 

 
max min min

max

( )sin( )
2

t
P P P P

T


     (30) 

where Tmax corresponds to the maximum number of iterations. 

t is the number of current iterations. Pmin and Pmax are set as 

0.2 and 0.8, respectively. Compared with P in literature [38], 

the switching probability P in this paper has a wider variation 
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range, which makes the algorithm have different optimization 

focuses on different iteration stages. 

2) Elite Strategy of Elder Generation 

The local optimization process is highly random. In the 

face of high-dimensional, non-convex nonlinear MOOPF 

problem, the basic FPA is easy to fall into the local optimal, 

resulting in inaccurate results. In view of these defects, elite 

pollen is introduced to increase the ability of pollen to search 

for the best and to jump out of the local optimal. The above 

process can be expressed by formula (31): 

 ( 1) ( ) ( ( ) ( )) Gi i m n corrF t F t F t F t       (31) 

 1 2( | ( ) ( )| | ( 1) ( )|)corr elite i elite iG rand F t F t F t F t        

(32) 

 
1 min max max min

2 max max max min

= ( / )( )

= ( / )( )

t T

t T

   

   

 

 
  (33) 

where Felite(t) and Felite(t-1) are the best pollens at tth and 

(t-1)th iteration, respectively. σ1 and σ2 are the scale factors. 

Gcorr represents the correction factor. 

3) Mutation and Crossover Operator of DE Algorithm 

The mutation and crossover process of DE algorithm are 

introduced into global search to improve the insufficient of 

diversity in the original FPA [39]. 

Its updated formula of the mutation process of DE 

algorithm is as follows: 

 1 2 3_ ( 1) ( ) ( ( ) ( ))i l l lM F t F t F t F t      (34) 

where l1, l2 and l3 are random numbers different from i. 

M_Fi(t+1) represents the mutated individual i. Ψ is a real 

constant, which controls the process of mutation. Fl1(t), Fl2(t) 

and Fl3(t) represent random individuals different from 

individual i, respectively. 

The corresponding updated formula of the crossover 

process is as follows: 

 

,

,

,

_ ( 1) , (0,1) ||
( 1)

( ),

1,2, ,

i d rand
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 (35) 

where D and d represent the dimension of the control variable 

and the dth control variable, respectively. cr is the crossover 

constant, which represents the possibility of crossover. drand is 

a random number in {1,2,…,D}. 

It is worth noting that mutation is not an inevitable process 

in nature. In this paper, we set the probability of mutation Pm 

as 0.5, which not only keeps the original pollen individuals, 

but also increases the diversity of pollen and improves the 

global search ability. 

The pseudo-code of MHFPA is presented in TABLE I. 

IV. SIMULATION RESULTS AND DISCUSSION 

In order to verify the effectiveness of MHFPA, the 

performance of the proposed algorithm is tested on three 

power systems with different scales: IEEE30, IEEE57 and 

IEEE118, and ten different cases are listed TABLE II. The 

process of dealing with the MOOPF problem with the 

proposed method is shown in Fig. 1. Source code of three 

optimized algorithms are implemented in MATLAB R2018b 

software in a PC with Intel(R) Core(TM) i5-7400CPU @ 

3.00GHz with 8GB RAM. 

A. Test Systems 

Fig. 2 shows the structure of the IEEE30 standard test 

system. The system has 6 generators, 30 buses, 4 transformers, 

9 reactive power compensation devices and a set of 

24-dimensional control variables. Detailed data such as fuel 

cost coefficient and emission coefficient can be found in the 

literature [24, 40]. The voltage variation range of generator 

and load bus are both 0.95 to 1.1 p.u, and the lower limit of the 

transformer tap is 0.9 p.u and the upper limit is 1.1 p.u. 

Fig. 3 shows the structure of the IEEE57 standard test 

system, and its detailed data refers to literature [23, 24]. The 

system contains a set of 33-dimensional control variables, 7 

generators and 17 transformers. The upper and lower limits of 

the transformer tap, the voltage of PQ and PV node are 1.1 p.u 

and 0.9 p.u, respectively. Finally, the variation range of the 

shunt capacitors is controlled between 0 and 0.3 p.u. 

 

TABLE I  
PSEUDO-CODE OF MHFPA METHOD 

Input: objective function: J(x,u)={J1(x,u),…, Ji(x,u),…, Jm(x,u)}; 

The pollen population is randomly initialized within the constraint 

range;Set MHFPA parameters: switch probability P, maximum 

number of iterations Tmax, γ, ζ, etc; 

t=0; 

while (t<Tmax) 

Identify the elite pollen Felite(t) in current iteration and the elite pollen 

Felite(t-1) in previous iteration; 

for i=1,2…,Np 

if rand>P  

Perform global search by formula (27); 

if rand<Pm  

Mutate the position of pollen i by formula (34); 

for j=1,2…,Nc (The dimension of the control variable) 

if rand<cr||d=drand 

Cross the j-th position of pollen i by formula (35); 

else 

Randomly cross over the j-th position of pollen i; 

end 

else 

Perform local search by formula (31); 

end 

Record the best individual of the previous generation Felite(t-1); 

Update overall pollen positions; 

t=t+1; 

end while 

output the best control variable set; 

 

TABLE II  
NINE DIFFERENT COMBINATIONS 

Cases Jfcost Jemission Jcost-vp Jploss JVD Test systems 

Case 1      

IEEE 30 

Case 2      

Case 3      

Case 4      

Case 5      

Case 6      

Case 7      
IEEE 57 

Case 8      

Case 9      
IEEE 118 

Case 10      

 

Fig. 4 shows the structure of the IEEE118 standard test 

system. The system contains a set of 128-dimensional control 

variables, 54 generators and 9 transformers. The voltage of 

PV node is limited to 0.9-1.1 p.u. The range of shunt capacitor 

and transformer tap is the same as that of IEEE57. 
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Start

Input: 1. the basic parameters of the algorithm: Tmax, NP, cr, etc. 2. Input data such as test system 

nodes, branches, emission coefficients data and so on

 Randomly initialize pollen populations within valid range of control variables by equation: ui=ui,max+rand(ui,max-ui,min). 

The ui can be regarded as a solution for the MOOPF problem 

Calculate the value of each objective function such as Jploss,  Jemission, Jfcost, Jcost-vp, and JVD with Newton-Raphson load 

flow calculation and the total constraint violation

Sort pollens using non-dominant sorting with elite strategy and crowding distance

calculation to realize the screening of pollens

rand>P?

Global optimization is performed by formula (27), and pollen position is updated

Yes

rand<0.5?

Mutate the position of pollen i  according to formula (34)

Yes

Cross the jth position of pollen i 

according to formula (35)

No

Perform local search according 

to formula (31)

All pollen individual positions have been updated

No

Compute the objective functions and total_vio of pollen population.

Judge stopping condition.
No

Output: Pareto optimal solution set and choose the BTS by using 

the fuzzy affiliation theory as Section 3.3 described.

End

Yes

 
Fig. 1. the process of dealing with the MOOPF problem
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Fig. 2. the structure of the IEEE30 standard test system 

 

B. Algorithm Parameters 

Whether the parameter selection is appropriate or not will 

directly affect the results of the algorithm optimization, so it is 

necessary to adjust the algorithm parameters through 

experiments to optimize the efficiency of the algorithm. 
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Fig. 3. the structure of the IEEE57 standard test system 

 

Taking the combination of Jploss and Jfcost on IEEE 30 

standard test system as an example, the dual-objective 

experiments with a population size of 100 and different 

iterations from 100 to 500 are performed respectively. Fig. 5 

shows the Pareto fronts obtained by different iterations. As 

can be seen from Fig. 5, the PFs obtained by iteration 100 
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generation is the worst, and the Pareto fronts obtained by 300, 

400, and 500 iterations are well distribute. Considering 

comprehensively, it is determined that the number of 

iterations Tmax of 300 is considered optimal. Fig. 6 shows the 

experimental results of 300 iterations with different 

population sizes NP [30, 50, 100, 150]. It can be seen from Fig. 

6 that the experimental results with population sizes of 100 

and 150 are the best. In order to reduce the running time of the 

program, the population size NP of the algorithm is 

determined to be 100. The detailed parameters of the 

algorithms are summarized in TABLE III. 

 
                                     区域一                                                                                                区域二 
      

           7                              

                    2                                        13                                                                       33              43       44                54                  55 
                                                                                                                                                                 

1                      117                                                                                                                           45                                   56 
                 12                                     14      15                                           34                                                53 

    3                                                                                                                                                               46                                         57 

                                                                                                           36                                            52               
    6                   11                      17                        18                                                  35                                         47                           58 

                                                                                          37               42                                                     
                   4                       16                                                                                                        39       41                                              51           59 

                                                                                   19                                                                                                        48                                         

 5                                                                                 38                     40                                                49        50        60 
                                                                                                                                          

     8                                                                 20                                                                                                                    66                                    62                                                      

    9                      30       31              113                  73                                                                                                                                   

                                                                                                                                                                                                 

  10                           29                          32          21                                                                           69                                                          67              61                                                                    
                                                                                                                                                                                                  65               64 

                                28         114                         71                                                                                                  81 
                           26                                  22                        75                                       118              76      77                                                                 

                                                     115                                                                                                                   68                                     80              63 

        25                         27                       23    72                                                                                                                                                      
                                                                                              74                                                                                                116                         98 

      24                                                                                                                                                                                   99 
                                                                                             70 

                                                                                                                                                                                          

                                                                                                                                                                                        78             79                   97 
 

 
                          87                 86                                                                                                               

                                                                       85                                                          

                               88       84    83   82                                                 96                                                                                            
                    90                 89                                         

                                                                                                              95                                                                                            112 
                       91                                                                                                         94      107                 106       

                  92                                                     93                                      100        106                 109                    111                                                                                                                                                                                

                                                                                                                          105                                         
                                     103                  104                 

                              102                        101                                                                                      108                 110                                                                                       
                  

                             区域三                        
  

 

Fig. 4. the structure of the IEEE118 standard test system 

 

 

Fig. 5. PFs in different Tmax with NP of 100 

 

C. IEEE30-bus System 

The MOOPF cases 1-6 are carried out on the IEEE30 

standard test system. 

1) Case 1 

In case 1, the basic fuel cost and active power loss are 

optimized by three algorithms simultaneously. The Pareto 

fronts are shown in Fig. 7. As can be seen in Fig. 7 that the 

Pareto front obtained by MHFPA is more uniform and 

continuous. TABLE III shows the 24-dimension control 

variables obtained by the three algorithms and the BTS 

solutions obtained based on equation (26). Among them, the 

BTS obtained by MHFPA algorithm includes the fuel cost of 

833.1646 $/h and the active power loss of 5.0266 MW, which 

are all less than the BTS obtained by MOPSO and NSGA-II 

algorithm. Furthermore, TABLE IV shows the BTS of Case 1 

obtained by different methods proposed by various scholars 

in recent years. By comparing with other literatures, it further 

illustrates the superiority of the MHFPA algorithm dealing 

with the MOOPF problem. 

 

 
Fig. 6. PFs in different NP with Tmax of 300 

 

 
Fig. 7. PFs of Case 1 

 

2) Case 2 

In Case 2, the MOPSO, NSGA-II and MHFPA algorithms 

are used to optimize fuel cost and emission simultaneously, 

and the obtained BTS and its corresponding control variables 

are shown in TABLE VI. It can be seen from TABLE VI that 

the BTS obtained by MHFPA with 831.6277 $/h of fuel cost 

and 0.2468 ton/h of emission dominant the ones obtained by 

MOPSO and NSGA-II approaches. Fig. 8 shows the Pareto 

fronts obtained by using three algorithms. It can be seen from 

Fig. 8 that the three algorithms can obtain the Pareto fronts. 
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TABLE III  
THE DETAIL PARAMETERS OF THE ALGORITHMS 

Methods Parameters Case1~Case6 Case7 Case8 Case9~10 

MHFPA Population size NP 100 100 100 100 

 Maximum Iteration Tmax 300 500 500 500 

 Switch probability Pmax/Pmin 0.8/0.2 0.8/0.2 0.8/0.2 0.8/0.2 

 crossover constant cr 0.8 0.8 0.8 0.8 

 Real constant factor Ψmax/Ψmin 0.8/0.2 0.8/0.2 0.8/0.2 0.8/0.2 

 λ 1.5 1.5 1.5 1.5 

MOPSO Population size NP 100 100 100 - 

 Maximum Iteration Tmax 300 500 500 - 

 Inertia weight factor wmax/wmin 0.9/0.4 0.9/0.4 0.9/0.4 - 

 Learning factor c1/c2 2/2 2/2 2/2 - 

NSGA-Ⅱ Population size NP 100 100 100 100 

 Maximum Iteration Tmax 300 500 500 500 

 Mutation index/percentage 20/0.1 20/0.1 20/0.1 20/0.1 

 Crossover index/percentage 20/0.1 20/0.1 20/0.1 20/0.1 

 

TABLE IV  
THE BEST SOLUTIONS OF CASE 1 

control variables MHFPA NSGA-Ⅱ MOPSO 

PGe_2 (MW) 55.9490 51.1739 55.2040 

PGe_5 31.8608 32.8422 33.2515 

PGe_8 35.0000 34.8975 35.0000 

PGe_11 24.1388 27.9880 28.8730 

PGe_13 24.8255 23.6356 22.9246 

VGe_1 (p.u.) 1.1000 1.0999 1.0994 

VGe_2 1.0907 1.0868 1.0913 

VGe_5 1.0685 1.0524 1.0641 

VGe_8 1.0773 1.0711 1.0766 

VGe_11 1.0763 1.0982 1.0893 

VGe_13 1.0962 1.0948 1.0413 

T11 (p.u.) 1.0363 1.0006 1.0489 

T12 0.9150 0.9240 1.0513 

T15 1.0001 1.0094 1.0768 

T36 0.9697 0.9799 1.1000 

QCo_10(p.u.) 0.0500 0.0247 0.0000 

QCo_12 0.0335 0.0064 0.0170 

QCo_15 0.0380 0.0320 0.0299 

QCo_17 0.0500 0.0245 0.0000 

QCo_20 0.0317 0.0203 0.0364 

QCo_21 0.0500 0.0221 0.0439 

QCo_23 0.0322 0.0344 0.0445 

QCo_24 0.0496 0.0121 0.0471 

QCo_29 0.0304 0.0191 0.0486 

Jfcost ($/h) 833.1646 835.5818 840.0079 

Jploss (M W) 5.0265 5.0451 5.0257 

 

TABLE V  
COMPARISON OF LITERATURE IN CASE 1 

Comparison Fuel cost($/h) Active power loss(MW) 

MHFPA 833.1646 5.0265 

NSGA-Ⅱ 835.5818 5.0451 

MOPSO 840.0079 5.0257 

NMBAS[19] 831.1550 5.0707 

MSA[31] 859.1915 4.5404 

MOTLBO[10] 830.7813 5.2742 

MODFA[23] 833.9365 4.9561 

NSGA-Ⅲ[23] 836.8076 5.1775 

 

Although the gap is small, the Pareto front obtained by 

MHFPA algorithm is better than the other two algorithms 

according to the Pareto dominance rule. 

TABLE VII shows the BTS of Case 2 obtained by different 

methods proposed by scholars in recent years. As can be seen 

from the table, the BTS obtained by MHFPA is superior to 

AGSO and ESDE algorithms, and is of the same priority as 

those obtained by MODFA and HFBA-COFS algorithms. All 

in all, the proposed MHFPA has competitive advantages 

compared with other algorithms. 

3) Case 3 

MOOPF case 3 optimizes Jploss and Jcost-vp concurrently, and 

the optimization results are shown in Fig. 9. It can be seen 

from Fig. 9 that the diversity of PF solution sets of the three 

algorithms are similar, but MHFPA has a better potential to 

obtain evenly distributed PF and the obtained PF is closer to 

the real front. TABLE VIII gives the BTS of Case 3 and its 

corresponding decision variables. Through data comparison, 

the BTS obtained by MHFPA algorithm, including fuel cost 

of 867.8158 $/h (valve point) and power loss of 5.6303 MW, 

is superior to the other two algorithms. In addition, the result 

is better than NHBA [8], which further strongly illustrates the 

effectiveness of the proposed method. 

 

 
Fig. 8. PFs of Case 2 

 

4) Case 4 

In Case 4, power loss and emissions are optimized 

simultaneously, and the PFS obtained by the three algorithms 

are shown in Fig. 10. As we can see from Fig. 10, the red 

curve is closer to the real Pareto front, and the three curves are 

significantly different. Obviously, the simulation results 

obtained by the MHFPA algorithm are far superior to the 

other two algorithms, and regardless of the uniformity and 

diversity of the distribution, the performance of MHFPA is 

significantly better. 
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TABLE IX summarizes the experimental results of Case 4. 

It can be seen from the data that the emission data obtained by 

the three algorithms are the same, and the BTS of power loss 

and emission obtained by MHFPA algorithm are 2.8830 MW 

and 0.2054 ton/h respectively, which dominates MOPSO, 

NSGA-II and the MODFA algorithm in literature [23]. 

 

TABLE VI  
THE BEST SOLUTIONS OF CASE 2 

control variables MHFPA NSGA-Ⅱ MOPSO 

PGe_2 (MW) 58.3160 58.4837 62.1311 

PGe_5 27.1604 27.3802 29.1484 

PGe_8 35.0000 35.0000 35.0000 

PGe_11 25.7353 27.1388 27.6693 

PGe_13 26.0175 24.4721 18.5859 

VGe_1 (p.u.) 1.1000 1.0561 1.1000 

VGe_2 1.0816 1.0501 1.0809 

VGe_5 1.0545 1.0143 1.0280 

VGe_8 1.0590 1.0169 1.0481 

VGe_11 1.0472 1.0999 1.0736 

VGe_13 1.0995 1.0562 1.0294 

T11 (p.u.) 1.0675 1.0381 0.9000 

T12 0.9024 0.9001 1.0215 

T15 0.9902 0.9250 1.0002 

T36 0.9792 0.9531 0.9899 

QCo_10 (p.u.) 0.0318 0.0494 0.0293 

QCo_12 0.0085 0.0499 0.0020 

QCo_15 0.0023 0.0491 0.0111 

QCo_17 0.0331 0.0395 0.0054 

QCo_20 0.0500 0.0438 0.0313 

QCo_21 0.0500 0.0130 0.0123 

QCo_23 0.0500 0.0005 0.0440 

QCo_24 0.0243 0.0413 0.0221 

QCo_29 0.0397 0.0062 0.0242 

Jfcost ($/h) 831.6277 833.2228 833.7139 

Jemission (ton/h) 0.2468 0.2470 0.2492 

 

TABLE VII  
COMPARISON OF LITERATURE IN CASE 2 

Comparison Fuel cost($/h) Emission (ton/h) 

MHFPA 831.6277 0.2468 

NSGA-Ⅱ 833.2228 0.2470 

MOPSO 833.7139 0.2492 

AGSO[9] 843.5473 0.2539 

ESDE[33] 833.4743 0.2540 

MODFA[23] 831.6652 0.2432 

NSGA-Ⅲ[23] 832.5323 0.2483 

HFBA-COFS[24] 833.0155 0.2329 

DE-PFA[24] 833.5200 0.2332 

 

 
Fig. 9. PFs of Case 3 

5) Case 5 

Compared with dual-objective optimization, the 

simultaneous optimization of tri-objective will undoubtedly 

increase the difficulty of solving. In Case 5, the three 

conflicting objective functions of power loss, emission, and 

fuel cost are simultaneously optimized to illustrate the 

performance of MHFPA. Fig. 11 shows the optimal PF 

distributions of MHFPA, MOPSO, and NSGA-II. It again 

strongly illustrates that the PF of the MHFPA algorithm is 

more uniform than the other two algorithms, and the overall 

performance is the best. 

 

TABLE VIII  
THE BEST SOLUTIONS OF CASE 3 

control 

variables 
MHFPA NSGA-Ⅱ MOPSO NHBA[8] 

PGe_2 (MW) 46.5349 41.9419 44.6724 52.3984 

PGe_5 34.8918 30.8531 32.7786 31.9677 

PGe_8 34.9847 33.7896 34.0735 34.6347 

PGe_11 25.6527 29.4862 25.4938 19.6335 

PGe_13 12.0000 17.7004 18.5716 20.2407 

VGe_1 (p.u.) 1.1000 1.0801 1.1000 1.0992 

VGe_2 1.0875 1.0623 1.0887 1.0992 

VGe_5 1.0655 1.0427 1.0611 1.0697 

VGe_8 1.0824 1.0483 1.0678 1.0804 

VGe_11 1.1000 1.0888 1.0600 1.0972 

VGe_13 1.0962 1.0752 1.0489 1.0707 

T11 (p.u.) 1.0571 1.0416 1.0869 1.0257 

T12 0.9825 0.9130 0.9345 0.9754 

T15 1.0041 1.0150 1.0522 0.9818 

T36 1.0094 0.9725 1.0130 0.9868 

QCo_10(p.u.) 0.0464 0.0395 0.0203 0.0276 

QCo_12 0.0000 0.0400 0.0436 0.0277 

QCo_15 0.0500 0.0486 0.0411 0.0242 

QCo_17 0.0459 0.0438 0.0254 0.0256 

QCo_20 0.0468 0.0054 0.0330 0.0397 

QCo_21 0.0220 0.0318 0.0500 0.0310 

QCo_23 0.0334 0.0439 0.0000 0.0315 

QCo_24 0.0488 0.0218 0.0383 0.0269 

QCo_29 0.0326 0.0040 0.0380 0.0205 

Jfcost-vp ($/h) 867.8159 868.5625 869.3050 868.9526 

Jploss (MW) 5.6303 5.8794 5.6504 5.6761 

 

 
Fig. 10. PFs of Case 4 

 

TABLE X shows the BTS obtained by the fuzzy affiliation 
theory. It can be seen from the results that the BTS solution of 

the MHFPA algorithm dominates the MOPSO and NSGA-II 

algorithms. Among them, the BTS of fuel cost, power loss and 
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emission obtained by the MHFPA algorithm are 879.4391 $/h, 

3.9070 MW and 0.2167 ton/h, respectively. Compared with 

the MOFA-PFA in literature [5], the BTS of the MHFPA 

algorithm have superior Jfcost and Jploss, and the Jemission is 

almost the same. 

6) Case 6 

The voltage deviation plays a vital role in the normal  

operation of the power system. If the voltage fluctuation of the  

 

TABLE IX  
THE BEST SOLUTIONS OF CASE 4 

control 

variables 
MHFPA NSGA-Ⅱ MOPSO MODFA[23] 

PGe_2 (MW) 74.2742 73.9428 74.0868 74.1405 

PGe_5 49.9979 49.9999 50.0000 49.9999 

PGe_8 34.9978 34.9947 35.0000 35.0000 

PGe_11 30.0000 29.9998 30.0000 29.9998 

PGe_13 40.0000 39.9990 40.0000 39.9999 

VGe_1 (p.u.) 1.0999 1.0921 1.1000 1.1000 

VGe_2 1.0967 1.0854 1.1000 1.0967 

VGe_5 1.0789 1.0672 1.1000 1.0784 

VGe_8 1.0860 1.0742 1.0942 1.0860 

VGe_11 1.0998 1.0996 1.1000 1.0999 

VGe_13 1.0999 1.0999 1.1000 1.1000 

T11(p.u.) 1.0580 1.0176 1.0735 1.0549 

T12 0.9000 0.9160 0.9000 0.9007 

T15 0.9873 0.9712 0.9948 0.9878 

T36 0.9724 0.9639 0.9820 0.9725 

QCo_10(p.u.) 0.0490 0.0391 0.0500 0.0480 

QCo_12 0.0491 0.0267 0.0500 0.0490 

QCo_15 0.0432 0.0404 0.0500 0.0444 

QCo_17 0.0492 0.0497 0.0500 0.0495 

QCo_20 0.0378 0.0325 0.0406 0.0373 

QCo_21 0.0497 0.0500 0.0500 0.0500 

QCo_23 0.0243 0.0362 0.0184 0.0231 

QCo_24 0.0499 0.0497 0.0500 0.0500 

QCo_29 0.0215 0.0245 0.0242 0.0222 

Jemission 

(ton/h) 
0.2054 0.2054 0.2054 0.2054 

Jploss (MW) 2.8830 2.9298 2.9741 2.8841 

 

TABLE X  
THE BEST SOLUTIONS OF CASE 5 

control 

variables 
MHFPA NSGA-Ⅱ MOPSO 

MOFA-PFA

[5] 

PGe_2 (MW) 63.8440 62.4853 63.9466 57.8900 

PGe_5 38.1260 42.9497 39.5116 36.2900 

PGe_8 34.7302 34.0751 34.5969 35.0000 

PGe_11 30.0000 28.6734 27.7020 29.2710 

PGe_13 33.8685 30.4050 33.8351 40.0000 

VGe_1 (p.u.) 1.0979 1.0516 1.1000 1.0985 

VGe_2 1.0896 1.0396 1.0937 1.0869 

VGe_5 1.0705 1.0154 1.0849 1.0625 

VGe_8 1.0836 1.0295 1.0917 1.0767 

VGe_11 1.0936 1.0856 1.0913 1.0857 

VGe_13 1.1000 1.0398 1.0974 1.0386 

T11 (p.u.) 1.0180 1.0240 1.1000 1.0860 

T12 0.9592 0.9027 0.9290 0.9930 

T15 1.0222 0.9609 1.0262 1.0520 

T36 0.9786 0.9787 0.9802 1.0770 

QCo_10(p.u.) 0.0319 0.0140 0.0046 0.0140 

QCo_12 0.0000 0.0229 0.0102 0.0220 

QCo_15 0.0500 0.0266 0.0500 0.0080 

QCo_17 0.0397 0.0425 0.0451 0.0250 

QCo_20 0.0137 0.0180 0.0337 0.0390 

QCo_21 0.0500 0.0353 0.0328 0.0270 

QCo_23 0.0500 0.0031 0.0305 0.0100 

QCo_24 0.0389 0.0241 0.0500 0.0170 

QCo_29 0.0369 0.0233 0.0500 0.0500 

Jemission 

(ton/h) 
0.2167 0.2183 0.2178 0.2165 

Jploss (MW) 3.9070 4.2617 4.0056 4.2179 

Jfcost($/h) 879.4391 885.1467 879.9349 879.9100 

system is too large, it may cause the phenomenon of the 

frequency instability of the system, and even lead to the 

breakdown of the power system in serious cases. 

Case 6 optimizes the voltage deviation and power loss on 

the IEEE30 standard system at the same time. Fig. 12 shows 

the Pareto fronts obtained by the MHFPA, MOPSO and 

NSGA-II algorithms, and TABLE XI lists the detailed 

simulation results. According to the above results, the BTS of 

power loss and voltage deviation obtained by MHFPA 

algorithm are 3.0366 MW and 0.5267 respectively, which are 

superior to MOPSO and NSGA-II algorithms. 

 

 
Fig. 11. PFs of Case 5 

 

TABLE XI  
THE BEST SOLUTIONS OF CASE 6 

control variables MHFPA NSGA-Ⅱ MOPSO 

PGe_2 (MW) 80.0000 79.9842 80.000 

PGe_5 49.9969 49.9999 5.0000 

PGe_8 34.9826 34.9931 35.0000 

PGe_11 29.9864 29.9996 30.0000 

PGe_13 39.9388 40.0000 40.0000 

VGe_1 (p.u.) 1.1000 1.0999 1.1000 

VGe_2 1.0949 1.0968 1.1000 

VGe_5 1.0729 1.0813 1.0854 

VGe_8 1.0798 1.0853 1.1000 

VGe_11 1.0063 1.0682 1.1000 

VGe_13 1.0348 1.0262 1.0224 

T11(p.u.) 1.0934 1.1000 1.1000 

T12 0.9771 1.0346 1.1000 

T15 1.0727 1.0662 1.0685 

T36 1.0373 1.0357 1.0521 

QCo_10 (p.u.) 0.0456 0.0070 0.0000 

QCo_12 0.0222 0.0260 0.0000 

QCo_15 0.0368 0.0243 0.0000 

QCo_17 0.0324 0.0461 0.0261 

QCo_20 0.0500 0.0369 0.0500 

QCo_21 0.0500 0.0245 0.0500 

QCo_23 0.0245 0.0405 0.0500 

QCo_24 0.0500 0.0432 0.0500 

QCo_29 0.0208 0.0201 0.0193 

JVD 0.5267 0.5661 0.6117 

Jploss (MW) 3.0366 3.0339 3.0843 

 

D. IEEE57-bus System 

Two dual-objective MOOPF optimization experiments are 

carried out on IEEE57 standard test system. Compared with 
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the IEEE30 system, the system is harder to find the best 

solution, and it is also a test of the proposed algorithm. 

1) Case 7 

Simultaneous optimization of total fuel cost functions and 

emission functions is the core of Case 7. TABLE XII lists the 

control variables and BTS obtained by the three methods. 

Among them, the BTS of fuel costs and emissions obtained by 

the MHFPA algorithm are 42939.6926 $/h and 1.3033 ton/h, 

respectively. It still can be concluded from the table that 

MHFPA obtains the best results. The Pareto optimal fronts 

obtained by MHFPA, MOPSO and NSGA-II are shown in Fig. 

13. It can be clearly seen from the figure that MHFPA obtains 

a uniformly distributed Pareto solution set, and a better Pareto 

front than the other two methods. 

 

 
Fig. 12. PFs of Case 6 

 

 
Fig. 13. PFs of Case 7 

 

2) Case 8 

In case 8, the total fuel cost and power loss are considered 

concurrently. The experimental results are shown in Fig. 14. It 

can be clearly seen from the figure that MHFPA has better 

Pareto front than MOPSO and NSGA-II, and the distribution 

is more uniform and continuous. TABLE XII shows the BTS 

and control variables of the three algorithms and MOIBA in 

the literature [6] in case 8. Among them, the BTS calculated 

by the MHFPA algorithm includes the fuel cost of 

42092.6602 $/h and the power loss of 10.8947 MW. The 

comparison shows that MHFPA has obtained the least fuel 

cost and network loss. 

 

 
Fig. 14. PFs of Case 8 

 

 
Fig. 15. PFs of Case 9 

 

E. IEEE118-bus System 

The IEEE118-bus test system is more complicated than the 

above two systems in terms of the system structure and the 

dimensionality of control variables. In recent years, few 

scholars have used the 118-bus test system for testing, and 

many algorithms can hardly find well-distributed Pareto 

fronts in this system, such as MOPSO. 

1) Case 9 

In case 9, the basic fuel cost and loss are optimized at the 

same time. As the PF front obtained by MOPSO method in 

solving this MOOPF case is extremely scattered and 

disorderly, it is not presented in this paper. Fig. 15 shows that 

the PF obtained by the MHFPA algorithm has a better
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TABLE XII  
THE BEST SOLUTIONS OF CASE 7 AND CASE 8 

control 

variables 

Case 7  Case 8 

MHFPA NSGA-Ⅱ MOPSO 
MPIO- 

COSR[22] 
 MHFPA NSGA-Ⅱ MOPSO MOIBA[6] 

PGe_2 (MW) 100.0000 99.9706 97.2820 100.0000  76.1758 59.0801 86.1457 53.4086 

PGe_3 85.6281 78.4012 64.4218 85.5144  61.7668 66.9557 66.2748 62.6900 

PGe_6 99.9643 100.0000 100.000 99.7250  100.0000 98.8679 98.2139 89.8593 

PGe_8 342.7870 344.2919 311.3586 348.8135  362.0245 364.6732 349.5353 377.9932 

PGe_9 99.6791 99.9012 100.0000 98.8729  98.5667 99.9354 99.9977 99.9232 

PGe_12 327.3909 326.2140 410.0000 306.1420  410.0000 410.0000 409.8576 410.0000 

VGe_1 (p.u.) 1.0296 0.9850 1.1000 1.0793  1.0687 1.0561 1.1000 1.0536 

VGe_2 1.0230 0.9770 1.1000 1.0768  1.0626 1.0534 1.1000 1.0467 

VGe_3 1.0163 0.9903 1.1000 1.0716  1.0515 1.0578 1.1000 1.0436 

VGe_6 1.0297 1.0243 1.1000 1.0903  1.0609 1.0737 1.1000 1.0521 

VGe_8 1.0330 1.0509 1.1000 1.0879  1.0664 1.0825 1.1000 1.0613 

VGe_9 1.0140 1.0335 1.1000 1.0651  1.0517 1.0707 1.1000 1.0481 

VGe_12 1.0204 1.0177 1.1000 1.0460  1.0490 1.0592 1.1000 1.0337 

T19 (p.u.) 0.9000 1.0424 1.0528 1.0312  0.9817 1.0956 0.9279 1.0350 

T20 1.0974 1.0300 1.0688 1.0520  1.0399 1.0725 1.1000 0.9496 

T31 1.0878 1.0110 0.9000 0.9862  1.0405 1.0263 1.1000 0.9837 

T35 0.9855 1.0327 1.0904 0.9439  0.9843 1.0347 0.9936 1.0267 

T36 1.1000 0.9666 1.0244 1.0043  1.0269 1.0707 0.9851 1.0055 

T37 1.0716 0.9481 1.0899 1.0161  1.0514 1.0031 1.0590 1.0597 

T41 0.9620 0.9377 1.1000 1.0041  0.9980 0.9980 1.1000 0.9682 

T46 1.0112 1.0207 0.9000 1.0109  0.9368 0.9689 0.9367 0.9558 

T54 0.9181 0.9704 0.9511 0.9165  0.9002 1.0008 0.9362 0.9893 

T58 0.9395 0.9395 1.0334 0.9596  0.9494 0.9742 1.0252 0.9281 

T59 0.9060 0.9641 0.9861 0.9588  0.9375 0.9848 1.1000 0.9192 

T65 0.9306 0.9724 1.0415 0.9773  0.9424 0.9927 1.0408 0.9525 

T66 0.9000 0.9000 0.9758 0.9573  0.9035 0.9549 1.0021 0.9441 

T71 0.9529 0.9575 1.1000 0.9922  0.9589 0.9495 1.0810 0.9527 

T73 0.9974 1.0101 0.9839 1.0562  0.9964 0.9527 1.1000 0.9421 

T76 0.9502 0.9887 0.9713 0.9812  1.0624 0.9931 0.9407 1.0606 

T80 0.9333 0.9783 1.0492 1.0582  1.0038 1.0161 1.0920 0.9688 

QCo_18 (p.u.) 0.2106 0.2543 0.0000 0.2283  0.2062 0.2982 0.0955 0.2343 

QCo_25 0.1569 0.2111 0.1761 0.1166  0.1108 0.1826 0.1674 0.1310 

QCo_53 0.1258 0.1597 0.3000 0.1542  0.1713 0.1564 0.1607 0.1876 

Jfcost ($/h) 42939.6926 43013.9664 42618.6901 43131.2743  42092.6602 42165.6695 42242.0329 42098.7213 

Jemission (ton/h) 1.3033 1.3153 1.4664 1.2314  - - - - 

Jploss(MW) - - - - - 10.8947 10.9477 11.6702 11.4759 

 

 
Fig. 16. PFs of Case 10 

 

distribution uniformity, and its performance has obvious 

advantages compared with the NSGA-II method. The BTS of 

MHFPA, NSGA-II are given in TABLE XV. It can be seen 

from TABLE XV that the BTS searched by MHFPA 

algorithm, including the fuel cost of 58061.7674 $/h and the 

power loss of 46.4566 MW dominate other algorithms. 

TABLE XIII shows the BTS  of Case 9 obtained by different 

methods proposed by scholars in recent years. As we can see 

from the data in the table, even in the face of large-scale 

system, the proposed method is still reliable and has a large 

competitive edge. 

 

TABLE XIII  
COMPARISON OF LITERATURE IN CASE 9 

Algorithms Fuel cost($/h) Active power loss(MW) 

MHFPA 58061.7674 46.4566 

NSGA-Ⅱ 58991.1959 47.3533 

HFBA-COFS[24] 59624.0613 61.0362 

MONIWCA[7] 58258.0000 49.7308 

 

TABLE XIV  
COMPARISON OF LITERATURE IN CASE 10 

Algorithms Fuel cost($/h) Emission (ton/h) 

MHFPA 59455.5016 2.2220 

NSGA-Ⅱ 60271.7117 2.8592 

MODFA[23] 59590.5889 2.4971 

 

2) Case 10 

Case 10 also considers optimizing emissions and fuel costs 

at the same time on the IEEE118-bus system. It can be seen 

from Fig. 16 that the Pareto optimal solutions obtained by the 

proposed MHFPA are diverse, uniform, and closer to the real 

Pareto front. Experimental data are summarized in TABLE 

XIV and TABLE ⅩⅤⅢ, from which we can see that BTS 

obtained by MHFPA includes 59455.5016$/h fuel cost and 
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TABLE XV  
THE BEST SOLUTIONS OF CASE 9 

control variables MHFPA NSGA-Ⅱ control variables MHFPA NSGA-Ⅱ 

PGe_4 (MW) 9.6456 13.0025 VGe_26 1.0173 1.0060 

PGe_6 5.0919 17.3434 VGe_27 0.9992 0.9919 

PGe_8 5.1944 11.1114 VGe_31 1.0097 1.0015 

PGe_10 167.2912 199.3599 VGe_32 1.0372 0.9970 

PGe_12 270.6777 246.3299 VGe_34 1.0392 0.9925 

PGe_15 12.4749 10.5972 VGe_36 1.0065 0.9792 

PGe_18 95.6150 92.3543 VGe_40 1.0024 0.9810 

PGe_19 8.0322 6.8328 VGe_42 1.0114 1.0162 

PGe_24 5.2829 6.8095 VGe_46 1.0221 1.0044 

PGe_25 101.7980 111.5554 VGe_49 1.0048 0.9942 

PGe_26 257.6937 253.7497 VGe_54 1.0030 1.0014 

PGe_27 8.1901 13.4359 VGe_55 1.0014 0.9943 

PGe_31 10.8714 8.9979 VGe_56 0.9993 1.0101 

PGe_32 73.2077 28.7453 VGe_59 1.0050 1.0170 

PGe_34 8.0000 8.8022 VGe_61 0.9966 1.0060 

PGe_36 28.5055 41.1790 VGe_62 1.0177 1.0307 

PGe_40 11.1848 17.9461 VGe_65 1.0261 1.0052 

PGe_42 8.0222 9.5616 VGe_66 1.0146 1.0270 

PGe_46 39.9499 35.3158 VGe_69 1.0023 1.0412 

PGe_49 244.7500 231.4941 VGe_70 1.0395 1.0098 

PGe_54 237.8432 249.4761 VGe_72 1.0186 1.0304 

PGe_55 31.6294 48.2464 VGe_73 0.9750 1.0195 

PGe_56 27.9347 30.5565 VGe_74 0.9928 0.9798 

PGe_59 193.9127 138.4071 VGe_76 1.0250 1.0090 

PGe_61 193.6305 132.6099 VGe_77 1.0463 1.0152 

PGe_62 25.1129 30.6604 VGe_80 1.0157 1.0171 

PGe_65 235.1790 255.4845 VGe_85 0.9978 0.9838 

PGe_66 203.4983 215.9670 VGe_87 0.9298 0.9320 

PGe_69 39.6294 71.9656 VGe_89 1.0125 1.0042 

PGe_70 10.1322 15.7263 VGe_90 1.0049 1.0045 

PGe_72 7.6457 16.4490 VGe_91 0.9981 1.0173 

PGe_73 5.1153 7.0109 VGe_92 1.0122 1.0157 

PGe_74 77.3687 40.5503 VGe_99 0.9935 1.0181 

PGe_76 27.0217 30.3313 VGe_100 1.0143 1.0062 

PGe_77 211.7708 203.0969 VGe_103 1.0089 0.9977 

PGe_80 45.3373 69.8253 VGe_104 0.9955 0.9878 

PGe_85 10.1467 10.0146 VGe_105 0.9877 0.9947 

PGe_87 100.2394 100.1037 VGe_107 0.9503 0.9758 

PGe_89 52.5193 73.3158 VGe_110 1.0036 1.0514 

PGe_90 9.8722 10.9635 VGe_111 1.0147 1.0671 

PGe_91 20.1829 20.4534 VGe_112 0.9988 1.0590 

PGe_92 123.5968 109.6392 VGe_113 1.0346 0.9984 

PGe_99 100.9328 101.1900 VGe_116 1.0022 1.0306 

PGe_100 103.8077 104.6278 T8 (p.u.) 1.0356 0.9927 

PGe_103 8.5464 12.0017 T32 0.9346 1.0571 

PGe_104 29.6680 34.4245 T36 0.9243 1.0663 

PGe_105 26.0217 37.8337 T51 0.9659 1.0180 

PGe_107 8.8591 8.2530 T93 1.0358 0.9476 

PGe_110 25.5086 35.8354 T95 1.0205 0.9826 

PGe_111 26.5214 25.5422 T102 0.9474 1.0424 

PGe_112 27.4697 25.0449 T107 1.0027 1.0055 

PGe_113 25.9396 41.9077 T127 0.9002 0.9550 

PGe_116 25.0017 25.0739 QCo_34 (p.u.) 0.0862 0.2460 

VGe_1 (p.u.) 1.0266 1.0022 QCo_44 0.1346 0.2467 

VGe_4 1.0292 1.0066 QCo_45 0.2108 0.3000 

VGe_6 1.0415 1.0188 QCo_46 0.0369 0.2763 

VGe_8 1.0541 1.0445 QCo_48 0.0541 0.0886 

VGe_10 1.0285 0.9991 QCo_74 0.2013 0.0603 

VGe_12 1.0290 0.9829 QCo_79 0.0473 0.1521 

VGe_15 1.0238 0.9871 QCo_82 0.01191 0.1141 

VGe_18 1.0140 0.9852 QCo_83 0.0230 0.2910 

VGe_19 1.0102 0.9849 QCo_105 0.2987 0.1459 

VGe_24 1.0265 1.0237 QCo_107 0.3000 0.1512 

VGe_25 0.9582 0.9865 QCo_110 0.2843 0.0230 

   Jfcost ($/h) 58061.7674 58991.1959 

   Jploss(MW) 46.4566 47.3533 

 

2.2220 ton/h emission, which is superior to NSGA-Ⅱ and 

MODFA algorithm in literature [23]. 

Through the simulation experiments of Cases 1-10, we can 

find that the results of MHFPA also have a competitive 

advantage compared with many methods in literature. 

F. Performance Evaluation 

Spacing (SP) and hypervolume (HV) provide quantitative 

indicators for evaluating the quality of the PF solution sets 

obtained by different algorithms to deal with MOOPF 
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Fig. 17. Box plots of SP  

 

 
Fig. 18. Box plots of HV  
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TABLE XVI  

DETAILED DATA OF THE BOX PLOT OF THE THREE ALGORITHMS 

Indexes Cases 
MHFPA MOPSO NSGA-II 

Mean Deviation Mean Deviation Mean Deviation 

SP 

Case 1 0.8453 0.0550 0.9124 0.2782 0.8653 0.1009 

Case 2 0.8573 0.0571 0.5789 0.2154 0.8651 0.0845 

Case 3 0.9586 0.0809 0.8099 0.2846 1.0239 0.0719 

Case 4 0.0006 9.1E-05 0.0012 0.0008 0.0006 9.6E-05 

Case 5 1.1594 0.0606 0.7812 0.2896 1.1670 0.1006 

Case 6 0.0137 0.0096 0.1414 0.2081 0.0104 0.0029 

Case 7 37.2516 7.4955 100.9377 47.6488 39.5981 10.0045 

Case 8 12.1516 6.8862 63.0804 42.1731 41.5510 27.7388 

HV 

Case 1 968.0628 5.4799 858.6444 192.6302 956.9300 16.2336 

Case 2 26.3313 0.2155 22.4569 8.4844 19.8159 0.3081 

Case 3 1415.9543 15.9290 1262.4783 279.3751 1404.8571 35.4639 

Case 4 0.0012 1.9E-05 0.0008 0.0002 0.0008 0.0001 

Case 5 131.2993 1.2541 108.8925 32.2528 124.7196 2.7010 

Case 6 13.7659 0.3423 10.3615 2.7929 13.6254 0.1453 

Case 7 14022.7038 209.2153 13180.9795 1491.0045 13683.3289 439.0254 

Case 8 29253.4445 2944.9541 25983.6193 7547.0732 23893.4368 5345.2839 

 
TABLE XVII  

THE AVERAGE ELAPSED TIME 

Algorithms 
the average elapsed time (second) 

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9 Case 10 

MHFPA 194.585 190.379 189.642 193.938 230.887 199.520 495.278 489.382 1441.446 1506.057 

NSGA-II 216.852 219.469 193.980 206.600 241.549 196.369 503.592 478.379 1496.931 1657.499 

MOPSO 224.766 229.502 185.914 237.663 248.277 202.895 518.947 499.232 - - 

 

problems. This paper takes eight optimization experiments 

performed on IEEE30 and IEEE57 bus systems as examples 

to study the optimization performance of MHFPA, MOPSO 

and NSGA-II algorithms more comprehensively. 

1) SP 

SP index represents the standard deviation of adjacent 

solutions in non-dominant solutions. A detailed introduction 

of SP is given in Reference [11]. The calculation formula of 

SP is as follows: 
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where Dmean is the average value of all di. The SP index 

reflects the distribution of POS set on the simulation graph. In 

general, the smaller the value of this index is, the more evenly 

distributed the solutions in the POS are. If SP=0, it means that 

there are equal intervals among the solutions in the Pareto 

optimal front. 

2) HV 

HV measures the coverage of Pareto front in the feasible 

region space. The larger the value of this index is, the more 

widely the solution set of the Pareto front is distributed in the 

feasible region. The detailed introduction of HV is given in 

Reference [19]. The definition of HV index is shown in 

Equation (39). 
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where vi represents the area or volume formed by each 

individual i in the solution set and the selected reference 

point. 

3) Statistical Analysis 

All the above analyses are the best simulation results of 20 

independent running experiments for MHFPA, MOPSO and 

NSGA-II algorithms. In this section, we will calculate the SP 

and HV performance indicators of the 20 running results of  

the three algorithms in case 1-case 8, and use box plots to 

visually express the statistical data of the SP and HV. TABLE 

XVI shows the detailed evaluation results of the SP and HV 

indicators. In the box plot, there is a line in the middle of the 

box, which represents the median of the data. Its height 

reflects the volatility of the data, and the top and bottom 

represent the maximum and minimum values of this set of 

data, respectively. Sometimes there are dots on the outside of 

the box that can be interpreted as outliers. 

Fig. 17 shows the box plots of the SP indicators of 8 cases. 

It can be seen from the figure, the fluctuation of SP index data 

of MHFPA is the least, and its average values are the lowest in 

most cases. This shows that the proposed algorithm is more 

stable and the distribution of the solution set is more uniform 

than the other two algorithms. In Case2, Case3 and Case5, 

although the MHFPA algorithm fails to obtain the minimum 

SP mean value, MHFPA has fewer outliers than other methods, 

and the Pareto front and BTS obtained by this algorithm in the 

simulation cases are superior to the two comparison 

algorithms. 

Fig. 18 shows the box plots of the HV indicators of 8 cases. 

It can be seen from the figure that MHFPA algorithm obtained 

the minimum HV standard deviation value, indicating that the 

diversity difference of Pareto front obtained by this algorithm 

in 20 independent experiments is smaller than other 

algorithms. In addition, the HV index data of this algorithm 

has fewer outliers, and its average value is larger than that of 

other methods, which proves that the PF solution set obtained 

by this algorithm has better diversity. 
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TABLE XVIII  

THE BEST SOLUTIONS OF CASE 10 

control variables MHFPA NSGA-Ⅱ control variables MHFPA NSGA-Ⅱ 

PGe_4 (MW) 5.1945 6.1521 VGe_26 1.0309 1.0013 

PGe_6 8.0653 12.2689 VGe_27 1.0473 1.0410 

PGe_8 5.0000 11.8057 VGe_31 1.0471 1.0236 

PGe_10 282.1645 189.4110 VGe_32 1.0092 0.9712 

PGe_12 286.4341 181.1385 VGe_34 1.0024 0.9897 

PGe_15 10.0725 20.6620 VGe_36 1.0418 1.0195 

PGe_18 31.0743 51.0332 VGe_40 1.0303 0.9317 

PGe_19 5.8439 7.6006 VGe_42 0.9793 1.0135 

PGe_24 5.7036 6.3380 VGe_46 1.0411 1.0011 

PGe_25 100.8793 100.1967 VGe_49 1.0130 1.0256 

PGe_26 100.0000 154.5302 VGe_54 1.0080 1.0146 

PGe_27 8.0000 13.2450 VGe_55 1.0153 1.0286 

PGe_31 8.0555 9.8663 VGe_56 1.0197 1.0057 

PGe_32 52.4531 25.3440 VGe_59 1.0355 0.9942 

PGe_34 8.0000 15.7428 VGe_61 1.0491 1.0044 

PGe_36 27.2354 32.3629 VGe_62 1.0398 1.0423 

PGe_40 9.9334 13.9711 VGe_65 1.0402 0.9840 

PGe_42 8.3585 17.6326 VGe_66 1.0547 1.0305 

PGe_46 61.4959 35.4225 VGe_69 1.0070 0.9844 

PGe_49 248.1737 249.9834 VGe_70 0.9901 1.0293 

PGe_54 51.1580 151.2727 VGe_72 1.0367 0.9938 

PGe_55 33.2710 50.2628 VGe_73 0.9941 1.0697 

PGe_56 26.1296 30.7026 VGe_74 1.0064 0.9282 

PGe_59 63.0469 50.0540 VGe_76 1.0038 1.0172 

PGe_61 200.0000 176.7912 VGe_77 1.0393 1.0322 

PGe_62 29.5615 90.7788 VGe_80 1.0247 0.9884 

PGe_65 410.5184 304.1519 VGe_85 0.9765 1.0262 

PGe_66 244.6302 245.9660 VGe_87 1.0120 1.0024 

PGe_69 34.4022 53.0422 VGe_89 1.0438 1.0085 

PGe_70 10.1921 10.4304 VGe_90 0.9962 1.0274 

PGe_72 5.3894 7.5431 VGe_91 1.0180 1.0109 

PGe_73 5.0496 5.0374 VGe_92 1.0470 1.0036 

PGe_74 31.5602 60.1638 VGe_99 1.0801 1.0535 

PGe_76 31.3947 51.0609 VGe_100 1.0114 1.0281 

PGe_77 238.4564 221.5711 VGe_103 0.9861 0.9976 

PGe_80 34.9182 71.4405 VGe_104 1.0066 0.9819 

PGe_85 10.0000 16.7094 VGe_105 0.9994 0.9772 

PGe_87 186.6442 236.9483 VGe_107 0.9387 0.9543 

PGe_89 118.5274 82.2049 VGe_110 0.9998 1.0087 

PGe_90 8.0615 9.3205 VGe_111 0.9467 1.0928 

PGe_91 20.0000 25.3201 VGe_112 1.0305 0.9781 

PGe_92 130.9848 173.5649 VGe_113 1.0477 0.9918 

PGe_99 153.4428 114.5672 VGe_116 1.0775 1.0030 

PGe_100 172.2901 111.4755 T8 (p.u.) 0.1100 0.0250 

PGe_103 8.0000 10.2722 T32 0.0346 0.1639 

PGe_104 26.2246 25.2439 T36 0.1090 0.0365 

PGe_105 34.9555 25.0000 T51 0.0864 0.1171 

PGe_107 8.4857 8.1347 T93 0.0013 0.1504 

PGe_110 25.2492 32.1845 T95 0.1504 0.1755 

PGe_111 25.0000 40.1529 T102 0.0436 0.1790 

PGe_112 27.3803 49.7732 T107 0.0108 0.0663 

PGe_113 39.8090 48.8245 T127 0.0291 0.1621 

PGe_116 26.2157 32.1997 QCo_34 (p.u.) 0.0053 0.1413 

VGe_1 (p.u.) 1.0926 1.0364 QCo_44 0.1064 0.0670 

VGe_4 1.0868 1.0256 QCo_45 0.2682 0.1577 

VGe_6 1.0882 0.9701 QCo_46 0.0470 0.1611 

VGe_8 0.9790 0.9757 QCo_48 0.2373 0.0995 

VGe_10 1.0564 0.9900 QCo_74 0.2703 0.1676 

VGe_12 1.0090 0.9951 QCo_79 0.2277 0.2532 

VGe_15 1.0243 0.9566 QCo_82 0.0000 0.2972 

VGe_18 1.0112 1.0013 QCo_83 0.2184 0.2250 

VGe_19 0.9354 1.0153 QCo_105 0.1333 0.1695 

VGe_24 1.0803 0.9428 QCo_107 0.2528 0.0882 

VGe_25 0.9176 1.0335 QCo_110 0.0136 0.0026 

   Jfcost ($/h) 59455.5016 60271.7117 

   Jemission (ton/h) 2.2220 2.8592 

 

G. Algorithm Complexity 

The algorithm complexity can be used as the evaluation 

index of algorithm efficiency, which is indirectly expressed 

by the average running time in this paper. In the face of 

practical engineering problems, the dispatcher definitely 

hopes that the algorithm can be efficient in solving the power 

flow optimization problem. TABLE XVII shows the average 

elapsed time of the three algorithms running independently 20 

times in cases 1-10. It can be seen from the table that MHFPA 

takes less time to solve the MOOPF problem than the 
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NSGA-Ⅱ and MOPSO algorithms, thus further verifying the 

efficiency of the algorithm. 

V. CONCLUSION 

This paper proposes a modified and hybrid flower 

pollination algorithms named MHFPA, including the 

mutation and crossover process in the DE algorithm, the 

sinusoidal nonlinear dynamic switching probability and the 

elite strategy of elder generation to solve the MOOPF 

problem. In this paper, different multi-objectives, which 

consider the total fuel cost, active power loss, total fuel cost 

with valve point, emissions and voltage deviation impacts, for 

OPF problem are formed. The IEEE30-, 57- and 

IEEE118-bus test systems with ten cases under the condition 

of satisfying the equality and inequality constraints are used to 

test the effectiveness of the proposed MHFPA. In order to 

obtain a well-distributed Pareto front, three multi-objective 

optimization strategies are introduced: SPA, NSES and BTS. 

Two performance indicators, HV and SP, comprehensively 

evaluate the performance of the proposed algorithm. 

Compared with the experimental results, MHFPA has more 

competitive advantages than MOPSO and NSGA-II 

algorithms in solving MOOPF problems. Therefore, the 

proposed MHFPA algorithm is a good candidate to solve the 

MOOPF problem in the real power system. 
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