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Abstract—The paper studies the BVP for a mixed-type first-
order linear operator-differential equations. We prove that
there exists an absolutely continuous-unique solution in a
certain Sobolev-type space

◦
W (H,H1). We provide the Galërkin

method for sufficiently smooth selfadjoint positively definite
operator Φ(t) and α− subordinate differentiable operator S(t),
0 ≤ α < 1. The investigated method depends on a special basis
{ei}∞i=1 of the operator Ψ similar to Φ. Moreover, using the
eigenvalues λi of the operator Ψ to derive the error estimates
of the approximate solutions. Through this work, we investigate
how quickly the approximate solutions approach to the exact
one.

Index Terms—boundary value problems (BVP), Galërkin
method, orthoprojector, rate of convergence, mixed-type prob-
lem, selfadjoint operator.

I. INTRODUCTION

THE most significant and serious problem that rise in
the numerical investigated analysis and its scientific

and technological applications is to know at what rate the
approximate solutions converge to the unique exact one in
various metrics. From nearly eighty years ago, Kantorovich
[8] was the cardinal who investigated this type of problems,
while Kislov N. V. investigated the inhomogeneous BVPs
for differential-operator equations [9]. the Galërkin method
is considered to be among the highest crucial approximative
methods because it provides Galërkin solution (approximate
solutions) in addition to proving the existence of the unique
solution under specific conditions [3], [7], [10], [17], [18].
Nowadays, various natural occurrences have been described
by IBVPs in Banach spaces for linear parabolic differential
equations. For example [10] has considerable attention to
the uniform solvability of the perturbed-differential equations
using a subordinate operator to the leading perturbed one
with some orders. In the Sobolev-type space, we obtain the
error of convergence estimates of the ordinary derivative of
the Galërkin solution to the exact unique one of the operator-
differential equations. The work [15] estimated the method
of projection and projection difference to get the estimates
of the rate at which the approximate solutions for weakly
converge. Furthermore, for the IBVPs of the isomorphic
operator-differential equations in a Hilbert-type space, the
approximation error and its estimates were provided.
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II. PROBLEM STATEMENT AND AUXILIARY ASSERTIONS

We consider the BVP in a certain space H1 as densely
embedding in a space H with norm ‖.‖ = ‖.‖H in which
both of H1 and H are separable Hilbert spaces:

Φ(t)Z
′
(t)− S(t)Z(t) = f(t), t ∈ [0, T ], (1)

Z(t)|t=0 = 0. (2)

Where Z(t) and f(t)− the unknown and the given functions,
Φ(t) and S(t)− acting in H linear operators. The operator
Φ(t) is considered to be an independent of t− selfadjoint in
H , ((Φ(t)x, x) > 0∀x ∈ H, x 6= 0) in which Dom(Φ(t)) =
H1, (Φ(t) = Φ∗(t) ≥ λ1E, λ1 > 0), λ1− is the spectrum
lower bound (λ1 ∈ σ(Φ)) [1], [2], [6]. All derivatives here
are perceived according to distributions theory.

from now on, concerning the operators Φ(t) and S(t), we
assume that they’ll fulfill the following necessary assump-
tions:
(i) Φ(t) and S(t)− differentiable operators and the deriva-
tives Φ

′
(t), S

′
(t) : H1 → H are strongly continuous on the

interval [0, T ].
(ii) S(t) is α− subordinate operator to Φ(0) where,
Dom(S(t) ⊃ Dom(Φ(t)) [12]. For any function v ∈ H1

there’s a k1 ≥ 0 constant positive value such that,

‖S(t)v‖ ≤ k1‖Φ(0)v‖α‖v‖1−α, 0 ≤ α < 1. (3)

(iii) the operator Ψ is similar to Φ(0) [13] i.e., Ψ is consid-
ered to be selfadjoint, ((Ψ(t)x, x) > 0∀x ∈ H, x 6= 0) with
the domain Dom(Ψ) = Dom(Φ(0)). Hence, Φ−1,Ψ−1 are
completely continuous. For the angel between Φ(t) and Ψ
to be acute in Hilbert-type space H [16], i.e., ∀v ∈ H1 we
have: (

Φ(t)v, Ψv
)
≥ k2‖Φ(0)v‖‖Ψv‖, v ∈ H1, (4)

where 0 < k2 ≤ 1 does not depend on t or v.
Let the function f(t) be in the space B2(0, T ;H) over

the interval [0, T ], where

‖f(t)‖B2(0,T ;H) =

(∫ T

0

‖f(t)‖2Hdt

) 1
2

<∞.

Further, we consider the function Z(t) with values in
Hilbert space H1 having a continuous derivative in the
space H . Assume that Z(t) and Φ(t) have a continuous

derivative
dZ(t)

dt
,
dΦ(t)

dt
respectively in H .

Moreover,
for all Z, v ∈ H1 [11] we get the following property(

dΦ(t)

dt
Z, v

)
=

(
Z, dΦ(t)

dt
v

)
, t ∈ (0, t).
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Such that

W 1
2 (H,H1)

=

{
Z(t) ∈ B2(0, T ;H1) :

d

dt

(
Φ(t)Z(t)

)
∈ B2(0, T ;H)

}
,

‖Z‖W 1
2 (H,H1)

=

(
‖Z(t)‖2B2(0,T ;H1)

+

∥∥∥∥ ddt(Φ(t)Z(t)
)∥∥∥∥2

B2(0,T ;H)

) 1
2

.

Consider the Sobolev space
◦
W (H,H1) =

{
Z(t) : Z(t) ∈W 1

2 (H,H1), Z(t)t=0 = 0
}
.

Then the function Z(t) ∈
◦
W (H,H1) which fulfills (1) is

called the strong solution and problem (1), (2) is called
strongly solvable.
According to the assumption (i) and (ii) the operators
Φ(t)Φ−1(0) and Φ(0)Φ−1(t) acting in H are norm bounded
(uniform bounded) [9], i.e.,

‖Φ(t)Φ−1(0)‖H→H ≤ m1,

‖Φ(0)Φ−1(t)‖H→H ≤ m2,
(5)

where m1,m2 > 0 don’t depend on t.
Let {ei}∞i=1 be a ”basis” of eigenvectors of Ψ, which
represents a complete orthonormal system and let {λi}∞i=1

be the eigenvalues of operator Ψ, in which Ψei = λiei,

0 < λ1 ≤ . . . ≤ λn ≤ . . . , λn → +∞ as n→ +∞.

The approximate Galërkin solutions for problem (1), (2) is
identified as follows:

Zn(t) =
n∑
i=1

Θi(t)ei,

where Θi(t), i = 1, n is an unknown functions denote the
exact solution of the following zero-initial condition problem
for a system of operator-differential equations:

Φ(t)Θ
′

j(t)−
n∑
i=1

Θj(t)
(
S(t)ei, ej

)
=
(
f(t), ej

)
H
,

Θj(t)t=0 = 0, j = 1, n.

(6)

Let Rn be the unique orthogonal projection in H onto Hn,
which defined as the span (e1, e2, . . . , en). Then problem
(6) can be expressed in the following equivalent form:

Φ(t)Z
′

n(t)−RnS(t)Zn(t) = Rnf(t), Zn(t)|t=0 = 0, (7)

where Zn(t)− the Galërkin solution (approximate solutions)
of problem (1), (2) [12].

The local BVP for Eq. (1) using the properties of the
corresponding spectral problem were studied in [5]. While
the non-local BVP with constant coefficients were studied in
[4].

III. MAIN RESULTS

First we look over the questions of the solvability of

problem (1), (2) in H . The strong solution Z(t) ∈
◦
W (H,H1)

of problem (1), (2) is absolutely continuous for almost all
t ∈ [0, T ] and fulfills the Eq. (1) and the assumption (2).
In what follows, c > 0 denotes different constants that are
independent of t, n.

In this section, we will consider the question of the unique
solvability of problrm (1), (2).

Theorem 1. Assume that f(t) ∈ B2(0, T ;H) and the
operators Φ(t) and S(t) fulfill the assumptions (i) − (iii),
then problem (1), (2) is solvable and there exists uniquely a

strong solution Z(t) ∈
◦
W (H,H1).

Proof: Consider the following problem of ordinary
differential equation

Φ(t)
dv

dt
= %(t), v(t)|t=0 = 0, (8)

if %(t) ∈ B2(0, T ;H), then problem (8) is solvable and

possesses a unique solution v ∈
◦
W (H,H1) and∫ T

o

∥∥∥∥Φ(t)
dv(t)

dt

∥∥∥∥2 dt ≤ c1 ∫ t

0

‖%(t)‖2dt.

holds true.
Let the operator

(
Φ(t) ddt

)−1
: B2(0, T ;H) →

◦
W (H,H1)

be a homeomorphism.
Consequently, in B2(0, T ;H), we will provide the following
estimate ∥∥∥∥(Φ(t)

d

dt

)−1∥∥∥∥
B2(0,T ;H)→B2(0,T ;H)

≤ c2. (9)

As the operator Φ(0)Φ−1(t) in B2(0, T ;H) is actually
uniformly bounded and then from the Heinz’s inequality [10],
the operator Φ

1
2 (0)Φ−

1
2 (t) is also uniformly bounded.

Therefore(
Φ(t)v, v

)
H
≥ β1‖Φ

1
2 (0)v‖2, β1 > 0. (10)

Multiply equation (8) scalarly by v(t) in H and integrate
with respect to the time t from 0 to s, s ≤ T. Then using
(10), we obtain

β1
2
‖Φ 1

2 (0)v(s)‖2 ≤ ‖%(t)‖B2(0,T ;H)

(∫ s

0

‖v(t)‖2
)1/2

,

max
0≤s≤T

‖Φ 1
2 (0)v(s)‖ ≤ c3‖%(t)‖B2(0,T ;H).

Hence,

max
0≤s≤T

‖Φ 1
2 (0)

(
Φ(t)

d

dt

)−1
%(t)‖ ≤ c3‖%(t)‖B2(0,T ;H).

(11)
We can simply take

Φ(t)
dZ
dt

(t) ≡ ω(t), Z(t)|t=0 = 0.

Then, in the Hilbert space B2(0, T ;H), problem (1), (2) is
identical to

ω(t)− S(t)
(

Φ(t)
d

dt

)−1
ω(t) = f(t). (12)

On the other side, we’ll investigate the operator

S(t)
(

Φ(t) ddt

)−1
as follows:
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Using the relation (3) and Hölder’s inequality, for any
Y ∈ H1 we get∥∥∥∥S(t)

(
Φ(t)

d

dt

)−1
Y
∥∥∥∥

B2(0,T ;H)

≤ k1
∥∥∥∥Φ(0)

(
Φ(t)

d

dt

)−1
Y
∥∥∥∥α

B2(0,T ;H)

×
∥∥∥∥(Φ(t)

d

dt

)−1
Y
∥∥∥∥1−α

B2(0,T ;H)

.

(13)

As Φ(0)Φ−1(t) in B2(0, T ;H)(0, T ;H) is continuous linear
operator- uniformly bounded- and from (9), (13) we get∥∥∥∥S(t)

(
Φ(t)

d

dt

)−1
Y
∥∥∥∥

B2(0,T ;H)

≤ c4
∥∥∥∥(Φ(t)

d

dt

)−1
Y
∥∥∥∥1−α

B2(0,T ;H)

‖Y‖αB2(0,T ;H)) .

(14)

Hence (H1 ⊂⊂ H), other words from the compact em-
bedding of H1 into H , and as stated in the lemma of
compactness [8], the Sobolev space W 1

2 (H,H1) is com-
pactly embedded into B2(0, T ;H). Further, As the operator(

Φ(t) ddt

)−1
is compact and from (14) yields that the oper-

ator S(t)
(

Φ(t) ddt

)−1
in B2(0, T ;H) is also compact.

We utilize the principle of the classical Fredholm alterna-
tive [14] to verify the resolvability of equation (12). the
successive Cauchy problem is identical to the homogeneous
equation (12):

Φ(t)
dZ(t)

dt
− S(t)Z(t) = 0, Z(t)|t=0 = 0. (15)

Let Z(t) be a solution of problem (15) and use (3) to get∫ s

0

∥∥∥∥Φ(t)
dZ(t)

dt

∥∥∥∥2 dt
≤ k22

∫ s

0

‖Φ(0)Z(t)‖2α‖Z(t)‖(2−2α)dt

≤ k22‖Φ(0)Φ−1(t)‖2αH→H

×
∫ s

0

‖Φ(t)Z(t)‖2α‖Z(t)‖(2−2α)dt.

For any s ∈ [0, T ], follows

∫ s

0

∥∥∥∥Φ(t)
dZ(t)

dt

∥∥∥∥2 dt
≤ c5

∫ s

0

‖Φ(t)Z(t)‖2α‖Z(t)‖(2−2α)dt.

Applying the Hölder’s inequality to the preceding inequality∫ s

0

∥∥∥∥Φ(t)
dZ(t)

dt

∥∥∥∥2 dt
≤ c5

(∫ s

0

‖Φ(t)Z(t)‖2
)α(∫ s

0

‖Z(t)‖2dt
)(1−α)

.

Further,
applying the Young inequality to get:∫ s

0

∥∥∥∥Φ(t)
dZ(t)

dt

∥∥∥∥2 dt
≤ c5

(
ε

∫ s

0

‖Φ(t)Z‖2 +
(α
ε

) α
1−α

(1− α)

∫ s

0

‖Z(t)‖2dt
)
.

Chosen ε = 1
2c5

, we get∫ s

0

∥∥∥∥Φ(t)
dZ(t)

dt

∥∥∥∥2 dt ≤ c6 ∫ s

0

‖Z(t)‖2dt. (16)

Multiply equation (15) scalarly by Z(t) and integrate with
respect to the time t from 0 to s, s ≤ T . Then, by utilizing
the characteristics of Φ(t) and S(t), It would follow that

β1
2
‖Φ 1

2 (0)Z(s)‖2 ≤
∫ s

0

‖Z(t)‖‖S(t)Z(t)‖dt

≤ c7
∫ s

0

‖Φ(t)Z(t)‖α‖Z(t)‖(2−α)dt

≤ c7
(∫ s

0

‖Φ(t)Z(t)‖2dt
)α

2
(∫ s

0

‖Z(t)‖2dt
) 2−α

2

.

Use (16) to get

‖Z(s)‖2 ≤ c8
∫ s

0

‖Z(t)‖2dt.

From the Bellman–Gronwall result [3], we come to the fact
that the preceding inequality is achievable only if Z(t) is
equivalent to zero.
Thus, from the (Fredholm) Alternative, problem (1), (2) is

solvable and has the unique solution Z(t) ∈
◦
W (H,H1).

We must utilize the following required lemmas for estab-
lishing the main results.

Lemma 2. Let Φ0 and D be bounded linear operators
mapping H1 into H where Φ0 has bounded inverse Φ−10 and
|D| < 1/|Φ−10 |. Then, Φ = Φ0 +D that mapping H1 into H
invertible and has bounded inverse operator [14].

Lemma 3. Let Φ(t) and S(t) fulfill assumptions (i)−(iii).
Then, ∃N0 > 0 : ∀n > N0, the operator Φ(t) ddt−RnS(t) has
a bounded inverse operator

(
Φ(t) ddt − RnS(t)

)−1
mapping

the space B2(0, T ;Hn) into the space
◦
W (H,H1) and holds

the inequality∥∥∥∥(Φ(t)
d

dt
−RnS(t)

)−1∥∥∥∥
B2(0,T ;H)

≤ c9. (17)

Proof: It’s clearly, Theorem 1 provided that the inverse
operator(

Φ(t)
d

dt
− S(t)

)−1
: B2(0, T ;H)→W 1

2 (H,H1)

exists.
Then we investigate the invertibility of the operator

S(t)

(
Φ(t)

d

dt

)−1
Rn − I = −I + S(t)

(
Φ(t)

d

dt

)−1
+ S(t)

(
Φ(t)

d

dt

)−1
(Rn − I).

At every 0 ≤ t ≤ T , the linear operator

I − S(t)

(
Φ(t)

d

dt

)−1
: B2(0, T ;H)→ B2(0, T ;H)

is invertible and possesses a bounded inverse operator(
I + S(t)

(
Φ(t)

d

dt
+ S(t)

)−1)
.
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Assume that the following problem:

Φ(t)
dv(t)

dt
= (I −Rn)Σ(t),

v(t)|t=0 = 0

possesses a unique solution v(t) in H1.
Then,

multiplying the equation Φ(t)
dv(t)

dt
= (I−Rn)Σ(t) scalarly

by v(t) and integrating with respect to the time t from 0 to
s, s ≤ T and then using (10), we obtain

β1
2
‖Φ 1

2 (0)v(s)‖2 ≤
∫ s

0

|((I −Rn)Σ(t), v(t))H | dt

≤
∫ s

0

∥∥∥Φ−
1
2 (0)(I −Rn)Σ(t)

∥∥∥∥∥∥Φ
1
2 (0)v(t)

∥∥∥ dt.
Estimating the right-hand side of this relation with the help
of the Cauchy inequality

β1‖Φ
1
2 (0)v(s)‖2 ≤ 1

β1

∫ T

0

∥∥∥Φ−
1
2 (0)(I −Rn)Σ(t)

∥∥∥2 dt.
Clearly, cause the operator Ψ is similar to Φ(0), we have

β1‖Φ
1
2 (0)v(s)‖2

≤ 1

β1

∥∥∥Φ−
1
2 (0)Ψ

1
2

∥∥∥2
H→H

∫ T

0

∥∥∥Ψ−
1
2 (I −Rn)Σ(t)

∥∥∥2 dt
≤ 1

β1

∥∥∥Φ−
1
2 (0)Ψ

1
2

∥∥∥2
H→H

‖Σ(t)‖2B2(0,T ;H)λ
−1
n+1.

Consequently, we get that

max
0≤t≤T

∥∥∥∥∥
(

Φ(t)
d

dt

)−1
(I −Rn)Σ(t)

∥∥∥∥∥
≤ c10λ

− 1
2

n+1|Σ(t)‖B2(0,T ;H).

(18)

Putting Y = (I −Rn)Σ(t) in (14), we obtain

∥∥∥∥S(t)
(

Φ(t)
d

dt

)−1
(I −Rn)Σ(t)

∥∥∥∥
B2(0,T ;H)

≤ c11
∥∥∥∥(Φ(t)

d

dt

)−1
(I −Rn)Σ(t)

∥∥∥∥1−α
B2(0,T ;H)

× ‖Σ(t)(t)‖αB2(0,T ;H) .

Using (18), we obtain

∥∥∥∥S(t)
(

Φ(t)
d

dt

)−1
(I −Rn)

∥∥∥∥
B2(0,T ;H)→B2(0,T ;H)

≤ c12λ
α−1
2

n+1 .

(19)

As the eigenvalues λn → +∞ as n → +∞ and based on
(19), then ∃ a number N1 : ∀n > N1, we have

∥∥∥∥∥
(
I − S(t)

(
Φ(t)

d

dt

)−1
Rn

)−1∥∥∥∥∥
B2(0,T ;H)→B2(0,T ;H)

×
∥∥∥∥S(t)

(
Φ(t)

d

dt

)−1
(I −Rn)

∥∥∥∥
B2(0,T ;H)→B2(0,T ;H)

≤ c13λ
α−1
2

N1+1 ≡ τ1,

where the positive constant τ1 < 1.
Then, ∀n > N1, as stated by Lemma (2), the operator

I − S(t)
(
RnΦ(t)

d

dt

)−1
Rn

has an inverse operator and

∥∥∥∥∥
(
I − S(t)

(
Φ(t)

d

dt

)−1
Rn

)−1∥∥∥∥∥
B2(0,T ;H)→B2(0,T ;H)

≤ c14.
(20)

It is simple to verify the relation(
I −RnS(t)

(
Φ(t)

d

dt

)−1)−1
= I +Rn

(
I − S(t)

(
Φ(t)

d

dt

)−1
Rn

)−1
× S(t)

(
Φ(t)

d

dt

)−1
.

(21)

Because for n > N1 the operator

RnS(t) + Φ(t)
d

dt

=

(
I −RnS(t)

(
Φ(t)

d

dt

)−1)(
Φ(t)

d

dt

)
,

for n > N1 and from (20), (21) the operator(
Φ(t) ddt −RnS(t)

)
has an inverse and inequality (17) holds

true.
In this section, we will consider the question of the rate

of convergence of Galërkin solution (approximate solutions),
established by the Galërkin method, to the exact solution.

Theorem 4. Let f(t) ∈ B2(0, T ;H) and Φ(t), S(t) fulfill
assumptions (i), (ii), and (iii). Then, ∃N0 > 0 : ∀n > N0,
problem (7) has a unique Galërkin solution Zn(t) and

max
t∈[0,T ]

‖Zn(t)−Z(t)‖ ≤ c15λ
α−1
2

n+1 (22)

holds.

Proof: From Lemma (3) follows that problem (7) is

solvable and has the solution Zn(t) ∈
◦
W (H,H1). Therefore,

from (17) we find out the approximate solutions Zn(t) with
regard to the number n are uniformly bounded i.e.,

‖Zn(t)‖ ◦
W (H,H1)

≤ c10‖f(t)‖B2(0,T ;H). (23)

For n > N0 yields

Zn(t)−Z(t)

=

(
Φ(t)

d

dt
−RnS(t)

)−1
(Rn − I)

(
Φ(t)

dZ(t)

dt

)
.

(24)

As the inverse operator(
Φ(t)

d

dt
−RnS(t)

)−1
=

(
Φ(t)

d

dt

)−1
−
(

Φ(t)
d

dt
−RnS(t)

)−1
RnS(t)

(
Φ(t)

d

dt

)−1
.

Eq. (24) could be expressed as follows:
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Zn(t)−Z(t) =

(
Φ(t)

d

dt

)−1
(Rn − I)

(
Φ(t)
Z(t)

dt

)
−
(

Φ(t)
d

dt
−RnS(t)

)−1
RnS(t)

(
Φ(t)

d

dt

)−1
× (Rn − I)

(
Φ(t)
Z(t)

dt

)
.

(25)

Hence, from the continuous embedding between the
space W 1

2 (H,H1) and the space of continuous functions
C(0, T ;H), we get

max
0≤t≤T

‖v‖ ≤ c16‖v‖W 1
2 (H,H1)

holds true for all element v in the Sobolev space W 1
2 (H,H1).

Using inequalities (17) and (18) to estimate inequality (25)
as follows:

max
0≤t≤T

‖Zn(t)−Z(t)‖ ≤ c10λ
− 1

2
n+1‖Φ(t)Z

′
(t)‖B2(0,T ;H)

+ c17

∥∥∥∥∥S(t)

(
Φ(t)

d

dt

)−1
(Rn − I)(Φ(t)Z

′
(t))

∥∥∥∥∥
B2(0,T ;H)

.

Consequently, using inequalities (3) and (23), follows esti-
mate (22).
Theorem is proved.

Theorem 5. Let f(t) ∈ C1(0, T ;H), f(t)|t=0 = 0, the
operator Φ is independent on the variable t, S

′
(t) is γ−

subordinate to Φ, 0 ≤ γ < 1, and Φ, S(t) fulfill the
assumptions (i), (ii), (iii). Then

max
t∈[0,T ]

‖Z
′

n(t)−Z
′
(t)‖ ≤ c18λ

(α−1)(1−γ)
2

n+1 , (26)

where Z(t) and Zn(t) are the solutions of problem (1), (2)
and problem (7) respectively.

Proof: We return back to the Cauchy problem (6):
If the derivative f

′
(t) is continuous and {Θj(t)}nj=1 ∈

C2(0, T ;H) is the solution of problem (6), then we can
differentiate Eq. (7).
Moreover, put Z ′n(t) = vn(t) and by using f(0) = 0, we get

Z(t)v
′

n(t)−RnS(t)vn(t) = Rnf
′
(t) +RnS

′
(t)Zn(t),

vn(t)|t=0 = 0.
(27)

Consider the Cauchy problem of ordinary differential equa-
tion at t = 0 :

Φv
′
(t)− S(t)v(t) = f

′
(t) + S

′
(t)Z(t), v(0) = 0. (28)

From Theorem 1, problem (28) is solvable and has a so-

lution v(t) ∈
◦
W (H,H1) because

(
f
′
(t) + S

′
(t)Z(t)

)
∈

B2(0, T ;H). Then(
Φ
d

dt
−RnS(t)

)(
vn(t)− v(t)

)
= (Rn − I)

[
f
′
(t) + S

′
(t)Zn(t) + S(t)v(t)

]
− S

′
(t) (Z(t)−Zn(t)) .

After that, from (17) we obtain that the approximate solutions
vn(t) with respect to n are uniformly bounded, i.e.,

‖vn(t)‖ ◦
W (H,H1)

≤ c19. (29)

By analogy with the deducing of (22), using (23), and (29),
we obtain

max
0≤t≤T

‖vn(t)− v(t)‖

≤ c20λ
(α−1)

2
n+1 + c21‖S

′
(t)(Z(t)−Zn(t))‖B2(0,T ;H).

Hence,
(
dS(t)

dt

)
is subordinate to Φ with the order γ.

Therefore,

max
0≤t≤T

‖vn(t)− v(t)‖ ≤ c20λ
(α−1)

2
n+1

+ c22‖Φ(Z(t)−Zn(t))‖γB2(0,T ;H)‖Z(t)−Zn(t)‖1−γB2(0,T ;H).

Using (22) and (23), we obtain

max
0≤t≤T

‖vn(t)− v(t)‖ ≤ c20λ
(α−1)

2
n+1 + c23λ

(α−1)(1−γ)
2

n+1 .

Hence,

max
0≤t≤T

‖vn(t)− v(t)‖ ≤ c24λ
(α−1)(1−γ)

2
n+1 .

Theorem is proved.

IV. APPLICATIONS OF INITIAL-BOUNDARY VALUE
PROBLEMS (IBVP)

Finally, we apply the Galërkin method for IBVP.
In a rectangular Q = [0, 1] × [0, T ], we will study the next
problem

∂

∂x

(
χ(x, t)

∂

∂x

)
∂Z(x, t)

∂t

− ζ1(x, t)
∂Z(x, t)

∂x
− ζ0(x, t)Z(x, t) = f(x, t), (x, t) ∈ Q

(30)

Z(x, t)|x=0 = Z(x, t)|x=1 = 0, t ∈ [0, T ],
(31)

Z(x, t)|t=0 = 0, 0 ≤ x ≤ 1.
(32)

Suppose that all of the functions:

χ(x, t),
∂i+1

∂xi∂t
χ(x, t), ζ0(x, t), ζ1(x, t),

∂

∂t
ζ0(x, t),

∂

∂t
ζ1(x, t)

be in the space C(Q) and χ(x, t) ≥ χ0 > 0.

In this section we redefine some of the following spaces:

Assign H = B2(0, 1), H1 = W 2
2 (0, 1) ∩

◦
W (0, 1), where

W k
2 (0, 1) is a Sobolev space and
◦
W (0, 1) = {v(x) : v(x) ∈W 2

2 (0, 1), v(0) = v(1) = 0}.

Because the partial derivative ∂
∂xχ(x, t) ∈ C(Q), there is

such a constant χ1 > 0 in which,
∣∣ ∂
∂xχ(x, t)

∣∣ ≤ χ1.
Assume that

Φ(t) =
∂

∂x

(
χ(x, t)

∂

∂x

)
−ΥI
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and
S(t) = ζ1(x, t)

∂Z
∂x

+ (ζ0(x, t)−Υ) I,

where the constant Υ <
a21
χ0

. These operators are defined on
H1 and D(S(t)) ⊃ D(Φ(t)).
For this problem we put Ψ = d2

dx2 . It is obvious that the
assumptions (i), (ii) and (iii) are fully achieved.
Moreover, It is not difficult to check that S(t) is α−
subordinate to Φ(0), α = 1

2 .
Next, we’ll demonstrate how ”the acute-angle inequality

(4)” is fulfilled by the operators Φ(t) and Ψ.
For each element v ∈ H1, which fulfills the inequality

(Φ(t)v,Ψv)B2(0,1)

≥ χ0

∫ 1

0

(
d2v

dx2

)2

dx−Υ

∫ 1

0

(
dv

dx

)2

dx

+ χ1

∫ 1

0

∣∣∣∣dvdx
∣∣∣∣ ∣∣∣∣d2vd2x

∣∣∣∣ dx
≥ χ0

∫ 1

0

(
d2v

dx2

)2

dx+
χ1ε

2

∫ 1

0

(
d2v

dx2

)2

dx

+
χ1

2ε

∫ 1

0

(
dv

dx

)2

dx−Υ

∫ 1

0

(
dv

dx

)2

dx.

Choosing ε = χ0

2χ1
, we get

(Φ(t)v,Ψv)B2(0,1)

≥
(
χ2
1

χ0
−Υ

)∫ 1

0

(
dv

dx

)2

dx ≥ c25‖v‖2W 2
2 (0,1)

,

which achieves the acute-angle inequality.
Further, for Ψ we have Ψes(x) = λses(x), s = 1, 2, . . .
where, es(x) = 2−1/2 sin sπx is a complete orthonormalized
system of eigenvectors, λs = (sπ)2, s = 1, 2, . . . is the
corresponding eigenvalues.
All of Theorem 1’s and Theorem 4’s hypotheses are clearly
fulfilled.
Thus, for the Galërkin solution of problem (30) - (32), the
estimate

max
0≤t≤T

‖Zn(x, t)−Z(x, t)‖B2(0,1) ≤ c26n
− 1

2

holds.

V. CONCLUSION

We proved that there exists uniquely a strong solution of
the mixed-type problem with boundary conditions for first-
order differential and approximate equations. The conver-
gence rate of approximate solutions generated by using the
Galërkin method is estimated asymptotically. We utilized the
new outcomes of this work to provide an applied example
of the IBVP for mixed-type operator-differential equations.

REFERENCES

[1] A. B. I. Ahmed, “Existence and Uniqueness Results for an Initial-
Boundary Value Problem of Parabolic Operator-Differential Equations
in a Weight Space,” TWMS Journal of Applied and Engineering
Mathematics,” vol. 11, no. 3, pp. 628-635, 2021.

[2] A. B. I. Ahmed, “On the Solvability of Higher-Order Operator-
Differential Equations in a Weighted Sobolev Space,” International
Journal of Applied Mathematics,” vol. 34, no. 1, pp. 469-478, 2021.
doi: http://dx.doi.org/10.12732/ijam.v34i1.8

[3] F. Beckenbach and R. Bellman, “Inequalities,” Springer-Verlag, Berlin
(1961).

[4] I. E. Egorov, “Solvability of a Nonlocal Boundary Value Problem
for an Operator-Differential Equation of Mixed Type,” Mat. Zametki
YaGU, vol. 2, no. 2, pp. 61–72, 1995.

[5] I. E. Egorov, S. G. Pyatkov, and S. V. Popov, “Non-Classical
Differential-Operator Equations,” Novasibirek: nayka, 2000.

[6] N. Faried, A. B. I. Ahmed, M. A. Labeeb, “Sufficient Conditions
for Regular Solvability of an Arbitrary Order Operator-Differential
Equation with Initial-Boundary Conditions,” Advances in Difference
Equations, vol. 2020, no. 104, pp. 1-14, 2020.
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