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Abstract—For a graph G, let A(G) and D(G) be the
adjacency matrix and the degree matrix of G, respectively.
Nikiforov defined the matrix Aα(G) as

Aα(G) = αD(G) + (1− α)A(G)

where α ∈ [0, 1]. In this paper, we first give the Aα-spectral
radius of semistrong product of arbitrary graph G and a
regular graph H . Then we respectively present the Aα-spectra
of semistrong product G •H and special product G⊕H when
G and H are two regular graphs. Moreover, we give the Aα-
spectral radius of wreath product GρH .

Index Terms—semistrong product, special product, wreath
product, Aα-spectral radius, Aα-spectral spectrum.

I. INTRODUCTION

THROUGHOUT this paper, all graphs considered are
simple finite undirected graph. Let G = (V,E) be a

connected graph with vertex set V (G) and edge set E(G).
Let A(G) and D(G) denote the adjacency matrix and the
diagonal matrix of G, respectively. For any real α ∈ [0, 1],
Nikiforov [1] defined the matrix Aα(G) as

Aα(G) = αD(G) + (1− α)A(G).

It is easy to see that A0(G) = A(G), A1(G) = D(G) and
2A1/2(G) = Q(G) if α = 0, 1, 1/2, and L(G) =

Aα−Aβ

α−β if
α 6= β for any α, β ∈ [0, 1], where Q(G) and L(G) are signless
Laplacian matrix and Laplacian matrix of G, respectively.
Let M(G) = M be a graph matrix with respect to A(G) of
G. We denote the eigenvalues of M by λ1(M) ≥ λ2(M) ≥
· · · ≥ λn(M), where λ1(M) is called the spectral radius. The
collection of eigenvalues of M together with multiplicities
are called M-spectrum, denoted by Spec(M) for short. Let
ΦM (x) = det(xIn−M) denote the characteristic polynomial
of M , where In is the identity matrix. Clearly, the graph
matrix M is respectively called the adjacency matrix and
Aα-matrix if M equals A(G) and Aα(G), etc.

We use Jm×n to denote the m×n matrix with each entry
one, and write ~jm for the column m-vector of ones. Further,
a graph G is k-regular if d(v) = k for all v ∈ V (G). For other
graph theoretic notations and terminologies not defined here,
we refer the readers to [2].

The matrix Aα(G) was first defined by Nikiforov (2017)
in [1], it has attracted the attention of several scholars in
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the field of spectral graph. Clearly, Aα(G) is the linear
combinations of A(G) and D(G), it was claimed that the
matrices Aα(G) can underpin a unified theory of A(G) and
Q(G) in [1], [3]. In recent years, a few properties on Aα(G)

have been investigated. Nikiforov and Rojo in [4] studied
the positive semi-definiteness of matrix Aα(G). Lin et al. [5]
considered the Aα-spectral radius of graphs, and then, Wang
et al. [7] characterized the connected graphs whose Aα-
spectral radius is at most 2. For more properties of Aα(G),
we refer the readers to [8]–[11].

In [12], Jaradat introduced seven basic graph products such
as cartesian product, lexicographic product, directed product,
strong product, semi-strong product, special product and
wreath product. More recently, Li and Wang [6] respectively
presented Aα-spectrum of cartesian product, lexicographic
product, directed product and strong product of graphs.

Motivated above, in this paper, we continue to study the
Aα-spectrum of the remaining three graph products, which
are semi-strong product, special product and wreath product.
We first give the Aα-spectral radius of semistrong product
of arbitrary graph G and a regular graph H . Then we
respectively present the Aα-spectra of semistrong product
G •H and special product G ⊕H when G and H are two
regular graphs. Moreover, we give the Aα-spectral radius of
wreath product GρH .

II. PRELIMINARIES

In this section, we introduce some definitions and lemmas
which will be useful for the proof of main results.

Definition II.1 ([12]). Given graphs G and H with vertex
set V (G) = {u1, u2, . . . , un} and V (H) = {v1, v2, . . . , vm},
respectively. Their semistrong product G • H is graph with
vertex set V (G)× V (H), where two distinct vertices (u1, v1)

and (u2, v2) are adjacent when u1u2 ∈ E(G) and v1v2 ∈
E(H), or u1 = u2 and v1v2 ∈ E(H) (shown in Fig.1 for
example).

Definition II.2 ([12]). Given graphs G and H with vertex
set V (G) = {u1, u2, . . . , un} and V (H) = {v1, v2, . . . , vm},
respectively. Their special product G⊕H is graph with vertex
set V (G) × V (H), where (u1, v1) and (u2, v2) are adjacent
when u1u2 ∈ E(G) or v1v2 ∈ E(H).

Remark II.1. Under the definition of special product, when
u1u2 ∈ E(G) and v1v2 ∈ E(H), there will be multiple
edges between (u1, v1) and (u2, v2). In order to avoid multiple
edges, we only add one edge between (u1, v1) and (u2, v2),
other places remain unchange (see Fig.2 for instance).

Definition II.3 ([12]). Given graphs G and H with vertex
set V (G) = {u1, u2, . . . , un} and V (H) = {v1, v2, . . . , vm}, re-
spectively. Their wreath product GρH is graph with vertex set
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V (G)×V (H), and edge set E(GρH) = {(u1, v1)(u2, v2)| u1 =

u2 and v1v2 ∈ E(H), or u1u2 ∈ E(G) and there is
π ∈ Aut(H) such that π(v1) = v2}, where Aut(H) is the
automorphism group of H.

P3 P3 • P2P2

u1

u2

u3

v1

v2

(u1, v1) (u2, v1) (u3, v1)

(u1, v2) (u2, v2) (u3, v2)

Fig. 1. semistrong product P3 • P2

P3 P3 ⊕ P2P2

u1

u2

u3

v1

v2

(u1, v1) (u2, v1) (u3, v1)

(u1, v2) (u2, v2) (u3, v2)

Fig. 2. special product P3 ⊕ P2

Remark II.2. Under the definition of wreath product, if
graph H has more than one permutations, then GρH will
produce multiple edges. Therefore, we only consider one of
all the permutations of H to avoid this case (shown in Fig.3).

P3 P3ρP3P3

u1

u2

u3

v1

v3

(u1, v1) (u2, v1) (u3, v1)

(u1, v2) (u2, v2) (u3, v2)

(u1, v3) (u2, v3) (u3, v3)

v2

Fig. 3. wreath product P3ρP3

Lemma II.1 ([6]). Let H be a p-regular graph with order n.
If p ≥ λ2(H) ≥ · · · ≥ λm(H) are the adjacency eigenvalues
of H , then

Spec(Aα(H)) = {p, αp+(1−α)λ2(H), · · · , αp+(1−α)λm(H)}.

Furthermore, if Y = [~jm ~Y2 · · · ~Ym] is an orthogonal matrix
whose columns ~jm, ~Y2, · · · , ~Ym are eigenvectors correspond-
ing to the eigenvalues p, λ2(H), · · · , λm(H), respectively,
then Y is also an orthogonal matrix whose columns are
eigenvectors corresponding to the eigenvalues p, αp + (1 −
α)λ2(H), · · · , αp+ (1− α)λm(H) of Aα(H), respectively.

III. MAIN RESULTS

Theorem III.1. Let G be a connected graph with order n,
and H be a r-regular graph with order m. Then the Aα-
spectral radius of G •H is

λ1(Aα(G •H)) = r + rλ1(Aα(G)).

Proof: Let G be a connected graph with V (G) =
{u1, u2, · · · , un}, and H be a r-regular graph with V (H) =
{v1, v2, · · · , vm}. Firstly, we give a partition of the vertex set
of G •H and denote by V (G •H) = V1 ∪V2 ∪ · · · ∪Vn, where
Vi = {(ui, vj)|j = 1, 2, · · · ,m}. For the adjacency matrix
A(G •H), it is obvious that

A(G •H) = In ⊗A(H) +A(G)⊗A(H).

Meanwhile, one can find that

dG•H(ui, vj) = dH(vj) + dG(ui)× dH(vj),

and further,

D(G •H) = In ⊗D(H) +D(G)⊗D(H).

Thus we have
Aα(G •H) = αD(G •H) + (1− α)A(G •H)

= α(In ⊗D(H) +D(G)⊗D(H))

+(1− α)(In ⊗A(H) +A(G)⊗A(H))

= αIn ⊗D(H) + αD(G)⊗D(H)

+(1− α)In ⊗A(H) + (1− α)A(G)⊗A(H)

= In ⊗Aα(H) + αD(G)⊗D(H)

+(1− α)A(G)⊗A(H).

Note that for r-regular graph H of order m, ~jm is an
eigenvector of H corresponding to the spectral radius r. Let
~X1 = (x1, x2, · · · , xn)T be the Perron vector of Aα(G), i.e.,
xi > 0 for each i. It follows that

Aα(G •H)( ~X1 ⊗~jm)

= (In ⊗Aα(H) + αD(G)⊗D(H)

+(1− α)A(G)⊗A(H))( ~X1 ⊗~jm)

= ~X1 ⊗Aα(H)~jm + αD(G) ~X1 ⊗D(H)~jm

+(1− α)A(G) ~X1 ⊗A(H)~jm

= r ~X1 ⊗~jm + αrD(G) ~X1 ⊗~jm + r(1− α)A(G) ~X1 ⊗~jm
= r ~X1 ⊗~jm + rAα(G) ~X1 ⊗~jm
= (r + rλ1(Aα(G)))( ~X1 ⊗~jm).

Hence, the proof completes.

Theorem III.2. Let G be a p-regular graph with order n and
H be a q-regular graph with order m . If p ≥ λ2(G) ≥ · · · ≥
λn(G) are adjacency eigenvalues of G and q ≥ µ2(H) ≥
· · · ≥ µm(H) are adjacency eigenvalues of H, then the Aα-
spectrum of G •H is

Spec(Aα(G •H))

= {pq + q} ∪
⋃n
i=2{q(1 + αp+ (1− α)λi(G))}

∪
⋃m
j=2{(1 + p)(αq + (1− α)µj(H))}

∪
⋃n
i=2

⋃m
j=2{αq(1 + p)+(1− α)µj(H)(λi(G)+1)}.

Proof: Let G be a p-regular graph with V (G) =
{u1, u2, · · · , un} and H be a q-regular graph with V (H) =
{v1, v2, · · · , vm}. Given the vertex partition V (G • H) =
V1 ∪ V2 ∪ · · · ∪ Vn, where Vi = {(ui, vj)|j = 1, 2, · · · ,m},
it follows from Theorem III.1 that

Aα(G•H)= In⊗Aα(H)+αD(G)⊗D(H)+(1−α)A(G)⊗A(H).

Let X = [~jn ~X2 · · · ~Xn] be an orthogonal matrix whose
columns ~jn, ~X2, · · · , ~Xn are eigenvectors corresponding to
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the eigenvalues p, λ2(G), · · · , λn(G), respectively. Let Y =

[~jn ~Y2 · · · ~Ym] be an orthogonal matrix whose columns
~jm, ~Y2, · · · , ~Ym are eigenvectors corresponding to the eigen-
values q, µ2(H), · · · , µm(H), respectively. It follows from
Lemma II.1 that ~jn, ~X2, · · · , ~Xn are eigenvectors correspond-
ing to the eigenvalues p, αp + (1 − α)λ2(G), · · · , αp + (1 −
α)λn(G). Then by Theorem III.1, one can see that λ1(Aα(G•
H)) = pq+q since ~jn⊗~jm is the Perron vector of Aα(G•H)

corresponding to pq + q.
We then prove that (1 + p)(αq + (1 − α)µj(H)) is an

eigenvalue of Aα(G • H), where j = 2, 3, · · · ,m. For the
vector ~jn ⊗ ~Yj , we have

Aα(G •H)(~jn ⊗ ~Yj)

= (In ⊗Aα(H) + αD(G)⊗D(H)

+(1− α)A(G)⊗A(H))(~jn ⊗ ~Yj)

= ~jn ⊗Aα(H)~Yj + αD(G)~jn ⊗D(H)~Yj

+(1− α)A(G)~jn ⊗A(H)~Yj

= (αq + (1− α)µj(H))~jn ⊗ ~Yj + αpq~jn ⊗ ~Yj

+(1− α)pµj(H)~jn ⊗ ~Yj

= ((1 + p)(αq + (1− α)µj(H)))(~jn ⊗ ~Yj).

Thus, ~jn ⊗ ~Yj is an eigenvector of Aα(G •H) corresponding
to (1 + p)(αq + (1− α)µj(H)).

Next we will show that q(1 + αp + (1 − α)λi(G)) is an
eigenvalue of Aα(G•H), where i = 2, 3, · · · , n. For the vector
~Xi ⊗~jm we have

Aα(G •H)( ~Xi ⊗~jm)

= (In ⊗Aα(H) + αD(G)⊗D(H)

+(1− α)A(G)⊗A(H))( ~Xi ⊗~jm)

= ~Xi ⊗Aα(H)~jm + αD(G) ~Xi ⊗D(H)~jm

+(1− α)A(G) ~Xi ⊗A(H)~jm

= q ~Xi ⊗~jm + αpq ~Xi ⊗~jm + (1− α)qλi(G) ~Xi ⊗~jm
= (q + αpq + (1− α)qλi(G))( ~Xi ⊗~jm)

= (q(1 + αp+ (1− α)λi(G)))( ~Xi ⊗~jm).

Hence, ~Xi⊗~jm is an eigenvector of Aα(G•H) corresponding
to q(1 + αp+ (1− α)λi(G)) for i = 2, 3, · · · , n.

At last, we will verify that αq(1+p)+(1−α)µj(H)(λi(G)+

1) are Aα-eigenvalues of G • H for i = 2, 3, · · · , n and j =

2, 3, · · · ,m.

Aα(G •H)( ~Xi ⊗ ~Yj)

= (In ⊗Aα(H) + αD(G)⊗D(H)

+(1− α)A(G)⊗A(H))( ~Xi ⊗ ~Yj)

= ~Xi ⊗Aα(H)~Yj + αD(G) ~Xi ⊗D(H)~Yj

+(1− α)A(G) ~Xi ⊗A(H)~Yj

=(αq +(1− α)µj(H)) ~Xi ⊗ ~Yj +αpq ~Xi ⊗ ~Yj

+(1− α)λi(G)µj(H) ~Xi ⊗ ~Yj

=(αq(1 + p) + (1− α)µj(H)(λi(G) + 1))( ~Xi ⊗ ~Yj).

Therefore, ~Xi ⊗ ~Yj is an eigenvector of Aα(G • H) corre-
sponding to αq(1 + p) + (1− α)µj(H)(λi(G) + 1).

Note that ~Xi and ~Yj are orthogonal to all one column
vector, it is easy to prove that ~Xi ⊗ ~Yj , ~Xi ⊗~jm, ~jn ⊗ ~Yj and
~jn ⊗~jm are orthogonal.

To sum up, the proof is completed.

Corollary III.1. If G is a p-regular graph and H is q-regular
graph, then the Aα-spectral radius of G •H is q(p+ 1).

From Theorem III.2, one can easily obtained the Aα-
spectrum of the semistrong product of two regular graphs.

Example III.1. Let G = C5 and H = C3. The semistrong
product C5•C3 is shown in Fig.4. By simple computation, one
can get Spec(A(C5)) = {2, 0.6182,−1.6182} and Spec(A(C3))

= {2,−12}. It follows from Theorem III.2 that

Spec(Aα(C5•C3)={6, (9α−3)2, (2.764α+3.236)2, (7.236α−
1.236)2,(7.618α−1.618)4,(5.382α+0.618)4}.

On the other hand, by Matlab 7.0 we get Spec(A(C5 •C3) =

{6, 3.2362, 0.6184,−1.2362, −1.6184,−32}. Furthermore, from
Corollary III.2 we know that C5 • C3 is 6-regular graph.
According to the definition Aα(C5 • C3) = αD(C5 • C3) +

(1−α)A(C5 •C3), we can also calculate the Aα-spectrum of
C5 • C3, which is the same as the above calculation.

C5 • C3

C5

C3

Fig. 4. C5, C3 and semistrong product C5 • C3

Besides, one can use Theorem III.2 to construct infinitely
many pairs of Aα-cospectral graphs.

Corollary III.2. Let H be a regular graph. If G1 and G2 are
A-cospectral regular graphs but not isomorphic with each
other, then G1 •H and G2 •H are Aα-cospectral.

Example III.2. Let G1 and G2 be two 4-regular graphs
(shown in Fig.6). Then by Matlab 7.0 we get Spec(A(G1))=

Spec(A(G2)) = {4, 2.2361, 1.5616, 1,−14,−2.2361,−2.5616}
and Spec(A(P2)) = {1,−1}. It is easy to find that G1

and G2 are A-cospectral but not isomorphic with each
other. It follows from Theorem III.2 that Spec(Aα(G1 •
H)) = Spec(Aα(G2 •H)) = {5, 1.7639α + 3.2361, 2.4384α +

2.5616, 3α+2, 3.4384α+1.5616, 3.7639α+1.2361, 5α8, 6.2361α−
1.2361, 6.5616α− 1.5616, 7α− 2, 7.5616α− 2.5616, 8.2361α−
3.2361, 10α−5}, which means G1 • P2 and G2 • P2 are Aα-
cospectral.

G1 G2

Fig. 5. G1 and G2
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G1 • P2 G2 • P2
Fig. 6. G1 • P2 and G2 • P2

Theorem III.3. Let G be a p-regular graph with order n and
H be a q-regular graph with order m. If p ≥ λ2(G) ≥ · · · ≥
λn(G) are adjacency eigenvalues of G and q ≥ µ2(H) ≥
· · · ≥ µm(H) are adjacency eigenvalues of H, then under
the condition of Remark II.1, we have

Spec(Aα(G⊕H))

=
⋃n
i=2

⋃m
j=2{α(mp+ nq − pq)− (1− α)λi(G)µj(H)}

∪
⋃n
i=2{α(mp+ nq − pq) + (1− α)(m− q)λi(G)}

∪
⋃m
j=2{α(mp+ nq − pq) + (1− α)(n− p)µj(G)}

∪{mp+ nq − pq}.

Proof: Let G be a p-regular graph with V (G) =
{u1, u2, · · · , un} and H be a q-regular graph with V (H) =
{v1, v2, · · · , vm}. Under the condition of Remark II.1, by the
partition V (G •H) = V1 ∪ V2 ∪ · · · ∪ Vn one can get

A(G⊕H) = A(G)⊗ Jm×m + Jn×n ⊗A(H)−A(G)⊗A(H)

where Vi = {(ui, vj)|j = 1, 2, · · · ,m}. It is easy to see that

dG⊕H(ui,vj)=dG(ui) · |V(H)|+ dH(vj) · |V(G)|− dG(ui) · dH(vj),

which leads to

D(G⊕H) = mD(G)⊗ Im + nIn ⊗D(H)−D(G)⊗D(H).

It therefore follows that

Aα(G⊕H)=αD(G⊕H)+(1− α)A(G⊕H)

=αmD(G)⊗ Im + αnIn ⊗D(H)

−αD(G)⊗D(H) + (1− α)A(G)⊗ Jm×m

+(1− α)Jn×n⊗A(H)−(1− α)A(G)⊗A(H).

Let X = [~jn ~X2 · · · ~Xn] be an orthogonal matrix whose
columns ~jn, ~X2, · · · , ~Xn are eigenvectors corresponding to
the eigenvalues p, λ2(G), · · · , λn(G), respectively. Let Y =

[~jn ~Y2 · · · ~Ym] be an orthogonal matrix whose columns
~jm, ~Y2, · · · , ~Ym are eigenvectors corresponding to the eigen-
values q, µ2(H), · · · , µm(H), respectively.

Using the same argument as the Aα-spectrum of G • H,
we have

Aα(G⊕H)(~jn ⊗~jm)

= αmD(G)~jn ⊗~jm+αn~jn ⊗D(H)~jm−αD(G)~jn⊗D(H)~jm

+(1−α)A(G)~jn⊗Jm×m~jm+(1−α)Jn×n~jn⊗A(H)~jm

−(1−α)A(G)~jn⊗A(H)~jm

= αmp~jn⊗~jm+αnq~jn ⊗~jm − αpq~jn⊗~jm
+(1−α)mp~jn⊗~jm+(1−α)nq~jn⊗~jm − (1− α)pq~jn ⊗~jm

= (αmp+αnq−αpq+(1−α)mp+(1−α)nq

−(1−α)pq)(~jn⊗~jm)

= (mp+ nq − pq)(~jn⊗~jm)

Therefore, the spectral radius of Aα(G⊕H) is mp+nq− pq.
Besides,

Aα(G⊕H)( ~Xi ⊗ ~Yj)

= αmD(G) ~Xi ⊗ ~Yj+αn ~Xi⊗D(H)~Yj−αD(G) ~Xi⊗D(H)~Yj

+(1− α)A(G) ~Xi ⊗ Jm×m~Yj + (1− α)Jn×n ~Xi ⊗A(H)~Yj

−(1− α)A(G) ~Xi ⊗A(H)~Yj

= αmp ~Xi ⊗ ~Yj + αnq ~Xi ⊗ ~Yj − αpq ~Xi ⊗ ~Yj + 0 + 0

−(1− α)λi(G)µj(H) ~Xi ⊗ ~Yj

= (α(mp+ nq − pq)− (1− α)λi(G)µj(H))( ~Xi ⊗ ~Yj).

Hence, ~Xi⊗~Yj is an eigenvector of Aα(G⊕H) corresponding
to α(mp+nq−pq)−(1−α)λi(G)µj(H), where i = 2, 3, · · · , n
and j = 2, 3, · · · ,m.

Moreover,

Aα(G⊕H)( ~Xi ⊗~jm)

= αmD(G) ~Xi ⊗~jm + αn ~Xi ⊗D(H)~jm

−αD(G) ~Xi ⊗D(H)~jm + (1− α)A(G) ~Xi ⊗ Jm×m~jm

+(1− α)Jn×n ~Xi ⊗A(H)~jm − (1− α)A(G) ~Xi ⊗A(H)~jm

= αmp ~Xi ⊗~jm + αnq ~Xi ⊗~jm − αpq ~Xi ⊗~jm
+(1− α)mλi(G) ~Xi ⊗~jm + 0− (1− α)qλi(G) ~Xi ⊗~jm

= (α(mp+ nq − pq) + (1− α)(m− q)λi(G))( ~Xi ⊗~jm)

Thus, ~Xi⊗~jm is an eigenvector of Aα(G⊕H) corresponding
to α(mp+nq−pq)−(1−α)(m−q)λi(G). By the same way, for
j = 2, 3, · · · ,m, we can obtain that ~jn ⊗ ~Yj is an eigenvector
of Aα(G⊕H) corresponding to α(mp+nq−pq)−(1−α)(n−
p)µj(H).

It is not hard to see that ~Xi ⊗ ~Yj , ~Xi ⊗ ~jm, ~jn ⊗ ~Yj and
~jn ⊗~jm are orthogonal.

Thus, the proof completes.

Corollary III.3. Let G be a p-regular graph and H be a
q-regular graph. Then, under Remark II.1, G⊕H is a (mp+

nq − pq)-regular graph.

In accordance with Theorem III.3, we give an example to
find the Aα-spectrum of the special product of two regular
graphs.

Example III.3. Let G = C4 and H = K2. The special product
C4 ⊕ K2 is shown in Fig.7. By direct calculation, we have
Spec(A(C4)) = {2, 02,−2} and Spec(A(K2)) = {1,−1}.
Thus, it follows from Theorem III.3 that

Spec(Aα(C4 ⊕K2)) = {6, 6α4, 8α− 23}.

On the other hand, by Matlab 7.0 one can obtain
Spec(A(C4 ⊕ K2)) = {6, 04,−23}, and then according to
Aα(C4 ⊕K2) = αD(C4 ⊕K2) + (1− α)A(C4 ⊕K2), we can
directly calculate the Aα-spectrum of C4 ⊕K2, the result is
the same as above.

C4

K2 C4 ⊕K2

Fig. 7. C4,K2 and special product C4 ⊕K2
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In addition, we use the Theorem III.3 to construct families
of Aα-cospectral graphs.

Corollary III.4. Let H be a regular graph and let G1 and
G2 be A-cospectral regular graphs but not isomorphic with
each other, under the condition of Remark II.1, G1 ⊕H and
G2 ⊕H are Aα-cospectral.

Theorem III.4. Let G be a p-regular graph with or-
der n and H be a q-regular graph with order m. If
Spec(A(G)) = {p, λ2(G), · · · , λn(G)} and Spec(A(H)) =
{q, µ2(H), · · · , µm(H)}, then under the Remark II.2, we have

λ1(Aα(GρH)) = p+ q.

Proof: Let G be a p-regular graph with V (G) =

{u1, u2, · · · , un} and H be a q-regular graph with V (H) =

{v1, v2, · · · , vm}. A permutation π of V (H) can be repre-
sented by a permutation matrix P = (pij), where pij = 1

if vi = π(vj), and pij = 0 otherwise. Under the condition of
Remark II.2 and vertex partition V (G•H) = V1∪V2∪· · ·∪Vn,
where Vi = {(ui, vj)|j = 1, 2, · · · ,m}, it is obvious that

A(GρH) =


A(H) a12P · · · a1nP

a21P A(H) · · · a2nP

...
...

. . .
...

an1P an2P · · · A(H)


= In ⊗A(H) +A(G)⊗ P

and

D(GρH) = In ⊗D(H) +D(G)⊗ Im.

Then

Aα(GρH) =α(In ⊗D(H) +D(G)⊗ Im)

+(1− α)(In ⊗A(H) +A(G)⊗ P )

= In ⊗Aα(H)+αD(G)⊗ Im+(1− α)A(G)⊗ P.

It is well known that ~jn and ~jm are the Perron vectors of
regular graphs G and H corresponding to eigenvalues p and
q, respectively. Thus, one can get

Aα(GρH)(~jn ⊗~jm)

= (In ⊗Aα(H)+αD(G)⊗ Im+(1− α)A(G)⊗ P )(~jn ⊗~jm)

= ~jn ⊗Aα(H)~jm + αD(G)~jn ⊗~jm + (1− α)A(G)~jn ⊗ P~jm
= q~jn ⊗~jm + αp~jn ⊗~jm + (1− α)p~jn ⊗~jm
= (q + αp+ (1− α)p)(~jn ⊗~jm)

= (p+ q)(~jn ⊗~jm)

It is completed the proof.

Corollary III.5. Let G be a p-regular graph and H be a
q-regular graph. Then, under the condition of Remark II.2,
GρH is a (p+q)-regular graph.

According to the above Corollary III.5, one can give the
Aα-spectral radius of two regular graphs.

Example III.4. Let G = C4 and H = C3, their wreath
product C4ρC3 is shown in Fig.8. According to Corollary
III.5, one can easily obtain λ1(Aα(C4ρC3)) = 4.

C4

C3 C4 ρ C3

Fig. 8. C4, C3 and wreath product C4 ⊕ C3
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