Merging The A- and Q-spectrum of Three Kinds of Graph Product

Mengyue Yuan, Fei Wen, Ranran Wang

Abstract

For a graph G, let $A(G)$ and $D(G)$ be the adjacency matrix and the degree matrix of G, respectively. Nikiforov defined the matrix $A_{\alpha}(G)$ as $$
A_{\alpha}(G)=\alpha D(G)+(1-\alpha) A(G)
$$ where $\alpha \in[0,1]$. In this paper, we first give the A_{α}-spectral radius of semistrong product of arbitrary graph G and a regular graph H. Then we respectively present the A_{α}-spectra of semistrong product $G \bullet H$ and special product $G \oplus H$ when G and H are two regular graphs. Moreover, we give the A_{α} spectral radius of wreath product $G \rho H$.

Index Terms-semistrong product, special product, wreath product, A_{α}-spectral radius, A_{α}-spectral spectrum.

I. Introduction

THROUGHOUT this paper, all graphs considered are simple finite undirected graph. Let $G=(V, E)$ be a connected graph with vertex set $V(G)$ and edge set $E(G)$. Let $A(G)$ and $D(G)$ denote the adjacency matrix and the diagonal matrix of G, respectively. For any real $\alpha \in[0,1]$, Nikiforov [1] defined the matrix $A_{\alpha}(G)$ as

$$
A_{\alpha}(G)=\alpha D(G)+(1-\alpha) A(G)
$$

It is easy to see that $A_{0}(G)=A(G), A_{1}(G)=D(G)$ and $2 A_{1 / 2}(G)=Q(G)$ if $\alpha=0,1,1 / 2$, and $L(G)=\frac{A_{\alpha}-A_{\beta}}{\alpha-\beta}$ if $\alpha \neq \beta$ for any $\alpha, \beta \in[0,1]$, where $Q(G)$ and $L(G)$ are signless Laplacian matrix and Laplacian matrix of G, respectively. Let $M(G)=M$ be a graph matrix with respect to $A(G)$ of G. We denote the eigenvalues of M by $\lambda_{1}(M) \geq \lambda_{2}(M) \geq$ $\cdots \geq \lambda_{n}(M)$, where $\lambda_{1}(M)$ is called the spectral radius. The collection of eigenvalues of M together with multiplicities are called M-spectrum, denoted by $\operatorname{Spec}(M)$ for short. Let $\Phi_{M}(x)=\operatorname{det}\left(x I_{n}-M\right)$ denote the characteristic polynomial of M, where I_{n} is the identity matrix. Clearly, the graph matrix M is respectively called the adjacency matrix and A_{α}-matrix if M equals $A(G)$ and $A_{\alpha}(G)$, etc.

We use $J_{m \times n}$ to denote the $m \times n$ matrix with each entry one, and write \vec{j}_{m} for the column m-vector of ones. Further, a graph G is k-regular if $d(v)=k$ for all $v \in V(G)$. For other graph theoretic notations and terminologies not defined here, we refer the readers to [2].
The matrix $A_{\alpha}(G)$ was first defined by Nikiforov (2017) in [1], it has attracted the attention of several scholars in

[^0]the field of spectral graph. Clearly, $A_{\alpha}(G)$ is the linear combinations of $A(G)$ and $D(G)$, it was claimed that the matrices $A_{\alpha}(G)$ can underpin a unified theory of $A(G)$ and $Q(G)$ in [1], [3]. In recent years, a few properties on $A_{\alpha}(G)$ have been investigated. Nikiforov and Rojo in [4] studied the positive semi-definiteness of matrix $A_{\alpha}(G)$. Lin et al. [5] considered the A_{α}-spectral radius of graphs, and then, Wang et al. [7] characterized the connected graphs whose A_{α} spectral radius is at most 2 . For more properties of $A_{\alpha}(G)$, we refer the readers to [8]-[11].

In [12], Jaradat introduced seven basic graph products such as cartesian product, lexicographic product, directed product, strong product, semi-strong product, special product and wreath product. More recently, Li and Wang [6] respectively presented A_{α}-spectrum of cartesian product, lexicographic product, directed product and strong product of graphs.

Motivated above, in this paper, we continue to study the A_{α}-spectrum of the remaining three graph products, which are semi-strong product, special product and wreath product. We first give the A_{α}-spectral radius of semistrong product of arbitrary graph G and a regular graph H. Then we respectively present the A_{α}-spectra of semistrong product $G \bullet H$ and special product $G \oplus H$ when G and H are two regular graphs. Moreover, we give the A_{α}-spectral radius of wreath product $G \rho H$.

II. Preliminaries

In this section, we introduce some definitions and lemmas which will be useful for the proof of main results.

Definition II. 1 ([12]). Given graphs G and H with vertex set $V(G)=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ and $V(H)=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$, respectively. Their semistrong product $G \bullet H$ is graph with vertex set $V(G) \times V(H)$, where two distinct vertices $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$ are adjacent when $u_{1} u_{2} \in E(G)$ and $v_{1} v_{2} \in$ $E(H)$, or $u_{1}=u_{2}$ and $v_{1} v_{2} \in E(H)$ (shown in Fig. 1 for example).

Definition II. 2 ([12]). Given graphs G and H with vertex set $V(G)=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ and $V(H)=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$, respectively. Their special product $G \oplus H$ is graph with vertex set $V(G) \times V(H)$, where $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$ are adjacent when $u_{1} u_{2} \in E(G)$ or $v_{1} v_{2} \in E(H)$.

Remark II.1. Under the definition of special product, when $u_{1} u_{2} \in E(G)$ and $v_{1} v_{2} \in E(H)$, there will be multiple edges between $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$. In order to avoid multiple edges, we only add one edge between $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$, other places remain unchange (see Fig. 2 for instance).
Definition II. 3 ([12]). Given graphs G and H with vertex set $V(G)=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ and $V(H)=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$, respectively. Their wreath product $G \rho H$ is graph with vertex set
$V(G) \times V(H)$, and edge set $E(G \rho H)=\left\{\left(u_{1}, v_{1}\right)\left(u_{2}, v_{2}\right) \mid u_{1}=\right.$ u_{2} and $v_{1} v_{2} \in E(H)$, or $u_{1} u_{2} \in E(G)$ and there is $\pi \in \operatorname{Aut}(H)$ such that $\left.\pi\left(v_{1}\right)=v_{2}\right\}$, where $\operatorname{Aut}(H)$ is the automorphism group of H.

Fig. 1. semistrong product $P_{3} \bullet P_{2}$

Fig. 2. \quad special product $P_{3} \oplus P_{2}$

Remark II.2. Under the definition of wreath product, if graph H has more than one permutations, then $G \rho H$ will produce multiple edges. Therefore, we only consider one of all the permutations of H to avoid this case (shown in Fig.3).

Fig. 3. wreath product $P_{3} \rho P_{3}$

Lemma II. 1 ([6]). Let H be a p-regular graph with order n. If $p \geq \lambda_{2}(H) \geq \cdots \geq \lambda_{m}(H)$ are the adjacency eigenvalues of H, then
$\operatorname{Spec}\left(A_{\alpha}(H)\right)=\left\{p, \alpha p+(1-\alpha) \lambda_{2}(H), \cdots, \alpha p+(1-\alpha) \lambda_{m}(H)\right\}$.
Furthermore, if $Y=\left[\begin{array}{llll}\vec{j}_{m} & \vec{Y}_{2} & \cdots & \vec{Y}_{m}\end{array}\right]$ is an orthogonal matrix whose columns $\vec{j}_{m}, \vec{Y}_{2}, \cdots, \vec{Y}_{m}$ are eigenvectors corresponding to the eigenvalues $p, \lambda_{2}(H), \cdots, \lambda_{m}(H)$, respectively, then Y is also an orthogonal matrix whose columns are eigenvectors corresponding to the eigenvalues $p, \alpha p+(1-$ $\alpha) \lambda_{2}(H), \cdots, \alpha p+(1-\alpha) \lambda_{m}(H)$ of $A_{\alpha}(H)$, respectively.

III. MAIN RESULTS

Theorem III.1. Let G be a connected graph with order n, and H be a r-regular graph with order m. Then the A_{α} spectral radius of $G \bullet H$ is

$$
\lambda_{1}\left(A_{\alpha}(G \bullet H)\right)=r+r \lambda_{1}\left(A_{\alpha}(G)\right) .
$$

Proof: Let G be a connected graph with $V(G)=$ $\left\{u_{1}, u_{2}, \cdots, u_{n}\right\}$, and H be a r-regular graph with $V(H)=$ $\left\{v_{1}, v_{2}, \cdots, v_{m}\right\}$. Firstly, we give a partition of the vertex set of $G \bullet H$ and denote by $V(G \bullet H)=V_{1} \cup V_{2} \cup \cdots \cup V_{n}$, where $V_{i}=\left\{\left(u_{i}, v_{j}\right) \mid j=1,2, \cdots, m\right\}$. For the adjacency matrix $A(G \bullet H)$, it is obvious that

$$
A(G \bullet H)=I_{n} \otimes A(H)+A(G) \otimes A(H)
$$

Meanwhile, one can find that

$$
d_{G \bullet H}\left(u_{i}, v_{j}\right)=d_{H}\left(v_{j}\right)+d_{G}\left(u_{i}\right) \times d_{H}\left(v_{j}\right),
$$

and further,

$$
D(G \bullet H)=I_{n} \otimes D(H)+D(G) \otimes D(H)
$$

Thus we have

$$
\begin{aligned}
A_{\alpha}(G \bullet H)= & \alpha D(G \bullet H)+(1-\alpha) A(G \bullet H) \\
= & \alpha\left(I_{n} \otimes D(H)+D(G) \otimes D(H)\right) \\
& +(1-\alpha)\left(I_{n} \otimes A(H)+A(G) \otimes A(H)\right) \\
= & \alpha I_{n} \otimes D(H)+\alpha D(G) \otimes D(H) \\
& +(1-\alpha) I_{n} \otimes A(H)+(1-\alpha) A(G) \otimes A(H) \\
= & I_{n} \otimes A_{\alpha}(H)+\alpha D(G) \otimes D(H) \\
& +(1-\alpha) A(G) \otimes A(H) .
\end{aligned}
$$

Note that for r-regular graph H of order m, \vec{j}_{m} is an eigenvector of H corresponding to the spectral radius r. Let $\vec{X}_{1}=\left(x_{1}, x_{2}, \cdots, x_{n}\right)^{T}$ be the Perron vector of $A_{\alpha}(G)$, i.e., $x_{i}>0$ for each i. It follows that

$$
\begin{aligned}
& A_{\alpha}(G \bullet H)\left(\vec{X}_{1} \otimes \vec{j}_{m}\right) \\
& =\left(I_{n} \otimes A_{\alpha}(H)+\alpha D(G) \otimes D(H)\right. \\
& \quad+(1-\alpha) A(G) \otimes A(H))\left(\vec{X}_{1} \otimes \vec{j}_{m}\right) \\
& =\vec{X}_{1} \otimes A_{\alpha}(H) \vec{j}_{m}+\alpha D(G) \vec{X}_{1} \otimes D(H) \vec{j}_{m} \\
& \quad+(1-\alpha) A(G) \vec{X}_{1} \otimes A(H) \vec{j}_{m} \\
& =r \vec{X}_{1} \otimes \vec{j}_{m}+\alpha r D(G) \vec{X}_{1} \otimes \vec{j}_{m}+r(1-\alpha) A(G) \vec{X}_{1} \otimes \vec{j}_{m} \\
& =r \vec{X}_{1} \otimes \vec{j}_{m}+r A_{\alpha}(G) \vec{X}_{1} \otimes \vec{j}_{m} \\
& =\left(r+r \lambda_{1}\left(A_{\alpha}(G)\right)\right)\left(\vec{X}_{1} \otimes \vec{j}_{m}\right) .
\end{aligned}
$$

Hence, the proof completes.
Theorem III.2. Let G be a p-regular graph with order n and H be a q-regular graph with order m. If $p \geq \lambda_{2}(G) \geq \cdots \geq$ $\lambda_{n}(G)$ are adjacency eigenvalues of G and $q \geq \mu_{2}(H) \geq$ $\cdots \geq \mu_{m}(H)$ are adjacency eigenvalues of H, then the A_{α} spectrum of $G \bullet H$ is

$$
\begin{aligned}
& \operatorname{Spec}\left(A_{\alpha}(G \bullet H)\right) \\
& =\{p q+q\} \cup \bigcup_{i=2}^{n}\left\{q\left(1+\alpha p+(1-\alpha) \lambda_{i}(G)\right)\right\} \\
& \cup \bigcup_{j=2}^{m}\left\{(1+p)\left(\alpha q+(1-\alpha) \mu_{j}(H)\right)\right\} \\
& \cup \bigcup_{i=2}^{n} \bigcup_{j=2}^{m}\left\{\alpha q(1+p)+(1-\alpha) \mu_{j}(H)\left(\lambda_{i}(G)+1\right)\right\} .
\end{aligned}
$$

Proof: Let G be a p-regular graph with $V(G)=$ $\left\{u_{1}, u_{2}, \cdots, u_{n}\right\}$ and H be a q-regular graph with $V(H)=$ $\left\{v_{1}, v_{2}, \cdots, v_{m}\right\}$. Given the vertex partition $V(G \bullet H)=$ $V_{1} \cup V_{2} \cup \cdots \cup V_{n}$, where $V_{i}=\left\{\left(u_{i}, v_{j}\right) \mid j=1,2, \cdots, m\right\}$, it follows from Theorem III. 1 that
$A_{\alpha}(G \bullet H)=I_{n} \otimes A_{\alpha}(H)+\alpha D(G) \otimes D(H)+(1-\alpha) A(G) \otimes A(H)$.
Let $X=\left[\begin{array}{llll}\vec{j}_{n} & \vec{X}_{2} & \cdots & \vec{X}_{n}\end{array}\right]$ be an orthogonal matrix whose columns $\vec{j}_{n}, \vec{X}_{2}, \cdots, \vec{X}_{n}$ are eigenvectors corresponding to
the eigenvalues $p, \lambda_{2}(G), \cdots, \lambda_{n}(G)$, respectively. Let $Y=$ $\left[\begin{array}{llll}\vec{j}_{n} & \vec{Y}_{2} & \cdots & \vec{Y}_{m}\end{array}\right]$ be an orthogonal matrix whose columns $\vec{j}_{m}, \vec{Y}_{2}, \cdots, \vec{Y}_{m}$ are eigenvectors corresponding to the eigenvalues $q, \mu_{2}(H), \cdots, \mu_{m}(H)$, respectively. It follows from Lemma II. 1 that $\vec{j}_{n}, \vec{X}_{2}, \cdots, \vec{X}_{n}$ are eigenvectors corresponding to the eigenvalues $p, \alpha p+(1-\alpha) \lambda_{2}(G), \cdots, \alpha p+(1-$ $\alpha) \lambda_{n}(G)$. Then by Theorem III.1, one can see that $\lambda_{1}\left(A_{\alpha}(G \bullet\right.$ $H))=p q+q$ since $\vec{j}_{n} \otimes \vec{j}_{m}$ is the Perron vector of $A_{\alpha}(G \bullet H)$ corresponding to $p q+q$.

We then prove that $(1+p)\left(\alpha q+(1-\alpha) \mu_{j}(H)\right)$ is an eigenvalue of $A_{\alpha}(G \bullet H)$, where $j=2,3, \cdots, m$. For the vector $\vec{j}_{n} \otimes \vec{Y}_{j}$, we have

$$
\begin{aligned}
& A_{\alpha}(G \bullet H)\left(\vec{j}_{n} \otimes \vec{Y}_{j}\right) \\
& =\left(I_{n} \otimes A_{\alpha}(H)+\alpha D(G) \otimes D(H)\right. \\
& \quad+(1-\alpha) A(G) \otimes A(H))\left(\vec{j}_{n} \otimes \vec{Y}_{j}\right) \\
& =\vec{j}_{n} \otimes A_{\alpha}(H) \vec{Y}_{j}+\alpha D(G) \vec{j}_{n} \otimes D(H) \vec{Y}_{j} \\
& \quad+(1-\alpha) A(G) \vec{j}_{n} \otimes A(H) \vec{Y}_{j} \\
& =\left(\alpha q+(1-\alpha) \mu_{j}(H)\right) \vec{j}_{n} \otimes \vec{Y}_{j}+\alpha p q \vec{j}_{n} \otimes \vec{Y}_{j} \\
& \quad+(1-\alpha) p \mu_{j}(H) \vec{j}_{n} \otimes \vec{Y}_{j} \\
& = \\
& \left((1+p)\left(\alpha q+(1-\alpha) \mu_{j}(H)\right)\right)\left(\vec{j}_{n} \otimes \vec{Y}_{j}\right) .
\end{aligned}
$$

Thus, $\vec{j}_{n} \otimes \vec{Y}_{j}$ is an eigenvector of $A_{\alpha}(G \bullet H)$ corresponding to $(1+p)\left(\alpha q+(1-\alpha) \mu_{j}(H)\right)$.
Next we will show that $q\left(1+\alpha p+(1-\alpha) \lambda_{i}(G)\right)$ is an eigenvalue of $A_{\alpha}(G \bullet H)$, where $i=2,3, \cdots, n$. For the vector $\vec{X}_{i} \otimes \vec{j}_{m}$ we have

$$
\begin{aligned}
& A_{\alpha}(G \bullet H)\left(\vec{X}_{i} \otimes \vec{j}_{m}\right) \\
&=\left(I_{n} \otimes A_{\alpha}(H)+\alpha D(G) \otimes D(H)\right. \\
&\quad+(1-\alpha) A(G) \otimes A(H))\left(\vec{X}_{i} \otimes \vec{j}_{m}\right) \\
&= \vec{X}_{i} \otimes A_{\alpha}(H) \vec{j}_{m}+\alpha D(G) \vec{X}_{i} \otimes D(H) \vec{j}_{m} \\
& \quad+(1-\alpha) A(G) \vec{X}_{i} \otimes A(H) \vec{j}_{m} \\
&= q \vec{X}_{i} \otimes \vec{j}_{m}+\alpha p q \vec{X}_{i} \otimes \vec{j}_{m}+(1-\alpha) q \lambda_{i}(G) \vec{X}_{i} \otimes \vec{j}_{m} \\
&=\left(q+\alpha p q+(1-\alpha) q \lambda_{i}(G)\right)\left(\vec{X}_{i} \otimes \vec{j}_{m}\right) \\
&=\left(q\left(1+\alpha p+(1-\alpha) \lambda_{i}(G)\right)\right)\left(\vec{X}_{i} \otimes \vec{j}_{m}\right) .
\end{aligned}
$$

Hence, $\vec{X}_{i} \otimes \vec{j}_{m}$ is an eigenvector of $A_{\alpha}(G \bullet H)$ corresponding to $q\left(1+\alpha p+(1-\alpha) \lambda_{i}(G)\right)$ for $i=2,3, \cdots, n$.

At last, we will verify that $\alpha q(1+p)+(1-\alpha) \mu_{j}(H)\left(\lambda_{i}(G)+\right.$ 1) are A_{α}-eigenvalues of $G \bullet H$ for $i=2,3, \cdots, n$ and $j=$ $2,3, \cdots, m$.

$$
\begin{aligned}
& A_{\alpha}(G \bullet H)\left(\vec{X}_{i} \otimes \vec{Y}_{j}\right) \\
& =\left(I_{n} \otimes A_{\alpha}(H)+\alpha D(G) \otimes D(H)\right. \\
& \quad+(1-\alpha) A(G) \otimes A(H))\left(\vec{X}_{i} \otimes \vec{Y}_{j}\right) \\
& =\vec{X}_{i} \otimes A_{\alpha}(H) \vec{Y}_{j}+\alpha D(G) \vec{X}_{i} \otimes D(H) \vec{Y}_{j} \\
& \quad+(1-\alpha) A(G) \vec{X}_{i} \otimes A(H) \vec{Y}_{j} \\
& =\left(\alpha q+(1-\alpha) \mu_{j}(H)\right) \vec{X}_{i} \otimes \vec{Y}_{j}+\alpha p q \vec{X}_{i} \otimes \vec{Y}_{j} \\
& \quad+(1-\alpha) \lambda_{i}(G) \mu_{j}(H) \vec{X}_{i} \otimes \vec{Y}_{j} \\
& =\left(\alpha q(1+p)+(1-\alpha) \mu_{j}(H)\left(\lambda_{i}(G)+1\right)\right)\left(\vec{X}_{i} \otimes \vec{Y}_{j}\right) .
\end{aligned}
$$

Therefore, $\vec{X}_{i} \otimes \vec{Y}_{j}$ is an eigenvector of $A_{\alpha}(G \bullet H)$ corresponding to $\alpha q(1+p)+(1-\alpha) \mu_{j}(H)\left(\lambda_{i}(G)+1\right)$.
Note that \vec{X}_{i} and \vec{Y}_{j} are orthogonal to all one column vector, it is easy to prove that $\vec{X}_{i} \otimes \vec{Y}_{j}, \vec{X}_{i} \otimes \vec{j}_{m}, \vec{j}_{n} \otimes \vec{Y}_{j}$ and $\vec{j}_{n} \otimes \vec{j}_{m}$ are orthogonal.

To sum up, the proof is completed.

Corollary III.1. If G is a p-regular graph and H is q-regular graph, then the A_{α}-spectral radius of $G \bullet H$ is $q(p+1)$.

From Theorem III.2, one can easily obtained the $A_{\alpha^{-}}$ spectrum of the semistrong product of two regular graphs.

Example III.1. Let $G=C_{5}$ and $H=C_{3}$. The semistrong product $C_{5} \bullet C_{3}$ is shown in Fig.4. By simple computation, one can get $\operatorname{Spec}\left(A\left(C_{5}\right)\right)=\left\{2,0.618^{2},-1.618^{2}\right\}$ and $\operatorname{Spec}\left(A\left(C_{3}\right)\right)$ $=\left\{2,-1^{2}\right\}$. It follows from Theorem III. 2 that

$$
\begin{aligned}
\operatorname{Spec}\left(A_{\alpha}\left(C_{5} \bullet C_{3}\right)=\right. & \left\{6,(9 \alpha-3)^{2},(2.764 \alpha+3.236)^{2},(7.236 \alpha-\right. \\
& \left.1.236)^{2},(7.618 \alpha-1.618)^{4},(5.382 \alpha+0.618)^{4}\right\} .
\end{aligned}
$$

On the other hand, by Matlab 7.0 we get $\operatorname{Spec}\left(A\left(C_{5} \bullet C_{3}\right)=\right.$ $\left\{6,3.236^{2}, 0.618^{4},-1.236^{2},-1.618^{4},-3^{2}\right\}$. Furthermore, from Corollary III. 2 we know that $C_{5} \bullet C_{3}$ is 6 -regular graph. According to the definition $A_{\alpha}\left(C_{5} \bullet C_{3}\right)=\alpha D\left(C_{5} \bullet C_{3}\right)+$ $(1-\alpha) A\left(C_{5} \bullet C_{3}\right)$, we can also calculate the A_{α}-spectrum of $C_{5} \bullet C_{3}$, which is the same as the above calculation.

C_{3}

$C_{5} \bullet C_{3}$

Fig. 4. C_{5}, C_{3} and semistrong product $C_{5} \bullet C_{3}$

Besides, one can use Theorem III. 2 to construct infinitely many pairs of A_{α}-cospectral graphs.

Corollary III.2. Let H be a regular graph. If G_{1} and G_{2} are A-cospectral regular graphs but not isomorphic with each other, then $G_{1} \bullet H$ and $G_{2} \bullet H$ are A_{α}-cospectral.

Example III.2. Let G_{1} and G_{2} be two 4-regular graphs (shown in Fig.6). Then by Matlab 7.0 we get $\operatorname{Spec}\left(A\left(G_{1}\right)\right)=$ $\operatorname{Spec}\left(A\left(G_{2}\right)\right)=\left\{4,2.2361,1.5616,1,-1^{4},-2.2361,-2.5616\right\}$ and $\operatorname{Spec}\left(A\left(P_{2}\right)\right)=\{1,-1\}$. It is easy to find that G_{1} and G_{2} are A-cospectral but not isomorphic with each other. It follows from Theorem III. 2 that $\operatorname{Spec}\left(A_{\alpha}\left(G_{1} \bullet\right.\right.$ $H))=\operatorname{Spec}\left(A_{\alpha}\left(G_{2} \bullet H\right)\right)=\{5,1.7639 \alpha+3.2361,2.4384 \alpha+$ $2.5616,3 \alpha+2,3.4384 \alpha+1.5616,3.7639 \alpha+1.2361,5 \alpha^{8}, 6.2361 \alpha-$ $1.2361,6.5616 \alpha-1.5616,7 \alpha-2,7.5616 \alpha-2.5616,8.2361 \alpha-$ $3.2361,10 \alpha-5\}$, which means $G_{1} \bullet P_{2}$ and $G_{2} \bullet P_{2}$ are $A_{\alpha}-$ cospectral.

Fig. 5. G_{1} and G_{2}

$G_{1} \bullet P_{2}$

$G_{2} \bullet P_{2}$

Fig. 6. $\quad G_{1} \bullet P_{2}$ and $G_{2} \bullet P_{2}$

Theorem III.3. Let G be a p-regular graph with order n and H be a q-regular graph with order m. If $p \geq \lambda_{2}(G) \geq \cdots \geq$ $\lambda_{n}(G)$ are adjacency eigenvalues of G and $q \geq \mu_{2}(H) \geq$ $\cdots \geq \mu_{m}(H)$ are adjacency eigenvalues of H, then under the condition of Remark II.1, we have

$$
\begin{aligned}
& \operatorname{Spec}\left(A_{\alpha}(G \oplus H)\right) \\
& =\bigcup_{i=2}^{n} \bigcup_{j=2}^{m}\left\{\alpha(m p+n q-p q)-(1-\alpha) \lambda_{i}(G) \mu_{j}(H)\right\} \\
& \cup \bigcup_{i=2}^{n}\left\{\alpha(m p+n q-p q)+(1-\alpha)(m-q) \lambda_{i}(G)\right\} \\
& \cup \bigcup_{j=2}^{m}\left\{\alpha(m p+n q-p q)+(1-\alpha)(n-p) \mu_{j}(G)\right\} \\
& \cup\{m p+n q-p q\} .
\end{aligned}
$$

Proof: Let G be a p-regular graph with $V(G)=$ $\left\{u_{1}, u_{2}, \cdots, u_{n}\right\}$ and H be a q-regular graph with $V(H)=$ $\left\{v_{1}, v_{2}, \cdots, v_{m}\right\}$. Under the condition of Remark II.1, by the partition $V(G \bullet H)=V_{1} \cup V_{2} \cup \cdots \cup V_{n}$ one can get

$$
A(G \oplus H)=A(G) \otimes J_{m \times m}+J_{n \times n} \otimes A(H)-A(G) \otimes A(H)
$$

where $V_{i}=\left\{\left(u_{i}, v_{j}\right) \mid j=1,2, \cdots, m\right\}$. It is easy to see that $d_{G \oplus H}\left(u_{i}, v_{j}\right)=d_{G}\left(u_{i}\right) \cdot|V(H)|+d_{H}\left(v_{j}\right) \cdot|V(G)|-d_{G}\left(u_{i}\right) \cdot d_{H}\left(v_{j}\right)$, which leads to

$$
D(G \oplus H)=m D(G) \otimes I_{m}+n I_{n} \otimes D(H)-D(G) \otimes D(H)
$$

It therefore follows that

$$
\begin{aligned}
A_{\alpha}(G \oplus H)= & \alpha D(G \oplus H)+(1-\alpha) A(G \oplus H) \\
= & \alpha m D(G) \otimes I_{m}+\alpha n I_{n} \otimes D(H) \\
& -\alpha D(G) \otimes D(H)+(1-\alpha) A(G) \otimes J_{m \times m} \\
& +(1-\alpha) J_{n \times n} \otimes A(H)-(1-\alpha) A(G) \otimes A(H) .
\end{aligned}
$$

Let $X=\left[\begin{array}{llll}\vec{j}_{n} & \vec{X}_{2} & \cdots & \vec{X}_{n}\end{array}\right]$ be an orthogonal matrix whose columns $\vec{j}_{n}, \vec{X}_{2}, \cdots, \vec{X}_{n}$ are eigenvectors corresponding to the eigenvalues $p, \lambda_{2}(G), \cdots, \lambda_{n}(G)$, respectively. Let $Y=$ $\left[\begin{array}{llll}\vec{j}_{n} & \vec{Y}_{2} & \cdots & \vec{Y}_{m}\end{array}\right]$ be an orthogonal matrix whose columns $\vec{j}_{m}, \vec{Y}_{2}, \cdots, \vec{Y}_{m}$ are eigenvectors corresponding to the eigenvalues $q, \mu_{2}(H), \cdots, \mu_{m}(H)$, respectively.

Using the same argument as the A_{α}-spectrum of $G \bullet H$, we have

$$
\begin{aligned}
& A_{\alpha}(G \oplus H)\left(\vec{j}_{n} \otimes \vec{j}_{m}\right) \\
&= \alpha m D(G) \vec{j}_{n} \otimes \vec{j}_{m}+\alpha n \vec{j}_{n} \otimes D(H) \vec{j}_{m}-\alpha D(G) \vec{j}_{n} \otimes D(H) \vec{j}_{m} \\
&+(1-\alpha) A(G) \vec{j}_{n} \otimes J_{m \times m} \vec{j}_{m}+(1-\alpha) J_{n \times n} \vec{j}_{n} \otimes A(H) \vec{j}_{m} \\
&-(1-\alpha) A(G) \vec{j}_{n} \otimes A(H) \vec{j}_{m} \\
&= \alpha m p \vec{j}_{n} \otimes \vec{j}_{m}+\alpha n q \vec{j}_{n} \otimes \vec{j}_{m}-\alpha p \vec{j}_{n} \otimes \vec{j}_{m} \\
&+(1-\alpha) m p \vec{j}_{n} \otimes \vec{j}_{m}+(1-\alpha) n q \vec{j}_{n} \otimes \vec{j}_{m}-(1-\alpha) p q \vec{j}_{n} \otimes \vec{j}_{m} \\
&=(\alpha m p+\alpha n q-\alpha p q+(1-\alpha) m p+(1-\alpha) n q \\
&-(1-\alpha) p q)\left(\vec{j}_{n} \otimes \vec{j}_{m}\right) \\
&=(m p+n q-p q)\left(\vec{j}_{n} \otimes \vec{j}_{m}\right)
\end{aligned}
$$

Therefore, the spectral radius of $A_{\alpha}(G \oplus H)$ is $m p+n q-p q$. Besides,

$$
\begin{aligned}
& A_{\alpha}(G \oplus H)\left(\vec{X}_{i} \otimes \vec{Y}_{j}\right) \\
& =\alpha m D(G) \vec{X}_{i} \otimes \vec{Y}_{j}+\alpha n \vec{X}_{i} \otimes D(H) \vec{Y}_{j}-\alpha D(G) \vec{X}_{i} \otimes D(H) \vec{Y}_{j} \\
& \quad+(1-\alpha) A(G) \vec{X}_{i} \otimes J_{m \times m} \vec{Y}_{j}+(1-\alpha) J_{n \times n} \vec{X}_{i} \otimes A(H) \vec{Y}_{j} \\
& \quad-(1-\alpha) A(G) \vec{X}_{i} \otimes A(H) \vec{Y}_{j} \\
& =\alpha m p \vec{X}_{i} \otimes \vec{Y}_{j}+\alpha n q \vec{X}_{i} \otimes \vec{Y}_{j}-\alpha p q \vec{X}_{i} \otimes \vec{Y}_{j}+0+0 \\
& \quad-(1-\alpha) \lambda_{i}(G) \mu_{j}(H) \vec{X}_{i} \otimes \vec{Y}_{j} \\
& = \\
& \left(\alpha(m p+n q-p q)-(1-\alpha) \lambda_{i}(G) \mu_{j}(H)\right)\left(\vec{X}_{i} \otimes \vec{Y}_{j}\right) .
\end{aligned}
$$

Hence, $\vec{X}_{i} \otimes \vec{Y}_{j}$ is an eigenvector of $A_{\alpha}(G \oplus H)$ corresponding to $\alpha(m p+n q-p q)-(1-\alpha) \lambda_{i}(G) \mu_{j}(H)$, where $i=2,3, \cdots, n$ and $j=2,3, \cdots, m$.

Moreover,

$$
\begin{aligned}
& A_{\alpha}(G \oplus H)\left(\vec{X}_{i} \otimes \vec{j}_{m}\right) \\
&= \alpha m D(G) \vec{X}_{i} \otimes \vec{j}_{m}+\alpha n \vec{X}_{i} \otimes D(H) \vec{j}_{m} \\
& \quad-\alpha D(G) \vec{X}_{i} \otimes D(H) \vec{j}_{m}+(1-\alpha) A(G) \vec{X}_{i} \otimes J_{m \times m} \vec{j}_{m} \\
& \quad+(1-\alpha) J_{n \times n} \vec{X}_{i} \otimes A(H) \vec{j}_{m}-(1-\alpha) A(G) \vec{X}_{i} \otimes A(H) \vec{j}_{m} \\
&= \alpha m p \vec{X}_{i} \otimes \vec{j}_{m}+\alpha n q \vec{X}_{i} \otimes \vec{j}_{m}-\alpha p q \vec{X}_{i} \otimes \vec{j}_{m} \\
& \quad+(1-\alpha) m \lambda_{i}(G) \vec{X}_{i} \otimes \vec{j}_{m}+0-(1-\alpha) q \lambda_{i}(G) \vec{X}_{i} \otimes \vec{j}_{m} \\
&=\left(\alpha(m p+n q-p q)+(1-\alpha)(m-q) \lambda_{i}(G)\right)\left(\vec{X}_{i} \otimes \vec{j}_{m}\right)
\end{aligned}
$$

Thus, $\vec{X}_{i} \otimes \vec{j}_{m}$ is an eigenvector of $A_{\alpha}(G \oplus H)$ corresponding to $\alpha(m p+n q-p q)-(1-\alpha)(m-q) \lambda_{i}(G)$. By the same way, for $j=2,3, \cdots, m$, we can obtain that $\vec{j}_{n} \otimes \vec{Y}_{j}$ is an eigenvector of $A_{\alpha}(G \oplus H)$ corresponding to $\alpha(m p+n q-p q)-(1-\alpha)(n-$ p) $\mu_{j}(H)$.

It is not hard to see that $\vec{X}_{i} \otimes \vec{Y}_{j}, \vec{X}_{i} \otimes \vec{j}_{m}, \vec{j}_{n} \otimes \vec{Y}_{j}$ and $\vec{j}_{n} \otimes \vec{j}_{m}$ are orthogonal.

Thus, the proof completes.

Corollary III.3. Let G be a p-regular graph and H be a q-regular graph. Then, under Remark II.1, $G \oplus H$ is a ($m p+$ $n q-p q)$-regular graph.

In accordance with Theorem III.3, we give an example to find the A_{α}-spectrum of the special product of two regular graphs.
Example III.3. Let $G=C_{4}$ and $H=K_{2}$. The special product $C_{4} \oplus K_{2}$ is shown in Fig.7. By direct calculation, we have $\operatorname{Spec}\left(A\left(C_{4}\right)\right)=\left\{2,0^{2},-2\right\}$ and $\operatorname{Spec}\left(A\left(K_{2}\right)\right)=\{1,-1\}$. Thus, it follows from Theorem III. 3 that

$$
\operatorname{Spec}\left(A_{\alpha}\left(C_{4} \oplus K_{2}\right)\right)=\left\{6,6 \alpha^{4}, 8 \alpha-2^{3}\right\}
$$

On the other hand, by Matlab 7.0 one can obtain $\operatorname{Spec}\left(A\left(C_{4} \oplus K_{2}\right)\right)=\left\{6,0^{4},-2^{3}\right\}$, and then according to $A_{\alpha}\left(C_{4} \oplus K_{2}\right)=\alpha D\left(C_{4} \oplus K_{2}\right)+(1-\alpha) A\left(C_{4} \oplus K_{2}\right)$, we can directly calculate the A_{α}-spectrum of $C_{4} \oplus K_{2}$, the result is the same as above.

Fig. 7. $\quad C_{4}, K_{2}$ and special product $C_{4} \oplus K_{2}$

In addition, we use the Theorem III. 3 to construct families of A_{α}-cospectral graphs.

Corollary III.4. Let H be a regular graph and let G_{1} and G_{2} be A-cospectral regular graphs but not isomorphic with each other, under the condition of Remark II.1, $G_{1} \oplus H$ and $G_{2} \oplus H$ are A_{α}-cospectral.
Theorem III.4. Let G be a p-regular graph with order n and H be a q-regular graph with order m. If $\operatorname{Spec}(A(G))=\left\{p, \lambda_{2}(G), \cdots, \lambda_{n}(G)\right\}$ and $\operatorname{Spec}(A(H))=$ $\left\{q, \mu_{2}(H), \cdots, \mu_{m}(H)\right\}$, then under the Remark II.2, we have

$$
\lambda_{1}\left(A_{\alpha}(G \rho H)\right)=p+q .
$$

Proof: Let G be a p-regular graph with $V(G)=$ $\left\{u_{1}, u_{2}, \cdots, u_{n}\right\}$ and H be a q-regular graph with $V(H)=$ $\left\{v_{1}, v_{2}, \cdots, v_{m}\right\}$. A permutation π of $V(H)$ can be represented by a permutation matrix $P=\left(p_{i j}\right)$, where $p_{i j}=1$ if $v_{i}=\pi\left(v_{j}\right)$, and $p_{i j}=0$ otherwise. Under the condition of Remark II. 2 and vertex partition $V(G \bullet H)=V_{1} \cup V_{2} \cup \cdots \cup V_{n}$, where $V_{i}=\left\{\left(u_{i}, v_{j}\right) \mid j=1,2, \cdots, m\right\}$, it is obvious that

$$
\begin{aligned}
A(G \rho H) & =\left(\begin{array}{cccc}
A(H) & a_{12} P & \cdots & a_{1 n} P \\
a_{21} P & A(H) & \cdots & a_{2 n} P \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} P & a_{n 2} P & \cdots & A(H)
\end{array}\right) \\
& =I_{n} \otimes A(H)+A(G) \otimes P
\end{aligned}
$$

and

$$
D(G \rho H)=I_{n} \otimes D(H)+D(G) \otimes I_{m}
$$

Then

$$
\begin{aligned}
A_{\alpha}(G \rho H)= & \alpha\left(I_{n} \otimes D(H)+D(G) \otimes I_{m}\right) \\
& +(1-\alpha)\left(I_{n} \otimes A(H)+A(G) \otimes P\right) \\
= & I_{n} \otimes A_{\alpha}(H)+\alpha D(G) \otimes I_{m}+(1-\alpha) A(G) \otimes P
\end{aligned}
$$

It is well known that \vec{j}_{n} and \vec{j}_{m} are the Perron vectors of regular graphs G and H corresponding to eigenvalues p and q, respectively. Thus, one can get

```
\(A_{\alpha}(G \rho H)\left(\vec{j}_{n} \otimes \vec{j}_{m}\right)\)
\(=\left(I_{n} \otimes A_{\alpha}(H)+\alpha D(G) \otimes I_{m}+(1-\alpha) A(G) \otimes P\right)\left(\vec{j}_{n} \otimes \vec{j}_{m}\right)\)
\(=\vec{j}_{n} \otimes A_{\alpha}(H) \vec{j}_{m}+\alpha D(G) \vec{j}_{n} \otimes \vec{j}_{m}+(1-\alpha) A(G) \vec{j}_{n} \otimes P \vec{j}_{m}\)
\(=q \vec{j}_{n} \otimes \vec{j}_{m}+\alpha p \vec{j}_{n} \otimes \vec{j}_{m}+(1-\alpha) p \vec{j}_{n} \otimes \vec{j}_{m}\)
\(=(q+\alpha p+(1-\alpha) p)\left(\vec{j}_{n} \otimes \vec{j}_{m}\right)\)
\(=(p+q)\left(\vec{j}_{n} \otimes \vec{j}_{m}\right)\)
```

It is completed the proof.
Corollary III.5. Let G be a p-regular graph and H be a q-regular graph. Then, under the condition of Remark II.2, $G \rho H$ is a $(p+q)$-regular graph.

According to the above Corollary III.5, one can give the A_{α}-spectral radius of two regular graphs.

Example III.4. Let $G=C_{4}$ and $H=C_{3}$, their wreath product $C_{4} \rho_{3}$ is shown in Fig.8. According to Corollary III.5, one can easily obtain $\lambda_{1}\left(A_{\alpha}\left(C_{4} \rho C_{3}\right)\right)=4$.

Fig. 8. C_{4}, C_{3} and wreath product $C_{4} \oplus C_{3}$

REFERENCES

[1] V. Nikiforov, "Merging the A - and Q-spectral theories," Applicable Analysis and Discrete Mathematics, vol. 11, pp. 81-107, 2017.
[2] D. Cvetković, P. Rowlinson, S.K. Simić, "An Introduction to the Theory of Graph Spectra," Cambridge University Press, Cambridge, 2010.
[3] V. Nikiforov, G. Pastén, O. Rojo and R. Soto, " On the A_{α}-spectra of trees," Linear Algebra and its Applications, vol. 520, pp. 286-305, 2017.
[4] V. Nikiforov and O. Rojo, " A note on the positive semidefiniteness of $A_{\alpha}(G), "$ Linear Algebra and its Applications, vol. 519, pp. 156-163, 2017.
[5] H.Q. Lin, X. Huang and J. Xue, " A note on the A_{α}-spectral radius of graphs," Linear Algebra and its Applications, vol. 557, pp. 430-437, 2018.
[6] S.C. Li and S.J. Wang, " The A_{α}-spectrum of graph product," Electronic Journal of Linear Algebra, vol. 35, pp. 473-481, 2019.
[7] J.F. Wang, J. Wang and X.G. Liu, " Graphs whose A_{α}-spectral radius does not exceed 2," Discussiones Mathematicae Graph Theory, vol. 40, pp. 677-690, 2020.
[8] V. Nikiforov and O. Rojo, " On the α-index of graphs with pendent paths," Linear Algebra and its Applications, vol. 550, pp. 87-104, 2018.
[9] H.Q. Lin, X. Liu and J. Xue, " Graphs determined by their A_{α} spectra," Discrete Mathematics, vol. 342, pp. 441-450, 2019.
[10] H.Q. Lin, J. Xue and J. Shu, " On the eigenvalues of A_{α}-spectra of graphs," Linear Algebra and its Applications, vol. 556, pp. 210-219, 2018.
[11] D. Cardoso, G. Pastén and O. Rojo, "On the multiplicity of α as an eigenvalue of $A_{\alpha}(G)$ of graphs with pendant vertices," Linear Algebra and its Applications, vol. 552, pp. 52-70, 2018.
[12] M.M.M. Jaradat, " On the edge coloring of graph products," International Journal of Mathematics and Mathematical Sciences, vol. 2005, no. 16, pp. 296-301, 2005.
[13] F. Wen, Y. Zhang and W. Wang, " Normalized Laplacian spectra of two subdivision-coronae of three regular graphs," IAENG International Journal of Applied Mathematics, vol. 51, no. 3, pp. 599-606, 2021.

[^0]: Manuscript received May 24, 2021; revised October 13, 2021. This work was supported by National Natural Science Foundation of China (No.11961041) and Excellent postgraduates of Gansu Provincial Department of Education "Star of innovation" Foundation (No.2021CXZX-594).
 Mengyue Yuan is a Postgraduate of the Institute of Applied Mathematics, Lanzhou Jiaotong University, Lanzhou 730070, P.R.China. (e-mail: yuanmengyue0106@163.com).

 Fei Wen is an Associate Professor of the Institute of Applied Mathematics, Lanzhou Jiaotong University, Lanzhou 730070, P.R.China. (Corresponding author e-mail: wenfei@lzjtu.edu.cn).

 Ranran Wang is a Postgraduate of the Institute of Applied Mathematics, Lanzhou Jiaotong University, Lanzhou 730070, P.R.China. (e-mail: wangrr2028@163.com).

