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Abstract—This paper reports the finding of a new 3-D finance
chaotic system with two quadratic nonlinearities and a sextic
nonlinearity. We also discover interesting properties of the
new finance chaotic system such as symmetry, equilibrium
points, bifurcation, multistability and Lyapunov exponents.
Using integral sliding mode control, we derive new results for
the global chaos synchronization of a pair of new finance chaotic
systems taken as master-slave systems. We illustrate all the main
results of this research work using MATLAB phase plots.
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I. INTRODUCTION

CHAOS theory involves the study of nonlinear dynamical
systems that exhibit a high degree of sensitivity with

regard to even mild perturbations in the initial phases of
the system [1]. In Science, chaotic systems are applicable in
domains such as biology [2]–[6], neural networks [7]–[10],
mechanical oscillators [11]–[14], chemical systems [15]–
[18], jerk systems [19], [20], etc. In engineering, chaotic
systems are applicable in domains such as memristors [21],
[22], circuits [23]–[26], communication devices [27]–[30],
etc.

In 2009, Gao and Ma introduced a new finance chaotic
system and discussed its qualitative properties such as Hopf
bifurcation [31]. In the chaos literature, many research
studies dealt with modelling and control techniques for
finance chaotic systems [32]–[35]. In this research work, we
propose a new finance chaotic system and study its dynamic
behavior with the help of bifurcation diagrams and Lyapunov
exponents. We exhibit that the new finance chaotic system
has three unstable balance points and that it has interesting
properties such as rotation symmetry, multi-stability, etc. A
nonlinear chaotic system is called multistable if it possesses
coexisting chaotic attractors for the same set of parameter
values but different sets of initial states [36]–[38].
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Some important applications of chaos theory are the feed-
back control and stabilization of nonlinear chaotic systems
[1]. Researchers have worked on these problems using a
variety of control strategies such as adaptive control [39]–
[41], passive control [42], [43], fuzzy control [44], [45],
active control [46], [47], sliding mode control [48]–[50], etc.

In this work, we use integral sliding mode control for
the global chaos synchronization of the new finance chaotic
system by considering a set of two finance systems as
master-slave systems. Finally, we conclude this work with
a summary of main findings.

II. A NEW FINANCE CHAOTIC SYSTEM

In [31], Gao and Ma proposed a new finance chaotic
system, which is modelled by the 3-D dynamics:

ẏ1 = y3 + (y2 − a)y1
ẏ2 = 1− by2 − y21
ẏ3 = −y1 − y3

(1)

In the Gao-Ma system (1), y1 denotes the interest rate,
y2 denotes the investment demand rate and y3 represents
the price exponent. The constant a stands for the household
savings rate and b designates the investment cost. We assume
that a and b are positive.

In [31], Gao and Ma showed that the system (1) has a
chaotic attractor for the parameter values a = 6 and b = 0.1.

Using MATLAB, the Lyapunov characteristic exponents of
the Gao-Ma financial system (1) with (a, b) = (6, 0.1) and
Y (0) = (0.4, 0.2, 0.5) were estimated for T = 1E5 seconds
as follows:

µ1 = 0.09004, µ2 = 0, µ3 = −0.39313 (2)

This shows that the Gao-Ma financial system (1) is dissi-
pative and chaotic with the largest Lyapunov exponent value
as µ1 = 0.09004.

In this work, we propose a new finance chaotic system
with two quadratic nonlinearities and a sextic nonlinearity,
which is modelled by the 3-D dynamics:

ẏ1 = y3 + (y2 − a)y1
ẏ2 = 1− b(y2 + y21)− cy61
ẏ3 = −y1 − y3

(3)

We shall establish that the new finance system (3) exhibits
a chaotic attractor for the parameter values

a = 7.6, b = 0.1, c = 0.2 (4)
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For the MATLAB simulations, we consider the initial state
of the new finance system (3) as

y1(0) = 0.4, y2(0) = 0.2, y3(0) = 0.5 (5)

Using MATLAB, the Lyapunov characteristic exponents
of the new finance system (3) with (a, b, c) = (7.6, 0.1, 0.2)
and Y (0) = (0.4, 0.2, 0.5) were estimated for T = 1E5
seconds as follows:

µ1 = 0.12299, µ2 = 0, µ3 = −0.39478 (6)

This shows that the new finance system (3) is dissipative
and chaotic with the largest Lyapunov exponent value as
µ1 = 0.12299. Comparing the largest Lyapunov exponent
values of the Gao-Ma finance chaotic system (1) and the
new finance chaotic system (3), we observe that the new
finance chaotic system (3) has a larger value of µ1 than the
Gao-Ma finance chaotic system (1).

The new finance chaotic system (3) is invariant under the
transformation of coordinates

(y1, y2, y3) 7→ (−y1, y2,−y3) (7)

for all values of the parameters. This shows that the new
finance chaotic system (3) has rotation symmetry about the
y2-axis.

Next, we calculate the balance points of the new finance
chaotic system (3) for the values of the parameters as in the
chaotic case, viz. (a, b, c) = (7.6, 0.1, 0.2). Thus, we consider
solving the following the system of equations:

y3 + (y2 − 7.6)y1 =0 (8a)

1− 0.1(y2 + y21)− 0.2y61 =0 (8b)

−y1 − y3 =0 (8c)

From Eq. (8c), it is clear that

y3 = −y1 (9)

Using (9), we can simplify the equations (8a) and (8b) as
follows:

y1(y2 − 8.6) =0 (10a)

1− 0.1(y2 + y21)− 0.2y61 =0 (10b)

We have two cases to consider: (A) y1 = 0 and (B) y1 6= 0.
In Case (A), we suppose that y1 = 0. Since y3 = −y1, it

is immediate that y3 = 0.
From (10b), we obtain y2 = 10.
Thus, in Case (A), we have one balance point E0 =

(0, 10, 0) of the new finance chaotic system (3).
In Case (B), we suppose that y1 6= 0. From Eq. (10a), we

get y2 = 8.6.
Thus, Eq. (10b) can be simplified as follows:

0.2y61 + 0.1y21 − 0.14 = 0 (11)

Solving Eq. (11), we get two real roots, viz. y1 = ±0.8388.
Since y3 = −y1, we deduce that y3 = ∓0.8388.
Thus, in Case (B), we have two balance points E1 =

(0.8388, 8.6,−0.8388) and E2 = (−0.8388, 8.6, 0.8388) of
the new finance chaotic system (3).

The Jacobian matrix of the new finance chaotic system (3)
at E0 = (0, 10, 0) is found as follows:

W0 =

 2.4 0 1
0 −0.1 0
−1 0 −1

 (12)

The spectral values of W0 are determined using MATLAB
as

α1 = −0.1, α2 = −0.6748, α3 = 2.0748 (13)

This establishes that E0 is a saddle point and an unstable
balance point for the new finance chaotic system (3).

The Jacobian matrix of the new finance chaotic system (3)
at E1 = (0.8388, 8.6,−0.8388) is found as follows:

W1 =

 1 0.8388 1
−0.6660 −0.1 0
−1 0 −1

 (14)

The spectral values of W1 are determined using MATLAB
as

α1,2 = 0.2639± 0.9057i, α3 = −0.6277 (15)

This establishes that E1 is a saddle-focus and an unstable
balance point for the new finance chaotic system (3).

The Jacobian matrix of the new finance chaotic system (3)
at E2 = (−0.8388, 8.6, 0.8388) is found as follows:

W2 =

 1 −0.8388 1
0.6660 −0.1 0
−1 0 −1

 (16)

The spectral values of W2 are determined using MATLAB
as

α1,2 = 0.2639± 0.9057i, α3 = −0.6277 (17)

This establishes that E2 is a saddle-focus and an unstable
balance point for the new finance chaotic system (3).

The signal plots of the 3-D new finance system (3) for the
constant parameters (a, b, c) = (7.6, 0.1, 0.2) (chaotic case)
and the initial state Y (0) = (0.4, 0.2, 0.5) are simulated in
Figure 1.

III. DYNAMIC STUDY OF THE NEW FINANCE
CHAOTIC SYSTEM

A. Bifurcation analysis

First, we assume that the finance system parameters are
taken as b = 0.1, c = 0.2, and the initial condition is fixed
as Y (0) = (0.4, 0.2, 0.5). When changing the parameter a
from 5 to 10, the bifurcation diagram of the state variable
y1 and the corresponding Lyapunov exponents are shown in
Figures 2 (a) and 2 (b), respectively. From Figure 2, it can
be seen that the new finance chaotic system (3) is in periodic
state at first, then goes into chaos, next drops out of chaos
via period-doubling route and finally tends to a fixed point.

Next, we assume that the system parameters are taken
as a = 7.6, c = 0.2, and the initial condition is fixed as
Y (0) = (0.4, 0.2, 0.5). When altering b in the region of [0,
0.2], the bifurcation diagram of the state variable y1 and the
corresponding Lyapunov exponents are depicted in Figures
3 (a) and 3 (b), respectively. From Figure 3, it is obvious
to find that new finance chaotic system (3) exhibits different
dynamical behaviors, such as period, chaos and fixed point.
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(a) (b)

(c) (d)

Fig. 1: Signal plots of the 3-D finance chaotic system (3) for (a, b, c) = (7.6, 0.1, 0.2) and the initial state Y (0) =
(0.4, 0.2, 0.5) : (a) (y1, y2) plane, (b) (y2, y3) plane, (c) (y1, y3) plane and (d) R3.

(a) (b)

Fig. 2: Dynamics of the new finance chaotic system (3) with respect to a: (a) the bifurcation diagram; (b) the corresponding
Lyapunov exponent spectrum

In the last case, we assume that the system parameters
are taken as a = 7.6, b = 0.1, and the initial condition is
fixed as Y (0) = (0.4, 0.2, 0.5). As the parameter c varies
in the region of [0.1, 10], the bifurcation diagram of the
state variable y1 and the corresponding Lyapunov exponents
are plotted in Figures 4 (a) and 4 (b), respectively. From

Figure 4 (b), it is clear to see that the new finance chaotic
system (3) exhibits a positive largest Lyapunov exponent
in the whole region, indicating the emerging of constant
Lyapunov exponent behavior which is important for chaos-
based applications
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(a) (b)

Fig. 3: Dynamics of the new finance chaotic system (3) with respect to b: (a) the bifurcation diagram; (b) the corresponding
Lyapunov exponent spectrum.

(a) (b)

Fig. 4: Dynamics of the new finance chaotic system (3) with respect to c: (a) the bifurcation diagram; (b) the corresponding
Lyapunov exponent spectrum.

B. Multistability

Mutistability is a fantastic nonlinear phenomenon, which
can make a chaotic system exhibit great flexibility for poten-
tial engineering applications [36]–[38]. Fix the parameters
b = 0.1, c = 0.2, and vary a in the region of [5, 10] and
the initial conditions are selected as Y0 = (0.4, 0.2, 0.5) and
Z0 = (0.4,−0.2,−0.5). The coexisting bifurcation diagrams
of the state variable y1 are plotted in Figure 5. As can be seen
from Figure 5, the new finance chaotic system (3) exhibits
complex coexisting dynamics in the regions of [5, 6.3] and
[8.36, 8.7], such as coexisting periodic attractors as well as
coexisting chaotic attractors. For instance, for a = 5, the
new finance chaotic system (3) shows coexisting periodic
attractors; for a = 6.2, the system (3) shows coexisting
chaotic attractors. These coexisting attractors are shown in
Figures 6 and 7, respectively.

IV. INTEGRAL SLIDING MODE CONTROL FOR
THE GLOBAL CHAOS SYNCHRONIZATION OF

NEW FINANCE CHAOTIC SYSTEMS
As the master system, we consider the new 3-D finance

chaotic system given by
ẏ1 = y3 + (y2 − a)y1
ẏ2 = 1− b(y2 + y21)− cy61
ẏ3 = −y1 − y3

(18)

where y1, y2, y3 are the master states and a, b, c are positive
parameters.

As the slave system, we take the new 3-D finance system
with sliding controls given by

ż1 = z3 + (z2 − a)z1 + v1

ż2 = 1− b(z2 + z21)− cz61 + v2

ż3 = −z1 − z3 + v3

(19)
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Fig. 5: Coexisting bifurcation diagrams of the new finance
chaotic system (3) with respect to a.

where z1, z2, z3 are the slave states.
The synchronization error between the systems (18) and

(19) is given by

εi = zi − yi, for i = 1, 2, 3 (20)

The synchronization error dynamics is derived as follows:
ε̇1 = ε3 − aε1 + z2z1 − y2y1 + v1

ε̇2 = −b(ε2 + z21 − y21)− c(z61 − y61) + v2

ε̇3 = −ε1 − ε3 + v3

(21)

Based on the sliding mode control theory, the integral
sliding surface of each error variable εi, (i = 1, 2, 3) is
defined as follows:

σ1 = ε1 + α1

∫ t

0
ε1(τ) dτ

σ2 = ε2 + α2

∫ t

0
ε2(τ) dτ

σ3 = ε3 + α3

∫ t

0
ε3(τ) dτ

(22)

Differentiating each equation in (22), we get

σ̇1 = ε̇1 + α1ε1

σ̇2 = ε̇2 + α2ε2

σ̇3 = ε̇3 + α3ε3

(23)

The Hurwitz condition will hold if αi > 0 for i = 1, 2, 3.
Based on the exponential reaching law, we set

σ̇1 = −β1sgn(σ1)− µ1σ1

σ̇2 = −β2sgn(σ2)− µ2σ2

σ̇3 = −β3sgn(σ3)− µ3σ3

(24)

where β1, β2, β3, µ1, µ2, µ3 are positive constants.
Comparing the equations (23) and (24), we get

−β1sgn(σ1)− µ1σ1 = ε̇1 + α1ε1

−β2sgn(σ2)− µ2σ2 = ε̇2 + α2ε2

−β3sgn(σ3)− µ3σ3 = ε̇3 + α3ε3

(25)

With the help of the error dynamics (21), we can rewrite
(25) as

−β1sgn(σ1)− µ1σ1 = ε3 − aε1 + z2z1 − y2y1
+v1 + α1ε1

−β2sgn(σ2)− µ2σ2 = −b(ε2 + z21 − y21) + v2
−c(z61 − y61) + α2ε2

−β3sgn(σ3)− µ3σ3 = −ε1 − ε3 + v3 + α3ε3

(26)

Using (26), we state the main result of this section.
Theorem 1: The master-slave finance chaotic systems rep-

resented by (18) and (19) are globally and asymptotically
synchronized for all initial conditions y(0), z(0) ∈ R3 by
the integral sliding mode control law

v1 = −ε3 + aε1 − z2z1 + y2y1
−β1sgn(σ1)− µ1σ1 − α1ε1

v2 = b(ε2 + z21 − y21) + c(z61 − y61)
−β2sgn(σ2)− µ2σ1 − α2ε2

v3 = ε1 + ε3 − β3sgn(σ3)− µ3σ3 − α3ε3

(27)

where αi, βi, µi, (i = 1, 2, 3) are all positive constants.
Proof: The result is proved using Lyapunov stability

theory [48].
We start the proof by taking the following Lyapunov

function

W (σ1, σ2, σ3) =
1

2
(σ2

1 + σ2
2 + σ2

3) (28)

where σi, (i = 1, 2, 3) are as defined in (22).
It is obvious that W is a positive definite function on R3.

We also note that W is radially unbounded on R3.
We determine the time-derivative of W as follows:

Ẇ = σ1σ̇1 + σ2σ̇2 + σ3σ̇3 (29)

Substituting from (24) into (29), we get

Ẇ =
3∑

i=1

si[−ηisgn(σi)− µiσi] (30)

Simplifying (30), we get

Ẇ = −β1|σ1|−µ1σ
2
1−β2|σ2|−µ2σ

2
2−β3|σ3|−µ3σ

2
3 (31)

which is negative definite on R3.
Thus, by Lyapunov stability theory [48], it follows that the

error system (21) is globally asymptotically stable under the
action of the integral sliding mode control (27).

For MATLAB simulations, we fix the parameters of the
new finance chaotic systems as in the chaos case, viz.
(a, b, c) = (7.6, 0.1, 0.2).

We take the sliding constants as αi = 0.1, βi = 0.2, and
µi = 12 for i = 1, 2, 3.

As the initial conditions of the master system (18), we
choose

y1(0) = 1.8, y2(0) = 4.3, y3(0) = 2.7 (32)

As the initial conditions of the slave system (19), we
choose

z1(0) = 6.3, z2(0) = 1.5, z3(0) = 4.2 (33)

Figure 8 shows the time-history of the synchronization
error ε1, ε2 and ε3 between the master finance system (18)
and the slave finance system (19).
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(a) (b)

Fig. 6: Phase portraits of the coexisting periodic attractors with a = 5 in (a) the y1 − y2 plane; (b) the y2 − y3 plane

(a) (b)

Fig. 7: Phase portraits of the coexisting periodic attractors with a = 5 in (a) the y1 − y2 plane; (b) the y2 − y3 plane.

Fig. 8: Time-history of the synchronization error ε1, ε2 and ε3
between the master finance system (18) and the slave finance
system (19)

V. CONCLUSION

In this paper, we reported a new 3-D finance chaotic
system with two quadratic nonlinearities and a sextic non-
linearity. We showed the signal plots of the new finance
chaotic system and discussed its interesting properties such
as symmetry, equilibrium points, bifurcation, multistability
and Lyapunov exponents. Using integral sliding mode control
and Lyapunov stability theory, we derived new results for the
global chaos synchronization of a pair of new finance chaotic
systems taken as master-slave systems. We illustrated all the
main results of this research work using MATLAB phase
plots.
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