
Use of Information Criteria for finding
Box-Jenkins Time Series Models for Patent Filings

Counts Forecasts
Peter Hingley and Gerhard Dikta

Abstract—An automatic model selection procedure for Box-
Jenkins time series models is used to forecast future levels of
annual incoming patent filings at the European Patent Office.
Selection of the best model uses either the Akaike’s Information
Criterion (AIC) or a novel data based version of the Exact
Information Criterion called |EICw| that is developed here.

The methods are applied separately to autoregressive inte-
grated moving average (ARIMA) and to autoregressive dis-
tributed lag (ADL) models. For ADL, explanatory variables
include terms that are based on world Gross Domestic Product
and world Research and Development Expenditures series.

We take a multi-year approach to study a sequence of
overlapping 20 year data windows. Selections based on the two
information criteria are made on each window. Different models
can be selected by the two criteria. We compare the forecasting
accuracy of the models for five years beyond the windows.
Generally it appears that ADL models have lower forecast
errors than ARIMA models. On the whole, the selections based
on AIC have lower forecast errors for ARIMA models, while
selections based on |EICw| have lower forecast errors for ADL
models. There is some serial correlation between the successive
windows for the AIC values of its selected models that is not
shown for the |EICw| values of its selected models. There is
also an unexpected negative correlation between AIC values
and forecast errors.

|EICw| can be recommended as a complement to AIC for
selecting models in forecasting contexts, to give a fuller picture
of the interactions between models and data.

Index Terms—ADL, Akaike´s information criterion, ARIMA,
exact information criterion, Kullback-Leibler information,
model selection, patent forecasts, time series.

I. INTRODUCTION

Box-Jenkins methodology is often used to make forecasts
in a business setting ([1]). Here an annualised set of historical
data on patent filings is forecasted. Self determining autore-
gressive integrated moving average (ARIMA) models are
used. Autoregressive distributed lag (ADL) models are also
used, that make use of two additional explanatory variables:-
Research and Development expenditures growth rates and
Gross Domestic Product growth rates.

Tests are used to determine the appropriate degree of
differencing for the series. All possible models up to a certain
degree of complexity are studied. Then, at the accepted
degree of differencing, a standard approach is to select the
model that gives a minimum value for Akaike´s Information
Criterion (AIC) ([2]). This penalises the goodness of fit of
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each model to the data by the number of estimated param-
eters. Forecasts up to five years ahead are generated by the
selected models. Similar techniques are currently available
in the ”auto.arima” package that is under R [3], although
our approach has some features that are not available in that
package.

The European Patent Office (EPO) does an annual fore-
casting exercise. When this happens, each time series re-
mains essentially the same as in the previous exercise, but
with one new point added. A problem with the selection
process is that different models may be selected in successive
exercises. Thus it is difficult to propose that any one such
selected model is correct. This is unfortunate because it
would be good to ascribe an assumed mechanism to the
underlying process. There can also be difficulties when
dealing with a selected model that provides unrealistically
flat or decreasing forecasts. In fact there have been almost
continuous increases from year to year in the historical patent
filings series.

As to the practical background, the EPO forecasts patent
filings for budgetary planning purposes. Total Filings (TFs)
are studied, that are the sum of direct filings at the EPO
and world filings under the international phase of the Patent
Cooperation Treaty [4] [5]. An annual exercise is carried out
to fit the Box-Jenkins models. The results are considered
together with the results of a customer survey [6] and another
model [7], in order to come up with a consensus forecast.
After the EPO opened in 1977, it took some time before
clients fully exploited the system to complement the services
that were already offered by the national patent offices in
Europe. Here the TFs are considered from 1987 to 2018,
without further breakdowns by countries of origin, technical
areas etc.

There are two main aims of this study. Firstly a new
alternative information criterion to AIC is proposed for the
model selection process. This is a variant of the previously
described Exact Information Criterion (EIC) ([8]). To our
knowledge, this kind of information criterion has not previ-
ously been used in time series modelling.

Secondly, the practical forecasting problem for patent
filings is examined by carrying out a retrospective modelling
exercise. With this, two questions are addressed. What is
the best model for each class that can be fitted to the
time series from 1987 up to 2018? Then, which models are
most appropriate for subsets of the data after breaking them
down into overlapping 20 year windows during the period?
Macroeconomic disruptions were caused by events such as
the great recession (circa 2009). What then is the advantage,
if at all, in finding the best fitting model to each window by
minimising an information criterion? The results can help
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to decide whether to impose a given model or whether to
accept the variations of the model specifications that may be
suggested in successive forecasting exercises.

The study examines whether either or both of ARIMA and
ADL model types are adequate for the required forecasting
job, by measuring the forecast errors from the series of over-
lapping windows. The two alternative measured information
criteria are compared in terms of their forecasting accuracies
over the five years of data beyond the data used to fit the
models in each window. The information criteria are second
order effects that relate indirectly to the residual sample
variance of the fitted model. Therefore it was not clear a-
priori how big the effect of choosing a different criterion to
the usual one would have on the forecasts. We also report
on the serial correlations of the forecast errors and of the
information criteria as well as on the correlations between
them.

The next section describes the data that are to be anal-
ysed in more detail. Then follow sections that describe the
methodology and the results. The final discussion section
makes recommendations about how to use such information
criteria for this particular suite of forecasting models, for
these data and for other systems.

II. DATA TO BE ANALYSED

The sources for the time series are as follows. TFs are from
the EPO epasys production database. R&D expenditures are
business enterprise research and development expenditures
from the OECD Main Science and Technology (MSTI)
database [9], as available in early 2019, at constant prices
and purchasing power parity in 2010 US dollars. GDP
expenditures are from the World Bank [10], as available in
early 2019, at constant prices and purchasing power parity in
2005 US dollars, with data for 2018 from estimates of GDP
growth at the website of The Economist magazine [11].

Fig. 1 shows time series for TFs, world Gross Domestic
Product (GDP) and world Research and Development Ex-
penditures (R&D). The TFs were available up to 2018 at the
time of this study. The GDP and R&D series are accumulated
over countries and are presented as if they are known out
to 2024. The latest year to be forecasted for TFs in this
exercise is 2023. Using the data that were known in January
2019, R&D growth and GDP growth were projected over the
further years by means of straight line trends based on the
last ten years of known data. But since the data on R&D
growth were only available up to 2017 for most countries,
now-casts for 2017 (where necessary) and later years for
R&D growth are based on straight line trends on the previous
ten years of known data. GDP growth was assumed to be
known up to 2018.

In this paper, the data on TFs from 1987 to 2018 are
modelled and then analysis is carried out over the set of 20
year time windows within that period. For each window, it
is not presumed that the levels of TFs beyond the end of
each window are known. Estimated values of GDP growth
and R&D growth beyond the window are based only on
data up to the end of the window.1

1Forecasts for 2020 and later may be influenced by the effects of the
COVID 19 pandemic, that were not included in the models.

(a) Counts of world Total Filings (TFs) at the EPO. TFs
are also split by main origins. (EPC states are EPO member
countries [4])

(b) Amounts of world Total Gross Domestic Product (GDP,
circles, 2005 US dollars at constant prices and purchasing
power parity). Amounts of world Total Research and
Development Expenditures (R&D, squares, 2010 US dollars
at constant prices and purchasing power parity).

Fig. 1: The data time series of macroeconomic variables that
are studied.

III. MODEL FITTING

ARIMA and ADL models were used, with programs
written in R. The formulations are simple linear models in
terms of a few parameters, with normally distributed errors
of constant variance within the time series context. More
elaborate Box-Jenkins models (like ARIMAX, VAR [12],
regression models with ARIMA error structure and dummy
variables) were not used. This is because there are practical
constraints on the complexity of the model when working
with such short time series.

Models were accepted for consideration only if at least
one autoregressive or moving average type parameter was
included, in order to avoid processing a null model. ADL
models without any GDP growth or R&D growth terms at
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all were also excluded.

A. ARIMA models

Consider ARIMA(r,d,s) models for TFs with indepen-
dently distributed homoscedastic error terms (r autoregres-
sive terms, d differences and s moving average terms).
After differencing, these are autoregressive moving average
ARMA(r,s) models of the differences of TFs ([1]). The
model formulation contains an error variance parameter σ2,
that is in practice estimated from the data at the same time
as the estimation of the other parameters. Assume n data
points in the time series w, after differencing if necessary.

Let N(f, h) indicate a univariate normal distribution with
mean f and variance h. The ARMA model is written as
follows.

wt = γ1wt−1 + . . .+ γrwt−r

+ εt + δ1εt−1 + . . .+ δsεt−s (1)

where wt are the differenced TFs at times t and the innova-
tions are εt ∼ N(0, σ2). The covariances Cov(εt, εt−j) = 0,
for all j > 0 and t.

The appropriate degree of differencing d is first determined
by the KPSS test [13]. For this, it is assumed that the
observed time series can be decomposed into a sum of a
random walk, a stationary time series and a deterministic
trend. The null hypothesis ”variance of the random walk is
0” versus ”variance of the random walk is greater than 0”
is then tested under constant trend (level stationarity). If this
test rejects the null hypothesis, there may be a significant
contradiction to stationarity and so the observed time series
is transformed by differencing.

At the smallest degree of differencing of TFs that is
allowed by the KPSS test, an attempt is made to fit all
possible ARMA models up to r = 4 and s = 4. The residuals
of the fitted models are tested for departures from normality
with the Shapiro-Wilk test [14]. If this test does not reject the
normality assumption, the Ljung-Box test is applied to check
for a departure of the residuals from being uncorrelated [15].

A record that is called the ”Trace” is constructed of the
information criteria values associated with the models that
pass these tests. An automatic process selects the model from
the set that has the lowest value of the information criterion
in the Trace and outputs the estimated parameters. The fitted
model is used to construct forecasts wt+i beyond the data
set. These forecasts are transformed back to give forecasts
for TFs by de-differencing.

B. ADL models

In this type of model, the appropriately differenced TFs are
assumed to be generated by autoregressive (AR) terms and
by regression terms that are based on the explanatory series.
Firstly the explanatory variables are differenced according
to the same procedure that was explained for TFs in the
previous subsection. The explanatory series are world R&D
growth y and world GDP growth z.

The ADL model is written as follows.

wt = γ1wt−1 + . . .+ γrwt−r + α0yt + . . .+ αvyt−v

+ β0zt + . . .+ βuzt−u + εt (2)

where t, wt and εt are as in equation (1).
The nomenclature that is used here is

ADL(r, dw; v, dy;u, dz) - for r lags of w after differencing
dw times, v lags of y after differencing dy times and
u lags of z after differencing dz times. It is allowed
under equation (2) to include several such terms for
each of the contributing series, r1, r2 ..., etc. The
nomenclature is then expanded accordingly to ADL(
r1/r2/..., dw; v1/v2/..., dy;u1/u2/..., du).

An assumed lack of covariance between the three series
in ADL is not tested for, as it would be for example in an
ARIMAX approach [12]. There is the practical problem that
(lagged) future values of the explanatory variables have to be
assumed when making forecasts for the TFs. As mentioned
in section II, linear projections are made for all forecast years
for R&D growth and GDP growth values, based on the last
ten years of the available data (or the available data for each
window).

In the same way as for the ARIMA models, the Trace is
constructed. An automatic process selects the model from the
set that has the lowest value of the information criterion, from
which the estimated parameters and forecasts are provided.

C. Information criteria

In the following, statistical models are specified in terms
of the densities of data that are generated by them. Consider
a p × 1 parameter vector θ and a q × 1 parameter vector
φ. The number of parameters in the data generating model
with density g0(w|θ0) is p and the number of parameters to
be estimated in the presumed model with density g1(w|φ) is
q. The models can also contain explanatory variables. The
log likelihood corresponding to g1(w|φ) is l(φ,w). g0 and
g1 can be the same, in which case g0(w) = g1(w|θ0). The
maximum likelihood estimate (MLE) of φ is φ̂.

The situation is restricted here to cases where data sets
follow multivariate normal distributions. It is assumed that
the true model for the data g0(w|θ0) is multivariate normal
with design matrix X0 and covariance matrix V0. Call this
distribution MNw(X0θ0, V0), which means a multivariate
normal with mean X0θ0 and covariance matrix V0. The
estimation model is MNw(X1φ1, V1). The symmetric co-
variance matrices are general, but will be specialised in
subsection III.C.3 below for the present context of Box-
Jenkins time series models.

The models, including the dimensions of their constituents,
are written as follows.

g0(w|θ0) = MNw(X0(n×p)θ0(p×1), V0(n×n))

g1(w|φ) = MNw(X1(n×q)φ(q×1), V1(n×n))

The dimensions q and p can be unequal, with either bigger
than the other, and it is not necessary for the models to be
nested. Pairwise comparisons are envisaged, but a larger set
of candidate models can be used with comparisons between
all pairs of models in the set.

1) Akaike’s Information Criterion (AIC): This criterion is
a goodness of fit statistic that is penalised by the number
of parameters in the model [2]. The log likelihood of the
estimation model is multiplied by -2, to which is added twice
the number of parameters.
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AIC = −2[l(φ,w)|φ=φ̂] + 2q

Under the assumed multivariate normal estimation model
g1(w|φ), this is as follows.

AIC =
n

2
log(2π) + [(

n− q
2

)(1 + log(σ̂2))] + 2q (3)

where

σ̂2 =
1

n− q
(w −X1φ̂)>(w −X1φ̂),

which is an estimate of the variance σ2 and where >
indicates transposition.

2) Exact Information Criterion (EIC): This criterion com-
pares densities of the MLE between the data generating
model and the estimation model. It takes account of the
situation where the data generating model g0(w) differs
from the estimation model g1(w|φ). The derivation uses a
technique for estimator densities (TED) that was developed
previously [16] [8] [17]. An approximate approach will be
developed here, where the data generating model is assumed
to be an abstraction of the observed data themselves.

When models differ, the estimate obtained by maximising
the log likelihood of the data under the estimation model
l(φ,w) is technically a quasi maximum likelihood estimate
[18]. Nevertheless it will be called a MLE (or φ̂) here and is
given by l′(φ,w)|φ=φ̂ = 0. The space of φ̂ is Φ̂, a subspace
of the space Φ of φ. The space of the data w is W .

Consider a (q×1) vector T ,

T (φ, φ∗, w) = l′(φ∗, w)− l′(φ,w) (4)

where φ∗ is fixed at an arbitrary value. Under a simple set
of regularity conditions, the exact density for φ̂ is given as
follows [16].

g(φ̂) = Ew[|j(φ,w)|
∣∣
φ=φ̂

] × g[T (φ̂,φ∗=φ̂,w)](0) (5)

where j(φ,w) = −l′′(φ,w) is the observed information
under the estimation model g1(w|φ), and |j(φ,w)| is its
determinant.

The second term in (5) represents the value of the density
g[T (φ̂,φ∗,w)](t), for which φ∗ = φ̂, and hence T is zero in (4).
The density is to be derived as the density of a transform
T (φ̂, φ∗, w) of the data w on the data generating model
g0(w). The term Ew[|j(φ,w)|

∣∣
φ=φ̂

] describes a conditional
expectation, that is conditional on φ = φ̂ and is taken with
respect to w over g1(w|φ). Ew[|j(φ,w)|

∣∣
φ=φ̂

] is given by
the following expression.∫

W
φ̂(v)

|j(φ,w(v))||φ=φ̂ g1(w(v)|φ=φ̂) ||w′(v)|| dv∫
W
φ̂(v)

g1(w(v)|φ=φ̂) ||w′(v)|| dv
. (6)

The integrations in (6) are carried out on a manifold
W
φ̂(v)

, that runs over an (n − q) dimensional subset of W .
The term ||w′(v)|| indicates the magnitude of the Jacobian
from co-ordinates v that index the manifold to w. The
evaluation of expectation (6) involves taking conditional
expectations over data sets, that can usually be done without
evaluation of the integrals in the expression. This is because
in practice terms in w can be replaced by Ew[w|φ=φ̂], terms
in w2 by Ew[w2|φ=φ̂], etc.

The EIC is based on the idea of Kullback-Leibler Infor-
mation and is given by

EIC = H(θ̂, φ̂) = log

(
mA(θ̂)

mB(φ̂)

)
(7)

where mA(θ̂) is the analytic density of the maximum like-
lihood estimate θ̂ under the data generating model. mB(φ̂)
is the analytic density of the maximum likelihood estimate
φ̂ under the estimation model.

Now we will find the densities mA and mB for the models
in this study. Under the estimation model g1(w|φ),

l′(φ∗, w) = X>1 V1
−1(w −X1φ

∗),

l′′(φ,w) = X>1 V1
−1X1,

and
Ew[|j(φ,w)||φ=φ̂] = |X>1 V1

−1X1|.

The density of l′(φ∗, w) is MN(X>1 V1
−1(X0θ0 −

X1φ
∗), (X>1 V1

−1V0V1
−1X1)). And so,

g[T (φ̂,φ∗,w)](t) =
1√

(2π)q|X>1 V1
−1V0V1

−1X1|

× exp
[
− 1

2
((t−X>1 V1

−1(X0θ0 −X1φ
∗))>(

X>1 V1
−1V0V1

−1X1

)−1
(t−X>1 V1

−1(X0θ0 −X1φ
∗)))

]
.

Setting T to 0, substituting φ̂ for φ∗ and multiplying by
Ew[|j(φ,w)||φ=φ̂], according to equation (5), gives the den-
sity g(φ̂), which is mB(φ̂).

mB(φ̂) =
|X>1 V1

−1X1|√
(2π)q|X>1 V1

−1V0V1
−1X1|

(8)

× exp
[−1

2
((X>1 V1

−1(X1φ̂−X0θ0))>(
X>1 V1

−1V0V1
−1X1

)−1
(X>1 V1

−1(X1φ̂−X0θ0)))
]

If the data generating model is also used for esti-
mation, then φ̂ = θ̂ and the density becomes mA(θ̂).
This simplifies to the multivariate normal distribution
MNθ̂(θ0, (X

>
0 V0

−1X0)−1) for θ̂.

mA(θ̂) =

√
|X>0 V0

−1X0|
(2π)p

(9)

× exp

[
−1

2
(θ̂ − θ0)> X0

>V0
−1 X0(θ̂ − θ0)

]
The evaluation of equations (8) and (9) requires knowledge
of the data generating model g0(w, θ0). If the form of this is
known, it can be used to estimate θ̂0 from the data and this
is substituted for θ0.

But here we want to look at alternative estimation models
for w without knowing what g0 is. A modified EIC will be
used, termed EICw. This measures the estimation model
against the observed data, rather than measuring against a
specific model that is assumed to be generating the data. It
is then analogous to AIC for assessing models against the
observed data set that is to be forecasted.
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In equations (8) and (9), set X0θ0 to w (the observed time
series data set of TFs after differencing). Also set V0 to σ̂2I ,
where I is the (n×n) identity matrix and σ̂2 is the variance
estimated from the residuals of the fit of the estimation model
to the data. This usage of the variance estimate from g1 in
the data generating model g0 is an approximation. So this
version of the EIC is no longer “exact”.

With these assumptions, and recalling that the determinant
|σ̂2I| = (σ̂2)n, equation (8) is as follows.

mB(φ̂) =
X>1 V

−1
1 X1√

(2π)qσ̂2q
∣∣X>1 V1−1V1−1X1

∣∣ (10)

× exp
[ −1

2σ̂2
((X>1 V1

−1(X1φ̂− w))>(
X>1 V1

−1V1
−1X1

)−1
(X>1 V1

−1(X1φ̂− w)))
]

A version of (7) is used where mA(θ̂) refers to a true
model given by the data and mB(φ̂) is given by (10). For
mA(θ̂) under (9), consider ŵ to have a multivariate normal
distribution with mean as w. That is MN(X0θ0, σ̂

2I) with
θ0 = w(n×1), X0 = I(n×n), where I is the n × n identity
matrix. This model is not realisable in general but, when
ŵ = w, (9) shows that

mA(θ̂) = (2πσ̂2)
−n
2 .

Equation (7) then gives

EICw = H(w, φ̂) (11)

=
−n
2

log(2πσ̂2)− log(mB(φ̂)),

The first term in this equation differs between estimation
models because the σ̂2 terms themselves differ under the
various models g1(w|φ).

The design matrix X1 is taken from the linear formulation
of the parameters in equations (1) or (2), with wt−1 to wt−r
substituted by their estimates ŵt−1 to ŵt−r after the model
has been fitted. The terms εt to εt+1−s are estimated by
(wt − ŵt) to (wt+1−s − ŵt+1−s).

For an ARMA estimation model, after differencing of the
data, the design matrix X1 has n rows and r + s columns
that represent the γ and δ parameters that are to be estimated
in equation (1). For an ADL model, after differencing of the
dependent and explanatory data, the design matrix X1 has n
rows and r+(v+1)+(u+1) columns. These rows represent
the autoregressive terms (the γ terms) and the regression
terms that depend on the explanatory series (the α and β
terms) in equation (2).

3) Covariance structure of the time series models for EIC:
In order to use equations (10) and (11), an explicit form for
the covariance matrix V1 is required that incorporates the
time series structure for the fitted model g1. V1 is composed
of covariance terms Cov(wt, wt−k) for the differenced ob-
servations at the various lags k.

For ARMA models, the terms of V1 are built up according
to a formulation by [1] (Chapter 3.3). The models considered
here are limited to having AR or MA terms up to order 4.

Using estimates of the parameters from equation (1), γ̂i is
the i-th AR parameter (or 0 if this does not exist), δ̂i is the
i-th MA parameter (or 0 if this does not exist) and σ̂2 is the
error variance.

Terms S0 to S4 are set up as follows.

S0 = 1
S1 = δ̂1 + γ̂1
S2 = δ̂2 + γ̂2 + (δ̂1 × γ̂1) + (γ̂1 × γ̂1)
S3 = δ̂3 + (γ̂1 × S2) + (γ̂2 × S1) + γ̂3
S4 = δ̂4 + (γ̂1 × S3) + (γ̂2 × S2) + (γ̂3 × S1) + γ̂4

Then, for i > 4, Si terms are given sequentially as

Si =
∑

0<k<5

γ̂k × Si−k.

The covariance terms are built from the Si terms.

Cov(wt, wt−k) = Cov(wt, wt+k)

= σ̂2 ×
∞∑
i=0

Si × Si+k (12)

It is not possible to calculate this infinite series in practice.
So an experiment was done that found stable results by
summing i in equation (12) from 0 to 30. The EIC results
that are reported here for ARIMA and ADL models use this
approach.

For ADL models, a conditional approach is taken. The
scheme to build up V1 is also based on the above description
for ARMA, by disregarding the δ̂i terms but retaining the
non-zero γ̂i terms for the autoregressive lags of w that are
active in the model.

IV. RESULTS

A. Fits to the data set

The data were analysed by using ARIMA and ADL
models. The selection of the models was done from the
minimum values of either AIC by (3) or |EICw|, which
is the absolute value of EICw from (11). In all cases the
degrees of differencing that the KPSS tests identified were
1 for TFs, 0 for R&D growth and 0 for GDP growth. In
conformity with the stationarity assumption, the absolute
values of the estimates of the autoregressive and moving
average parameters were usually less than 1. This was the
case for all the selected models.

Table 1 shows results for fits to the TFs data from 1987
to 2018. ARIMA(2,1,1) was selected by both information
criteria. This model forecasts a modest progression of 1.1
per cent compound annual growth in TFs from 2019 to 2023.

TABLE 1: ARIMA AND ADL MODELS FITTED TO TOTAL FILINGS
DATA FROM 1987 TO 2018. THE SAME ARIMA AND ADL MODELS
WERE SELECTED IN THESE CASES BY BOTH INFORMATION CRI-
TERIA.

Total Filings (TFs)

ARIMA model ADL model 

Year (2,1,1) (3,1;2,0;1/3,0)

Actual         2019 323,525 323,525

Forecast    2019 321,050 319,773

Forecast    2020 326,294 326,129

Forecast    2021 330,555 333,544

Forecast    2022 333,046 340,419

Forecast    2023 335,054 347,171

SE of Forecast 2019 7,619 3,797

AIC 650.9 550.0

EICw -264.6 -219.7

Fitted parameters AR lag 1:  0.0169 w lag 3:  -0.2512

AR lag 2:  0.4614 y  lag 2:  80,221

MA lag 1:  0.7771  z  lag 1:  372,602

  z  lag 3:  -164,171
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Fig. 2: Total Filings forecasts by models fitted to 20 year windows. Results are shown from 1987-2006 (Window 1) to
1999-2018 (Window 13). A comparison of ARIMA and ADL models, with either AIC or |EICw| as the information
criterion that was used for the model selections.

ADL(3,1;2,0;1/3,0) was selected by both information criteria,
with a compound annual growth of 2.1 per cent on the same
period. The standard error of the first forecast year is lower
for ADL than it is for ARIMA. This suggests that the ADL
model fits the data better. We might expect better forecasts
via ADL than via ARIMA.

Next, a set of 13 successive 20 year windows of TFs
data were taken, from 1987-2006 to 1999-2018. ARIMA and
ADL models were selected by minimising AIC or |EICw|,
after fitting the models to the data for each window. Fig.
2 shows the forecasts by the four combinations. Results in
terms of models that were selected and forecast statistics
are shown in Table 2 for ARIMA models and in Table
3 for ADL models. The statistics shown are the means
and median absolute percentage errors (MAPE and Median
APE), the mean percentage errors (MPE) of the forecasts
and the standard errors of MPE.

Tables 2 and 3 suggest that |EICw| often selects models
with more parameters than AIC does. Usually the forecasting
accuracies are better for ADL models than for ARIMA
models. This is seen with the values derived from both

AIC and |EICw|. For the ARIMA model, the forecasting
accuracy is in most cases better for the models selected using
AIC rather than |EICw|. But, for one year ahead, |EICw|
is marginally better for the MAPE statistic. For the ADL
model, on the whole the forecasting accuracy is in most cases
slightly better for the models selected using |EICw| rather
than AIC. But, for five years ahead, AIC is marginally
better for the Median APE statistic. For the ADL model,
the differences in the forecasts themselves between the two
criteria are slight and are hardly visible in Fig. 2.

B. Comparisons of information criteria

Table 4 shows additional metrics for the selected models,
and those closest to them, for several examples. log[mA(θ̂)]
and log[mB(φ̂)] are shown with the EICw and AIC val-
ues. The examples are the whole data set (1987-2018) and
four of the 20 year windows (1: 1987-2006, 4:1990-2009,
7:1993-2012 and 13:1999-2018). These periods represent the
beginning, middle and end of the data, as well as the data
set ending with the 2009 recession. In each case, results for
up to five of the closest models including the selected model
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TABLE 2: ARIMA MODELS FITTED TO 20 YEAR WINDOWS. THE UPPER PART OF THE TABLE SHOWS FORECASTING STATISTICS.
THE LOWER PART OF THE TABLE SHOWS THE MODELS SELECTED FOR EACH WINDOW.

ARIMA models ARIMA models

Selection criterion:  AIC Selection criterion:  |EICw|

Percentage error Percentage error

Years ahead MAPE Median APE MPE S.E.(MPE) MAPE Median APE MPE S.E.(MPE)

1 3.2 1.7 -0.5 4.6 3.0 2.0 -0.6 3.8

2 5.3 2.6 -1.5 8.8 5.9 4.5 -2.0 7.9

3 7.9 4.1 -2.6 11.4 8.2 6.7 -3.9 9.8

4 8.9 7.2 -5.3 11.9 9.6 8.2 -6.7 9.7

5 9.5 5.7 -7.7 12.3 11.1 9.1 -9.0 9.8

Window Start/End Model AIC Start/End Model EICw

1 1987/2006 (2,1,1) 393.8 1987/2006 (2,1,2) -136.7

2 1988/2007 (2,1,2) 393.5 1988/2007 (3,1,2) -96.8

3 1989/2008 (1,1,0) 391.2 1989/2008 (2,1,2) -149.2

4 1990/2009 (1,1,1) 395.4 1990/2009 (3,1,2) -110.0

5 1991/2010 (0,1,1) 401.0 1991/2010 (2,1,2) -135.1

6 1992/2011 (1,1,2) 401.1 1992/2011 (2,1,1) -140.6

7 1993/2012 (1,1,2) 401.7 1993/2012 (2,1,1) -138.3

8 1994/2013 (1,1,2) 401.4 1994/2013 (2,1,1) -143.1

9 1995/2014 (1,1,2) 401.8 1995/2014 (2,1,1) -148.4

10 1996/2015 (1,1,2) 402.5 1996/2015 (2,1,2) -105.1

11 1997/2016 (1,1,2) 404.7 1997/2016 (3,1,2) -133.3

12 1998/2017 (1,1,2) 404.4 1998/2017 (4,1,0) -157.6

13 1999/2018 (1,1,2) 404.5 1999/2018 (2,1,1) -150.9

TABLE 3: ADL MODELS FITTED TO 20 YEAR WINDOWS. THE UPPER PART OF THE TABLE SHOWS FORECASTING STATISTICS.
THE LOWER PART OF THE TABLE SHOWS THE MODELS SELECTED FOR EACH WINDOW.

ADL models ADL models

Selection criterion:  AIC Selection criterion:  |EICw|

Percentage error Percentage error

Years ahead MAPE Median APE MPE S.E.(MPE) MAPE Median APE MPE S.E.(MPE)

1 2.7 1.7 -0.8 3.9 2.6 1.7 -0.7 3.8

2 4.9 3.2 -0.9 7.6 4.8 3.2 -0.8 7.6

3 7.3 4.8 -1.4 10.6 7.3 4.7 -1.3 10.5

4 8.3 5.1 -3.5 11.2 8.1 4.8 -3.3 11.2

5 8.8 5.3 -5.2 11.7 8.6 5.4 -5.0 11.8

Window Start/End Model AIC Start/End Model EICw

1 1987/2006 (1,1;0/1/2/3,0;0/1/2/3,0) 302.7 1987/2006 (1/3,1;0/1/2/3,0;0/1/2/3,0) -22.6

2 1988/2007 (1/2,1;0/1/2/3,0;0/1/2,0) 297.2 1988/2007 (1/2,1;0/1/2/3,0;0/1/2/3,0) -14.5

3 1989/2008 (1,1;1,0;1/2/3,0) 293.3 1989/2008 (1,1;0/1,0;1/2/3,0) -12.6

4 1990/2009 (1,1;0/1,0;1/2/3,0) 294.0 1990/2009 (1,1;0/1,0;1/2/3,0) 12.4

5 1991/2010 (3,1;0/1/2/3,0;0/1/2/3,0) 305.8 1991/2010 (1/2/3,1;0/1/2/3,0;0/1/2/3,0) -39.5

6 1992/2011 (3,1;1/2,0;1/3,0) 308.9 1992/2011 (1/2/3,1;0/1/2/3,0;0/1/2/3,0) -32.6

7 1993/2012 (3,1;2,0;1/3,0) 308.4 1993/2012 (2/3,1;0/1/2/3,0;1/2/3,0) -33.3

8 1994/2013 (3,1;1/2,0;1/3,0) 309.9 1994/2013 (1/2/3,1;0/1/2/3,0;0/1/2/3,0) -2.0

9 1995/2014 (2/3,1;1/2,0;1/3,0) 301.5 1995/2014 (1/2/3,1;0/1/2/3,0;0/1/2/3,0) -6.4

10 1996/2015 (2/3,1;1/2/3,0;1/3,0) 301.9 1996/2015 (2/3,1;0/1/2/3,0;0/1/3,0) 20.0

11 1997/2016 (2/3,1;0/2/3,0;0/1,0) 318.6 1997/2016 (2/3,1;0/2/3,0;0/1/3,0) -37.5

12 1998/2017 (3,1; ;1,0) 318.3 1998/2017 (3,1; ;1,0) -137.7

13 1999/2018 (3,1;0,0 ;1,0) 312.0 1999/2018 (1/3,1;0/1,0 ;0/1,0) -80.0

are shown. Where there are less than five, this indicates that
there were fewer than five candidate models allowed by the
normality [14] and auto-correlation tests [15] at the degrees
of differencing that were specified by the KPSS tests [13].

Often both AIC and |EICw| select the same set of best
fitting models for a combination of technique and data set.
There is more variation between windows for the selected
sets of five models for |EICw| than there is for AIC. When

using |EICw|, the values of log[mB(φ̂)] are closer to zero
under the ARIMA models than under the ADL models. This
means that the density under the estimation model (that is
represented by the log density log[mB ]) is lower for the ADL
models than it is for the ARIMA models. It is not surprising,
because ADL models typically contain more parameters than
the corresponding ARIMA models.

In order to examine the extent that forecasting ability
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TABLE 4: ARIMA AND ADL MODELS FITTED TO ALL DATA AND TO FOUR OF THE THIRTEEN WINDOWS. FOR EACH WINDOW, THE
CRITERIA AIC AND |EICW | FOR UP TO FIVE OF THE BEST MODELS ARE SHOWN.

ARIMA models ADL models

Selection criterion:  AIC Selection criterion:  |EICw| Selection criterion:  AIC Selection criterion:  |EICw|

All data:  1987-2018
Candidate models AIC Candidate models log[mA] log[mB] EICw Candidate models AIC Candidate models log[mA] log[mB] EICw

1 (0,1,1) 653.2 (0,1,1) -279.6 -2.6 -277.0 (3,1;2,0;1/3,0) 550.0 (3,1;2,0;1/3,0) -257.0 -37.4 -219.7

2 (2,1,1) 650.9 (2,1,1) -276.7 -12.1 -264.6

Window 1 1987-2006 Candidate models AIC Candidate models log[mA] log[mB] EICw Candidate models AIC Candidate models log[mA] log[mB] EICw

1 (0,1,1) 396.7 (0,1,1) -158.1 -2.1 -156.0 (1/2/3,1;0/1/2/3,0;0/1/2/3,0) 306.3 (1/2/3,1;0/1/2/3,0;0/1/2/3,0) -130.5 -106.3 -24.1

2 (2,1,1) 393.8 (1,1,2) -149.1 -8.0 -141.1 (1/3,1;0/1/2/3,0;0/1/2/3,0) 304.3 (1/3,1;0/1/2/3,0;0/1/2/3,0) -130.5 -107.9 -22.5

3 (2,1,2) 394.4 (2,1,2) -149.5 -12.9 -136.7 (1,1;0/1/2/3,0;0/1/2/3,0) 302.7 (1,1;0/1/2/3,0;0/1/2/3,0) -129.8 -106.6 -23.2

Window 4 1990-2009 Candidate models AIC Candidate models log[mA] log[mB] EICw Candidate models AIC Candidate models log[mA] log[mB] EICw

1 (0,1,1) 396.2 (1,1,1) -156.3 -4.5 -151.8 (1/2/3,1;0/1/2/3,0;0/1/2/3,0) 300.3 (1/2/3,1;0/1/2/3,0;0/1/2/3,0) -129.7 -176.3 46.6

2 (1,1,1) 395.4 (2,1,1) -155.6 -11.8 -143.8 (1/3,1;0/1/2/3,0;0/1/2/3,0) 298.4 (1/3,1;0/1/2/3,0;0/1/2/3,0) -129.7 -179.8 50.0

3 (1,1,2) 396.7 (4,1,1) -156.5 -8.3 -148.2 (1/3,1;0/1/2,0;0/1/2/3,0) 296.7 (1/3,1;0/1/2,0;0/1/2/3,0) -129.8 -193.6 63.8

4 (3,1,1) 398.1 (1,1,2) -155.7 -15.7 -140.0 (1,1;0/1,0;1/2/3,0) 294.0 (1,1;0/1,0;1/2/3,0) -131.9 -143.8 11.8

5 (2,1,2) 398.1 (3,1,2) -150.5 -40.5 -110.0 (1,1;1,0;1/2/3,0) 299.1 (1,1;1,0;1/2/3,0) -136.6 -93.5 -43.1

Window 7 1993-2012 Candidate models AIC Candidate models log[mA] log[mB] EICw Candidate models AIC Candidate models log[mA] log[mB] EICw

1 (1,1,0) 403.8 (1,1,0) -160.9 -0.2 -160.8 (2/3,1;0/1/2/3,0;1/3,0) 309.7 (2/3,1;0/1/2/3,0;1/2/3,0) -134.0 -100.6 -33.4

2 (0,1,1) 402.8 (2,1,0) -160.8 0.1 -160.9 (2/3,1;0/1/2,0;1/3,0) 308.6 (2/3,1;0/1/2,0;1/3,0) -133.7 -89.8 -43.9

3 (1,1,2) 401.7 (1,1,1) -160.3 -4.9 -155.4 (3,1;0/1/2,0;1/3,0) 308.6 (2/3,1;0/1/2,0;1/3,0) -134.9 -69.8 -65.1

4 (2,1,2) 402.6 (2,1,1) -159.4 -21.1 -138.3 (3,1;1/2,0;1/3,0) 308.4 (3,1;0/1/2,0;1/3,0) -136.9 -60.8 -76.1

5 (3,1,2) 404.0 (3,1,1) -160.2 -15.3 -144.9 (3,1;2,0;1/3,0) 311.5 (3,1;1/2,0;1/3,0) -137.5 -52.5 -85.1

Window 13 1999-2018 Candidate models AIC Candidate models log[mA] log[mB] EICw Candidate models AIC Candidate models log[mA] log[mB] EICw

1 (1,1,0) 405.7 (1,1,0) -160.4 -0.4 -160.0 (1/3,1;0/1,0;0/1,0) 315.6 (1/3,1;0/1,0;0/1,0) -144.3 -64.3 -80.0

2 (2,1,0) 407.6 (4,1,0) -158.1 -0.5 -157.6 (3,1;0/1,0;0/1,0) 314.1 (3,1;0/1,0;0/1,0) -144.6 -56.3 -88.3

3 (1,1,1) 407.5 (0,1,1) -160.7 -1.5 -159.1 (3,1;0,0;1,0) 312.0 (3,1;0,0;1,0) -145.5 -26.8 -118.7

4 (1,1,2) 404.5 (2,1,1) -160.1 -9.2 -150.9 (3,1;,;1,0) 315.0 (3,1;,;1,0) -148.0 -10.9 -137.1

5 (2,1,2) 406.3 (0,1,2) -160.4 -1.5 -158.8

correlates with the measured information criteria over the
same set of data windows, Fig. 3 shows the timecourses for
forecasting accuracy (PE, the absolute percentage error of
the forecast at one year ahead) and for information criteria,
over the four combinations. The serial correlation coefficients
across time are shown beneath the charts.

Using significance tests for the correlation coefficients
[19], cut-offs of P < 0.05 give indications of significant
discrepancies from a null hypothesis of no correlation. The
realised values of AIC show significant positive serial cor-
relation over the timecourse for both ARIMA and ADL. On
the other hand, for |EICw| there is no significant serial
correlation over the timecourse for either ARIMA or for
ADL. For PE, there are significant positive serial correlations
for ADL models, but not for ARIMA models.

Fig. 4 plots the absolute percentage errors against the
information criterion values, over the four combinations.
There are significant negative correlations between AIC and
PE for both ARIMA and ADL models. But there are no
significant correlations between |EICw| and PE for either
the ARIMA or the ADL models.

These significance tests for correlations are only
indicative. Firstly, the power of the tests is low because
only 13 data points are used in each case. Secondly, it
is not unreasonable to have significant serial correlations.
In each window there are 19 values that are identical to,
and only one value that is different from, the immediately
neighbouring windows.

V. DISCUSSION

An advantage of the information criterion AIC is that it
is rather simple to calculate. The application of equation (3)

requires only the estimated residual variance σ̂2, the number
of parameters q and the number of data points n.

For the information criterion |EICw|, the term mB(φ̂) in
equation (10) takes some effort to calculate. But this can
be programed readily from the data together with the model
specification and parameter estimates. As has been seen in
the results tables, the forecast selections by |EICw| provide
additional information to those given by AIC. This may be
helpful to make improved business decisions.

Other information criteria can be used to select the models
[2]. For example, the Bayesian Information Criterion (BIC)
is a variant of AIC with a different penalty term. When using
BIC with these data, we found no differences in the model
selections to those made by using AIC.
|EICw| has some characteristics that differ from AIC and

other closely related information criteria. AIC is essentially
equivalent to the log-likelihood of the model after fitting to
the data, but with an additional penalty term due to the
length of the vector of parameters φ̂. |EICw| measures
the difference between true and estimated models of the
logarithm of the densities of the estimated parameters at the
MLE. The presumption is that, if these densities at the same
central point are similar, then the densities as a whole will be
similar. This means that the estimated parameters should be
trustworthy. The penalty for additional parameters in |EICw|
is implicit, because there is a tendency for estimator densities
from longer parameter vectors to be lower than for shorter
ones.

The derivation of AIC follows an asymptotic argument
regarding the distribution of the expected value of estimated
Kullback-Liebler information under repeated sampling [2].
This is to some degree analogous to the asymptotic derivation
of the normal distribution for parameter estimates under
the central limit theorem. But the derivation of EICw, in
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Fig. 3: One year ahead forecasts for the 20 windows. Timecourses for absolute percentage forecasting error one year ahead
(PE: stars, scale on the left side of each chart) and for information criteria (AIC: circles, |EICw|: diamonds, scale on
the right side of each chart). Results are shown for the selected models for the windows from 1987-2006 (Window 1) to
1999-2018 (Window 13), on the horizontal scale. Under each chart the serial correlation coefficient for PE and the serial
correlation coefficient for the information criterion are shown, with P values for two sided significance tests of no serial
correlation [19].

subsection III.C.2 above, follows an exact argument up to
equation (9). An approximation is applied only at the last
stage of asserting the data set as the true data generating
model, in order to give EICw in equations (10) and (11).

When applying the technique for estimator densities that
underlies EIC in other situations, a practical difficulty can be
lack of tractability in calculating the distribution of the term
T in equation (5). This is caused by the form of the error
distribution that is assumed for the data, even with some
simple error distributions (EG see [20]). But for the normal
error distributions that were studied here, there is no such
difficulty if the requirements for the handling of the time
series structure are taken into account.

It was chosen to use the minimum absolute value |EICw|
as a model selection criterion. The assumption is that the
model whose estimator density lies as close as possible to
the true one is the best one to take. The accuracy of the MLE
estimate is directly targeted. This is important because the
MLE is being used to construct point forecasts outside the

data set.

To give some further insight into model selections using
the information criteria, an experiment was done to com-
pare simple linear models (straight line model vs quadratic
model), on a design with six data points and independent
homoscedastic normal errors. (The details are not shown
here). In this setup, an F test is often carried out to determine
the appropriate model [21]. Its purpose is to prove the
statistical significance of a candidate model with more pa-
rameters before accepting it rather than a simpler model. The
information criteria may be able to make a more balanced
choice between models, because statistical significance does
not have to be established.

In this experiment, when simulated data sets were gener-
ated from a quadratic model, |EICw| provided more correct
model assignments of the quadratic model than AIC did,
and both criteria performed better than the F tests did. But
when simulated data sets were generated from a straight line
model, AIC provided more correct model assignments of

IAENG International Journal of Applied Mathematics, 52:1, IJAM_52_1_02

Volume 52, Issue 1: March 2022

 
______________________________________________________________________________________ 



Fig. 4: One year ahead forecasts for the 20 windows. Scatter plots of absolute percentage forecasting errors (PE, vertical
scales) with information criteria (horizontal scales), for the selected models. Results are shown from 1987-2006 (Window
1) to 1999-2018 (Window 13). The number under each chart is the correlation coefficient between PE and the information
criterion, with the P value for a two sided significance test of no serial correlation [19].

the straight line model than |EICw| did, and the F tests
performed better than both of the criteria.

For the approach to model discrimination of this paper,
that used the densities mA(θ̂) and mB(φ̂), other ways could
be used to make the selections. For example, if interval
forecasting had been the goal, then estimator variances or
other higher moments could be considered. In that case, more
difficulties would be found with the calculations, because
there is no obvious way to directly calculate the variance
of mB(φ̂) as g(φ̂) in equation (5). This is a formula for
a probability density function whose second moment might
need to be found by integration.

Since an estimation model gives a worse fit than the
observed data do to themselves, in most cases this study
generated negative EICw values. (See Tables 2 and 3.) The
exceptions were under ADL for Window 4 (for the years
1999 to 2009) and for Window 10 (for the years 1996 to
2015). In these cases, the model with the lowest value of
|EICw| was given by a positive EICw. It can be noted that
both these windows ended in years where there were small
corrections in the upward progress of EPO Total Filings (see

Fig.1).
The exercise to find free fitting models to the whole TFs

data set (for the years 1987-2008) gives a lower standard
error of the first year forecast under the ADL model than
under the ARIMA model. (See Table 1.) So one could
recommend usage of the ADL model, with the ARIMA
model as only a confirmatory tool to look at short term
effects. Here AIC and |EICw| led to the same models
being selected under ARIMA and ADL. This brings up the
possibility that differences in selected models for the 20 year
windows exercise might be related to the shorter data sets
that were considered.

It does not seem advisable to apply the specific ADL
model of Table 1 without further checking as new data points
appear. It is more appropriate to apply the models to a variety
of lengths of the historical data. Then, using both information
criteria, see whether the forecasts agree well enough under
all permutations to give confidence in the results. This could
be reconfirmed each year that the forecasting is done.

With the 20 year rolling windows and the results that
are presented in Tables 2 and 3, the best results were
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obtained using |EICw| as the selection criterion under the
ADL model. It should be noted that, for ADL models
using |EICw|, the conditional approach assumes that no
contribution to the covariances is made by the regression
terms relating y to w and z to w in equation (2). An
experiment was done to accommodate the regression terms
into the covariance expression, by adding in terms from the
straight line regressions that had been used to project the
explanatory variables. This led to no change in the models
that were selected by the modified |EICw| values that were
created. Therefore it can be considered that the conditional
approach to ADL models is adequate for these data.

The results in Fig. 2 can be compared with forecast
projections for TFs using windows under a dynamic log-
linear regression model setup (see Fig. 3 in [7]). That
approach tends to forecast stronger growth than do the Box-
Jenkins models that were studied here.

The patent filings series is a macroeconomic series that
is affected by major international events. The clearest event
in Fig. 2 was the great recession in 2009. So stories can
be told about forecasting failures for some windows. All
techniques forecasted drops in the years after the 1990-2009
Window 4. For 2010 to 2014, a steady decline was forecasted
by ARIMA and a decline followed by a partial recovery
was forecasted by ADL. But in fact there was a strong and
immediate recovery in TFs from 2010 onwards.

For the later windows (1992-2011 Window 6 to 1999-2018
Window 13), Table 2 shows that AIC under the ARIMA
model consistently selects the ARIMA(1,1,2) model. This
model may be dominated by its MA terms, so that forecasts
are selected that are essentially straight lines. These happen
to fit the out-turns rather well compared to the ARIMA
models selected by |EICw|, which have at least two AR
terms and tend to prescribe positive but plateauing forecast
trends. Perhaps this relates to the higher |EICw| values
found for ARIMA models than were found for ADL models.

It may also be noted that the AIC values for ARIMA
models are higher than for ADL models. This is consistent
with a worse fit by ARIMA than by ADL. For ADL itself,
|EICw| has slightly better forecasting accuracy than AIC.
But all the accuracy statistics may be influenced by the bad
forecasts from Window 3 (1989-2008) and Window 4 (1990-
2009).

Fig. 4 explored the correlations of AIC values and
|EICw| values with one year ahead absolute forecasting
error PE values, over the windows. Surprisingly enough,
a significant negative correlation was found between AIC
and PE both for ARIMA and ADL models. This means
that larger values of AIC correlate with greater degrees of
forecasting accuracy. Prima facie this is an argument against
using minimum values of AIC as a way to selecting a model
for forecasting. Reasons for this await further research. But
it could be due to sampling effects because of the high
degree of data overlap between successive windows. The
correlations of AIC and absolute forecasting error at two
to five years beyond the data sets gave similar effects to the
one year effects in most cases.

The information criteria that were used for model selection
reflect aspects of the goodness-of-fit of the model to the data
set rather than forecasting ability per se. So it is unsurprising
that positive relationships between the criteria and PE were
not established. But this study suggests that |EICw| is a

forecasting assessment tool that is at least as good as AIC.
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