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ABSTRACT - In this study, a general analysis of one-

dimensional steady-state thermal stresses in a hollow rotating 

thick-walled sphere under internal and external pressures is 

developed as a function of radial direction to an exact solution. 

Material properties, except Poisson's ratio, are assumed to 

depend on radius 'r' and the Poisson's ratio remains constant. 

The distributions of the thermal stresses are obtained for 

different values of the powers of the modulus of elasticity. The 

results have been computed numerically and presented 

graphically. 

Index Terms - functionally Graded Material, rotation, thermal 

stresses, thick-walled sphere 

I  INTRODUCTION 

Functionally Graded Materials (FGMs) are composite 

materials which are designed to present a particular spatial 

variation of their properties. The concept of FGM was first 

considered in Japan in 1984 during a space plane project. 

Functionally graded materials have the properties of the two 

raw materials which are mixed together and the component 

distribution is graded continuously. The problems of 

rotating annular disks, spheres or cylinders have been 

investigated under various assumptions and conditions. One-

dimensional steady-state thermal and mechanical stresses 

for a hollow thick sphere made of functionally graded 

material was discussed by Eslami et al. [1]. Guven and 

Baykara [2] considered a functionally graded isotropic 

hollow sphere with spherical symmetry subjected to internal 

pressure and this sphere considered as a multimaterial 

sphere composed of great number of concentric 

homogeneous spheres of the different elasticity moduli. Li et 

al. [3] determined the elastic field of a functionally graded 

hollow spherical vessel with spherically isotropy and 

spherically transversely isotropy. 

Given the assumption that the material had a graded 

modulus of elasticity with constant Poisson's ratio.  
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Applying the Frobenius method, Lutz and Zimmerman [4] 

found a way round the problem of uniform heating of a 

spherical body whose elastic moduli and thermal expansion 

coefficient varied linearly with radius. Nayak et al. [5] 

disscussed the general analytical solution of a functionally 

graded thick spherical vessel with the consideration that the 

material properties vary with the power law of radius and 

Poisson's ratio remains constant. Nejad et al. [6] derived 

exact closed form solutions for stresses and displacements in 

thick spherical shells made of functionally graded materials. 

Good agreement was found between the analytical solutions 

and the solutions carried out through the Finite Element 

Method.  

Pawar et al. [7] determined the thermal stresses in FGM 

hollow sphere due to non-uniform internal heat generation 

with radially varying properties by using theory of elasticity. 

The boundary value problem was converted to a Fredholm 

Integral Equation to obtain the radial displacement and 

thermal stresses in a functionally graded hollow cylinder as 

Peng and Li [8]. Thermal stresses in a hollow rotating thick-

walled cylinder made of functionally graded material under 

internal and external pressure as a function of radial 

direction to an exact solution by using the theory of 

elasticity was studied by Rahimi and Nejad [9]. Rani et al. 

[10] studied thermal stresses of a functionally graded hollow 

thick cylinder due to non-uniform internal heat generation 

and obtained analytical solutions with radially varying 

properties.  

Using plane elasticity theory and complementary function 

method, axisymmetric displacements and stresses in 

functionally graded hollow cylinders, disks and spheres 

subjected to uniform internal pressure were determined by 

Tutuncu and Temel [11]. Complementary function method 

reduced the boundary value problem to an initial value 

problem which could be solved accurately by one of many 

efficient methods such as Runge-kutta method. Yildirim 

[12] conducted the thermal analysis of functionally graded 

thick-walled spherical vessel and an infinite cylinderical 

vessel or a circular annulus by the steady-state one 

dimensional Fourier heat conduction theory under 

Dirichlet's boundary conditions. A parametric study was 

performed with hypothetic inhomogeneity indexes for 

varying aspect ratios. Yildirim [13] presented the thermo-

mechanical analysis of sphere made of non-homogeneous 

isotropic materials and proposed the closed form formulas 

for the elastic fields in a simple-power-law graded spheres 

subjected to steady-state thermal and internal/external 

pressure loads.  

In this paper, we have studied the thermal stresses based 

on uncoupled thermoelasticity in a functionally graded 
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hollow rotating thick-walled sphere under internal and 

external pressures and obtained the expressions for radial 

and tangential stresses by using the theory of elasticity. The 

variation of thermal stresses are also shown graphically for 

different values of the modulus of elasticity in the plane 

strain conditions. 

 

II  MATERIALS AND METHODS 

 

Consider a thick-walled functionally graded sphere with 

an inner radius 'a' and outer radius 'b', subjected to an 

internal pressure iP  and external pressure eP  that are 

axisymmetrtic and rotating at a constant angular velocity 

 about its axis. 

The properties in spherical coordinatres   and   are 

identical. The material properties are assumed to vary as 

power function in radial direction. The sphere is graded in 

the radial direction so that the material properties of 

modulus of elasticity, thermal expansion coefficient, thermal 

conductivity and density through the wall thickness are 

functions of ' r ' only. 

The following power law functions of radius in the radial 

directions are assumed to vary as  

              

             1
0

m
E E r                                                         (1)                                             

              2
0

m
k k r                                                         (2)                                                                       

              3
0

m
r                                     (3)                                                                    

              4
0

m
r                                                  (4)  

                                                      

where E, k, and  are modulus of elasticity, thermal 

conductivity, linear expansion coefficient and density 

respectively . 0E , 0k  , 0 and 0  are the material constants 

and 1m , 2m , 3m  and 4m  are the power law indices of the 

material. 

It is assumed that for plane strain 0  . The radial 

strain rr  and tangential strain   are related to the radial 

displacement u by  

               

               rr

du

dr
                                                        (5)     

                
u

r
                                                         (6)       

                                                                                                                               

The equilibrium equation in the radial direction in the 

absence of body force is given as under: 

     

     
22( )rr

rr

d
r r

dr



                                    (7)           

                                                                                                                   

where rr  and   are the radial and tangential stress 

components. 

In the steady-state condition, for one-dimensional 

problem in polar coordinates, the heat conduction equation 

may be obtained as under: 

    

     2

2

1
0

d dT
r k

dr drr

 
 

 
,       a r b                          (8)  

                                                

Boundary conditions of temperature are as follows: 

              

             aT T      at     r = a                                         (9)                                                                                                                                                         

             bT T      at     r = b                                        (10)      

                                                                                           

where aT  and bT  are the temperature at the inner and outer 

surface.  

The general solution of equation (8) by considering the 

relation of thermal transfer coefficient equation (2) and 

boundary conditions (9) and (10) is: 

For 2 1m  

2 2 2

2 2

1 1 1

1 1

( )

1
[( ) ]

m m m
a b b am m

T r

T T r T a T b
b a

     

   



  


 

                                                                                       (11)                                                            

For 2 1m    

         
( ) ln ln

( ) ln

ln ln

a b b aT T T a T b
T r r

a a

b b

 
               (12)    

                                                                                                              

 The stress components rr  and   in the radial and 

tangential directions in the terms of strain components rr  

and   for plane strain condition are given by 

For 2 1m    

1 3 2 1 31 1 1
1 2 3 4

m m m m mm m
rr rrA r A r A r A r      
     

                                                                                   (13)                             

1 3 2 1 31 1 1
5 6 3 4

m m m m mm m
rrA r A r A r A r       

                                                                                  

                                                                                   (14) 

For 2 1m    

1 3 1 31 1
1 2 7 8ln

m m m mm m
rr rrA r A r A r r A r    
                                                                               

                                                                                  (15)                       

1 3 1 31 1
5 6 7 8ln

m m m mm m
rrA r A r A r r A r     

                                                                                

                                                                                  (16) 

where 1A , 2A , 3A , 4A , 5A , 6A , 7A and 8A  are   

  

             0
1

(1 )

(1 )(1 2 )

E
A



 




 
 

             0
2

2

(1 )(1 2 )

E
A



 


 
  

             
2

2 2

1
0 0

3 1 1

( )( )

( )(1 2 )

m
a b

m m

E T T ab
A

a b







 




 
 

              
2 2

2 2

1 1
0 0

4 1 1

( )

( )(1 2 )

m m
a b

m m

E T b T a
A

a b





 

 




 
                 (17)                                                                                                                                                                

              0
5

(1 )(1 2 )

E
A



 


 
 

              0
6

(1 )(1 2 )

E
A

 
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                   0 0
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( )

(1 2 ) ln

a bE T T
A

b
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
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

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                  0 0
8

( ln ln )

(1 2 ) ln

b aE T a T b
A

b

a










 

 

Using equations (1)-(10) and (13)-(17), the Navier's 

equation in terms of radial displacement becomes as under: 

For 2 1m    

         

4 3 3 2 3

2
2

1 12

3 1
1 2 3

r ( 2) 2( 1)

m m m m m

d u du
m r nm u

drdr

B r B r B r
   

   

  

             (18)                                                                      

For 2 1m    

        

4 3 32

2
2

1 12

3 11
1 4 5

r ( 2) 2( 1)

ln
m m mm

d u du
m r nm u

drdr

B r B r r B r
  

   

  

            (19)                    

                                               where 
1

n






                                                                                                          

and 1B , 2B , 3B , 4B , 5B  are 

2
0

1
0

(1 )(1 2 )

(1 )
B

E

   


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


 

2

2 2

1
0 1 2 3

2 1 1

(1 )( 1)( )( )

(1 )( )

m
a b

m m

m m m T T ab
B

b a

 





 

    

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2 2

2 2

1 1
0 1 3

3 1 1

(1 )( )( )

(1 )( )

m m
b a

m m

m m T b T a
B

b a

 



 

 

  


 
        (20)                                                                                              

0 1 3
4

(1 )( )( )

(1 ) ln

b am m T T
B

b

a

 


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



 

0 1 3
5

(1 )[( ) ( )( ln ln )]

(1 ) ln

b a a bT T m m T b T a
B

b

a

 



    




 

Eqs. (18) - (19) are the non-homogeneous Cauchy-Euler 

equations. 

The general solution of Eqs. (18)-(19) are obtained by 

adding particular solution to the complementary solution of 

homogeneous form. The complimentary function cu  is 

taken as 

         

      ( ) f
cu r Xr   where X is constant                     (21)     

                                                                                         

Using (21) in homogeneous form of (18)-(19), we get 

For 2 1m    

                     1 2
1 2( )

f f
cu r X r X r                         (22)                                                                                                                 

For 2 1m    

                      1 2
3 4( )

f f
cu r X r X r                        (23)                                                                                                                               

where 1X , 2X , 3X , 4X  are constants and 

 

 

2
1 1 1

1

( 1) (8 2) 9

2

m m n m
f

     
 ,           

 

2
1 1 1

2

( 1) (8 2) 9

2

m m n m
f

     
                (24)                                   

The particular solutions for Eqs. (18)-(19) are considered as  

For 2 1m    

   3 2 34 1 13
1 2 3( )

m m mm m
pu r C r C r C r

  
            (25)                                                                                             

For 2 1m    

   3 34 1 1 13
1 4 5( ) ln

m mm m
pu r C r C r r C r

  
        (26)  

                                                                                                    

where 1C , 2C , 3C , 4C , 5C  are constants. 

 

Using Eq. (25) in (18); (26) in (19) and equating the 

coefficients of identical powers, we obtain 

                  

1
1

4 1 4 1(3 )(4 ) 2( 1)

B
C

m m m nm


    
 

2
2

3 2 1 3 2 1( )( 1) 2( 1)

B
C

m m m m m nm


     
 

3
3

3 1 3 1(1 )( 2) 2( 1)

B
C

m m m nm


    
               (27)                                                                                      

4
4

3 1 3 1(1 )( 2) 2( 1)

B
C

m m m nm


    
  

5 4 1 3
5

3 1 3 1

( 2 3)

(1 )( 2) 2( 1)

B C m m
C

m m m nm

  


    
 

 

The complete solutions u(r) of Eqs. (18)-(19) are obtained as  

For 2 1m    

3 2 31 2 4 1 13
1 2 1 2 3

( )

m m mf f m m

u r

X r X r C r C r C r
  



   
                                                                                        

                                                                                   (28)                                                               

For 2 1m    

3 31 2 4 1 1 13
3 4 1 4 5

( )

ln
m mf f m m

u r

X r X r C r C r r C r
  



   
                                                                                           

                                                                                  (29) 

By substituting Eqs. (28)-(29) into Eqs. (5)-(6) and on using 

these in Eqs. (13)-(16), we get the stresses as under: 

For 2 1m    

1 1 1 2

4

1 3 2

1 3 1 3 2 1 3

1 1
1 1 1 2 2 1 1 2

2
1 1 4 1 2

1
2 1 3 2 2

1
3 1 3 2 3 4

[ ] [ ]

[ (3 ) ]

[ ( ) ]

[ (1 ) ]

m f m f
rr

m

m m m

m m m m m m m

X A f A r X A f A r

C A m m A r

C A m m A r

C A m A r A r A r

    



  

    

   

   

  

    

                                                                                       

                                                                              (30)         

1 1 1 2

4

1 3 2

1 3 1 3 2 1 3

1 1
1 5 1 6 2 5 1 6

2
1 5 4 1 6

1
2 5 3 2 6

1
3 5 3 6 3 4

[ ] [ ]

[ (3 ) ]

[ ( ) ]

[ (1 ) ]

m f m f

m

m m m

m m m m m m m

X A f A r X A f A r

C A m m A r

C A m m A r

C A m A r A r A r

    



  

    

   

   

  

    

                                                                                          

                                                                              (31) 

For 2 1m    
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1 3

1 3 1 3 1 3

1 1
3 1 1 2 4 1 1 2

2
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4 1 3 2

5 1 3 2 7 8

[ ] [ ]
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[ (1 ) ] ln

m f m f
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m

m m

m m m m m m

X A f A r X A f A r

C A m m A r

C A m r A r r

C A m A r A r r A r
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



  

   

   

   
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                                                                                    (32)                                                                              

 

1 1 1 2

4

1 3

1 3 1 3 1 3

1 1
3 5 1 6 4 5 1 6

2
1 5 4 1 6

4 5 3 6

5 5 3 6 7 8

[ ] [ ]

[ (3 ) ]

[ (1 (1 ) ln ) ln ]

[ (1 ) ] ln

m f m f

m

m m

m m m m m m

X A f A r X A f A r

C A m m A r

C A m r A r r

C A m A r A r r A r
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



  

   

   

   

    

                                                                                       

                                                                                    (33)                                                                                         

To determine the constants 1X , 2X  , 3X  and 4X  ,consider 

the boundary conditions for stresses are given by 

 

 rr iP    at r a  and rr eP   at r b             (34)  

                                                                                     

Using boundary Eqs. (34) in (30) and (32), we get the values 

of constants 1X , 2X  , 3X and 4X  as under: 

4 5 2 6
1

1 4 2 3

g g g g
X

g g g g





,           1 6 3 5

2
1 4 2 3

g g g g
X

g g g g





 

4 7 2 8
3

1 4 2 3

g g g g
X

g g g g





 ,         1 8 3 7

4
1 4 2 3

g g g g
X

g g g g





 

                                                                                  (35)                                                                                                           

where the parameters 1g , 2g , 3g , 4g , 5g , 6g , 7g and 8g  are 

given by 
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III  VALIDATION 

  

In the final equations, if we substitute zero  for indices 

1m , 2m , 3m ,and 4m , we get the expressions for an isotropic 

and homogeneous sphere. This fact can be used as a partial 

validation of the final equations (30)-(31). 

Substituting 1m = 2m = 3m = 4 0m    in Eqs. (1)-(4); E, 

 , k  and   become 0E , 0 , 0k  and 0 ,which are 

modulus of elasticity, linear expansion coefficient, thermal 

conductivity and density respectively for an isotropic and 

homogeneous material. 

On taking 1 0C  , the results obtained for thermal stresses 

in the expressions (30)-(33) coincide with the results of 

Nayak et al. [5] and Pawar et al. [7]. 

 

IV  NUMERICAL RESULTS AND DISCUSSION 

 
     The mathematical thermoelastic model of a functionally 

graded hollow thick-walled sphere can be constructed by a 

considering a thermal gradient through its radial direction. 

A thick-walled spherical vessel of inner radius a=1.0 

meter and outer radius b= 1.2 meter is considered, which is 

rotating at the constant angular velocity of 110 secrad  . 

It is assumed that the Poisson's ratio,   has a constant value 

of 0.3. Material constants of thermal expansion coefficient, 

modulus of elasticity and density are taken as 6
0 10 10   , 

0 200E Gpa and 3
0 7810kgm  respectively. For 

boundary conditions, the inner and outer surfaces of the 

sphere are taken to be under the pressure of 40iP MPa  

and 0eP MPa  respectively. In addition, the temperature of 

the inner and outer surfaces are considered constant as 
010aT C  and 00bT C . Furthermore, it is assumed that 

1m = 2m = 3m = 4m m . 

The range 2 2m   is used in the present study which 

consists of all the values which has widely been used in the 

references cited earlier. Various values of m  are used to 

demonstrate the effect of homogeneity on the stress 

distribution. 

 The variation of the radial displacement along the radius 

is shown in fig.1. There is increase in the value of the radial 

displacement as m  increases. Figs. 2 and 3 shows the 

distribution of radial and tangential stresses in the radial 

direction. As m increases, so does the magnitude of the 

radial stress. For 2 1m   , the tangential stress decreases 

as the radius increases whereas for m  = 2, the tangential 

stress along the radius increases.  
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Fig. 1. Variation of radial displacement u with radius of sphere 

 

 
Fig. 2. Variation of radial stress rr with radius of sphere 
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Fig. 3. Variation of tangential stress  with radius of sphere 

           

 

V CONCLUSION 

 
In the present study, one dimensional steady-state 

thermal stresses are obtained for functionally graded rotating 

sphere. As a special case, Mathematical model is 

constructed for rotating sphere with material properties 

specified in the numerical calculations. In this study, it is 

observed that the radial displacement and the radial stress, 

both increase with the increase in power law index m , 

whereas the tangential stress decreases as the radius 

increases for 2 1m    and for m = 2, the tangential stress 

along the radius increases. The results can be generalized for 

other parameters values. 
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