Nontrivial Periodic Coherent State in Globally Coupled Oscillators

Di Yuan*, Huijuan Geng, Jing Zhang, Shengnan Li, Junlong Tian†

Abstract—In this work, we study the mean-field Kuramoto model with attractive (positive) and repulsive (negative) coupling strengths under an external pinning force. We consider the coupling strengths correlate with the natural frequencies of oscillators. It is found that the interplay between the correlations and the pinning force induces multistable coherent behaviors like different forms of traveling wave states, stationary synchronous and novel non-stationary dynamical behavior: a nontrivial periodic coherent state. The nontrivial periodic coherent state can be depicted by the phase distributions of oscillators, the phase distributions oscillate in a confined region periodically. Finally, the dynamical distribution regions of the system with the parameter scale are demonstrated.

Index Terms—Kuramoto model, external pinning force, attractive interaction, repulsive interaction, nontrivial periodic coherent state

I. INTRODUCTION

Synchronization phenomenon exists widely in many subsience. They have been investigated according to phase models, which efficaciously describe systems of little coupled limit cycle oscillators. As a classic model, the Kuramoto model [1] has offered a pattern for studying synchronization in a broad scope of physical, biological and chemical domains, such as fireflies flashing in unison [2], electrochemical and spin-toque oscillators [3], laser networks [4-6], Josephson junction arrays [7], mercury beating-heart oscillators [8], electronic networks [9-11], population networks [12,13], and social networks [14-22]. The primordial Kuramoto model contains N phase oscillators, which are whole coupled together, and the equations take the following form:

\[
\dot{\phi}_i = \omega_i + K \sum_{j=1}^{N} \Gamma_{ij} (\phi_j - \phi_i), \quad i=1,2,\ldots,N,
\]

where \(\phi_i \) is the instantaneous phase for the \(i \) th oscillator, \(\omega_i \) is the frequency for the \(i \) th oscillator, and \(\Gamma_{ij} \) is a 2π-period function accounting for the reciprocity between phase oscillators. The simple choice of \(\Gamma_{ij}(\theta) = (1/N) \sin \theta \) leads to the classical Kuramoto model. \(K \) is the global interaction strength. The model’s come down to hypothesis of sinusoidal interaction and infinite-range couplings allowed Kuramoto to achieve precise results for its quiescent states in the limit \(N \to \infty \), an distinct phenomenon observed that the model’s long-term behavior fluctuations from an incoherent behavior to a fractionally coherent state at a critical interaction strength \(K_c \).

The coupling strength \(K \) was assumed is positive in the early time, corresponding to an attractive interaction between oscillators and the average field. The attractive coupling is apt to align the oscillators in phase. The negative is assigned for the coupling strength \(K \) later, the negative coupling as repulsive effect actuates oscillators separation and forms a phase distinction of π. When two different forms of couplings are added, the behaviors of system becomes complicated. Hong and Strogatz considered positive and negative interactions in a mean field Kuramoto model [23, 24] and found a variety of dynamical behaviors including traveling wave states, partially synchronized states, and fully synchronized states. Bongers and Kopell studied the biological systems contain excitatory and inhibitory couplings [25]. Inhibitory interactions suppress the undesired synchronization and destabilize synchronized neural networks have been researched by Louzada et al. [26] and Freeman et al. [27], respectively. In human society, conformists positively follow the neighbors’ opinion when they interact with neighbors. However, the contrarians refuse the neighbors’ viewpoint all the time.

Compare with the earlier discussions of the Kuramoto model containing the positive and negative interactions. In the present work, we consider the Kuramoto model consist of attractive and repulsive coupling strengths under an external pinning force. Some researchers considered the pinning force in an active rotator [26–33]. Shinomoto and Kuramoto considered the phase change in active rotator models, they demonstrated two different scopes in the phase plot: a scope of time-periodic dynamical noticeable, and a scope of stable stationary synchronized behaves [34]. Hong studied a
coupled oscillator model, which contains the pinning force, and a peculiar dynamic state was found [35]. Through the investigation and study [36–42], we think that the Kuramoto model containing a pinning force could be better explored in some respects.

This work aims at analyzing the effects of pinning force to the dynamical behavior under the interactions between attractive and repulsive couplings. The paper is arranged as follows. We state the model and express some properties on the model in Sec. II. Sec. III presents the numerical results and shows the phase diagrams of the model with different types of relevance between the distributions of frequencies and the interaction strengths of oscillators. The work is summarized in Sec. IV.

II. Model

We give a thought to the network of N phase oscillators with a pinning force, and the phase of each oscillator is evolved by the following equations

$$\dot{\phi}_i = \omega_i + a \sin \phi_i + \frac{K_i}{N} \sum_{j=1}^{N} \sin(\phi_j - \phi_i), \quad i=1,2,\ldots,N. \quad (2)$$

Where the frequency ω_i is selected stochastically from a Lorentzian probability distribution, $g(\omega) = \gamma / \pi (\pi \omega^2 + \gamma^2)$.

Throughout this work, the width $\gamma = 0.05$. The second part on the right-hand side of Eq. (2) is the pinning force, and the dynamics of excitable limit-cycle oscillators can be simulated by means of the pinning force [31, 32], and a on behalf of the intensity of the pinning force. K_i reflects the response of the ith oscillator to the mean field. The oscillators in Eq. (2) can be divided into two sub-collections: the oscillators with positive coupling ($K_i > 0$) are conformist, which affect attractively with the surplus oscillators, and the oscillators with negative coupling ($K_i < 0$) are contrarian, which repulse the others, respectively. N on behalf of the sum of phase oscillators in above system.

Next, we consider two cases for the interaction strengths correlate with the frequencies of oscillators. One case is that if $|\omega_i| < \omega_b$, the interaction strength of the ith oscillator is arranged as $K_i = K$, and $K_i = K_h$ for other oscillator, and the another case is that the second situation, if $|\omega_i| > \omega_b$, the interaction strength of the ith oscillator is arranged as $K_i = K_h$ and $K_i = K$ for other oscillator. The correlation distributions are as follows:

Case 1:

$$g(\alpha, K) = \frac{\gamma}{(\alpha^2 + \gamma^2)} \left[H(\alpha_0 - |\alpha|) \delta(K - K_h) + (1 - H(\alpha_0 - |\alpha|)) \delta(K - K) \right]$$

Case 2:

$$g(\alpha, K) = \frac{\gamma}{(\alpha^2 + \gamma^2)} \left[H(\alpha_0 - |\alpha|) \delta(K - K_h) + (1 - H(\alpha_0 - |\alpha|)) \delta(K - K) \right]$$

where $H(\cdot)$ on behalf of Heaviside expression. The above two different relevant situations have respective significance. Let’s hold the case 1 as an explanation, people in the mainstream share similar opinions in normal human society and they easy to get along with. On the contrary, there are radical who may be are apt to refuse the popular opinions. The case 1 may be a good choice for researcher to explore the dynamical behavior in such a present world.

Collective behavior of phase synchronization is generally portrayed by the complex order parameter, the complex characterization parameter $R e^\phi$ which is expressed by

$$Z = Re^\phi = \frac{1}{N} \sum_{i=1}^{N} e^{i\phi_i} \quad (4)$$

where the Φ shows the average phase, and the real variant $0 \leq R \leq 1$ shows the macroscopic order. Then, the Eq. (2) can be expressed according to R and Φ as

$$\dot{\phi}_i = \omega_i + a \sin \phi_i + K_i \sin(\Phi - \phi)_i, \quad i=1,2,\ldots,N, \quad (5)$$

which shows the development of the ith oscillator autonomously according to R and Φ. We explore collective synchronization of the system, each subpopulation’s synchronization also an important observed quantity. The synchronization behaviors of the conformists and contrarians are expressed by $Z_c = Re^{\phi_c} = (1/N) \sum_{i=1}^{N} e^{i\phi}_i$, where S_c denote the ensembles of conformists and contrarians, respectively, and N_i denote the total quantities of positive and negative of oscillators, respectively.

III. RESULTS AND DISCUSSION

To explore the dynamical behaviors given by the Eq. (2), we performed numerical simulations by Runge–Kutta procedure of fourth-order, we assign the time interval $\delta t = 0.01$. From start to finish, we measured the quantities of interest by averaging and discarding the transient process. In addition, we set $K_- = -1.5, K_+ = 4.0, a = 0.01, N = 10000$ and $\gamma = 0.05$ unless specified.

A. Situation with $K_i = K_-$ for $|\omega_i| > \omega_b$ and $K_i = K_+$ otherwise

At present, we consider the situation with $K_i = K_-$ for $|\omega_i| > \omega_b$ and $K_i = K_+$ for other oscillator. We first investigated the synchronization plots of the order parameters R_c and R_h opposite ω_0. Fig. 1(a) shows the amplitudes against ω_0. When $\omega_0 = 0$, the system has only contrarians. When the cutoff frequency ω_b increases gradually, the number of conformists also increases, we can see that the system presents several different regimes from Fig. 1(a), which mean different dynamical states in this system. It is shown that the amplitude of R_h almost stays around 1, which indicates the conformists keep high synchronization for very low ω_0. However, the amplitudes of R and R_h manifest a doughy dependence on ω_b. So, we can distinguish the several different regimes of ω_b according to the change of amplitudes of R and R_h, the break points are $\omega_{b_1} = 0.015, \omega_{b_2} = 0.021, \omega_{b_3} = 0.064$ and $\omega_{b_4} = 0.088$, respectively.

We characterize these different dynamics by some quantities of observation, such as the speed of a traveling wave Ω and the phase difference $\Delta \phi$. The quantity of observation Ω is defined as $\Omega = (1/N) \times \sum_{i=1}^{N} \omega_i(\phi_i)$, when $\Omega \neq 0$, the system presents a mobile dynamic state behavior. The observed quantity of $\Delta \Phi$ (for $\phi = \Phi - \phi$) denotes the phase
We now use effective frequency to characterize the dynamics in different regimes. The effective frequency of corresponding oscillator is expressed as \(\omega_e = \frac{d\phi}{dt} \). The effective frequency \(\omega_e \) is computed for every oscillator as shown in Figs. 2(a), 2(b), 2(c) and 2(d) with different \(\omega_b \), respectively. Correspondingly, the instantaneous plots of the phases are shown in Figs. 2(e), 2(f), 2(g) and 2(h), and all oscillators have been sorted on the basis of their natural frequencies. For example, if \(\omega_1 < \omega_3 \), then \(n_i < n_j \). We know that \(\pi \) state is presented in the scope of \(\omega_b < \omega_{b,1} \). Figs. 2(a) shows the frequency \(\omega_e(a) \) with the oscillators’ frequencies for \(\omega_b = 0.01 \), it is easy to see that the graph has one plateau \(\omega_e = 0 \), the plateau implies that there are some oscillators phase-locked to the mean field. Correspondingly, it is shown that a small part of oscillators are synchronized from the snapshot of phases shown in Fig. 2(e). In addition, it should be noted that the plateau is consecutive and symmetric about \(\omega = 0 \).

For \(\omega_{b,2} < \omega_b < \omega_{b,3} \), as shown in Figs. 2(b) and 2(f) for \(\omega_b = 0.04 \), the plot of \(\omega_e(a) \) turns into skew symmetric about \(\omega = 0 \), the platform is inconsecutive and splits into two discrete parts, the instantaneous plot of phases shows that one plateau for conformists and the other platform for part of the negative of oscillators. The Fig. 2(b) shows that the effective frequency on the platform deviates from \(\omega_e = 0 \).

We know that the average field vibrates at a frequency distinguish from the population’s effective frequency for a mobile wave state [21]. Therefore, the plateau deviates from \(\omega = 0 \) in Fig. 2(b) implies the existence of traveling wave states. For \(\omega_{b,3} < \omega_b < \omega_{b,4} \), as shown in Figs. 2(c) and 2(g), the plot of \(\omega_e(a) \) continues to be skew symmetric about \(\omega = 0 \) for \(\omega_b = 0.08 \), it is noteworthy that the platform is recovered to be a consecutive one in the plot \(\omega_e(a) \). By comparing Fig. 2(b) and Fig. 2(c), we can distinguish the every types of mobile dynamic states on different positions of \(\omega_{b,3} \). For \(\omega_{b,3} < \omega_b < \omega_{b,4} \), we take \(\omega_b = 0.1 \) as an example, as shown in Figs. 2(d) and 2(h). From Fig. 2(d), we can see that the plateau is return to a symmetric one about \(\omega = 0 \).
correspondingly, the π states are recovered in the system.

Through the above analysis, we have identified several different dynamical states in the model Eq. (2). In addition, it is exciting that this system still presents a novel nonstationary dynamical behavior in the scope of \(\alpha \in (\alpha_{h1}, \alpha_{h2}) \). The novel state is characterized by the phase distributions with evolutions of as shown in Fig. 3(a) (the conformists) and Fig. 3(b) (the contrarians) for \(\alpha_h = 0.018 \). We can see a fire-new dynamical state from Figs. 3(a) and 3(b), which is different from the mobile wave state and the π state found by Hong and Strogatz [21]. First, the phase distributions are nonstationary, second, the distributions of phase do not move along the phase space, third, the phase distributions oscillate in a limited scope periodically. In addition, the phase distribution of contrarians is bimodal, and the reason is that there is a fraction of contrarians which get synchronized, and the contrarians with positive frequencies are fixed to a diverse phase in contrasting to some oscillators with negative frequencies. Furthermore, we investigated the nontrivial periodic coherent state from the evolution of oscillators for phase. As exhibited in Fig. 3(c), it is obvious that there exist several clusters, and the phase change time dependent periodically of each oscillator. In addition, the period of evolutions for the phase distributions is identical to that for phase of oscillators by contrasting Figs. 3(a), 3(b) and 3(c).

![Fig. 3](color online) Time variations of the phase distributions for the conformists (a) and contrarians (b), respectively. (c) Time evolutions of oscillators’ phases. Colors in (a)-(c) on behalf of the number of oscillators; specific value can be confirmed according to color bars. (d) Amplitudes \(R \) (black), \(R_\perp \) (blue), and \(R_\parallel \) (red), of the order parameter. (e) average phase \(\Phi \) (black), \(\Phi_\perp \) (bright green), and \(\Phi_\parallel \) (red). (f) phase difference \(\Delta \Phi \). \(\Delta \Phi \) oscillates periodically. \(\alpha_h = 0.018 \), \(K_\perp = -1.5, K_\parallel = 4.0, a = 0.01 \) and \(\gamma = 0.05 \).

The nontrivial periodic coherent state also can be validated through the amplitudes, \(R \) and \(R_\perp \), of the order parameter. In Fig. 3(d), we plot the evolutions of amplitudes, \(R \) (black), \(R_\perp \) (red) and \(R_\parallel \) (blue), of the order parameters. Fig. 3(e) manifests the Time variations of average phases \(\Phi \) (the curve one with black), \(\Phi_\perp \) (the curve one with red) and \(\Phi_\parallel \) (the curve one with bright green). It is shown that the amplitudes and the average phases oscillate periodically with time. In Fig. 3(f), we present the evolution of the phase difference \(\Delta \Phi \) between conformists and contrarians, it is shown that the \(\Delta \Phi \) also oscillates periodically.

![Fig. 4](color online) Bifurcation plot of the system (2) on the space of \(K_\perp \) and \(\alpha_h \). The different dynamics are divided by the different curves. Nontrivial periodic coherent states locate at the lower \(\alpha_h \) border of the traveling dynamic state. Traveling dynamic states are apt to appear at large \(K_\perp \). Traveling wave state I is the traveling wave state in which the platform in plot of \(\alpha_h(\omega) \) is split into two parts. Traveling wave state II is the traveling wave state in which the platform in plot of \(\alpha_h(\omega) \) is concatenated. The stationary synchronous state can be found below the nontrivial periodic coherent state and the traveling wave state. \(K_\perp = -1.5, a = 0.01 \) and \(\gamma = 0.05 \). Here \(K_\parallel = K_\perp \) for \(|\alpha| < \alpha_h \) and \(K_\parallel = K_\perp \) for other oscillators.

The dynamics in the system (2) for the present relevance between the interaction strengths and the distributions of frequencies is summarized as shown in Fig. 4, we plot the bifurcation diagram as functions of \(K_\perp \) and \(\alpha_h \). From Fig. 4, we can distinguish the region for the different dynamical states. We find that the nontrivial periodic coherent states locate at the lower \(\alpha_h \) boundary of the traveling wave state. The traveling dynamic states are apt to appear at large \(K_\perp \) and the traveling dynamic state appears in a broader window with the increase of \(\alpha_h \). Below the nontrivial periodic coherent behavior and the traveling dynamic state, we can find the stationary synchronous state. It is worth noting that different dynamics in the model (2) can be realized by changing the coupling strength \(\alpha_h \) at the intermediate \(K_\perp \), which reflects the important role of cut-off frequency \(\omega_h \) in this system.

B. Situation with \(K_\parallel = K_\perp \) \(|\alpha| > \alpha_h \) and \(K_\parallel = K_\perp \) \(|\alpha| < \alpha_h \) \(\gamma \) otherwise

We now consider the situation with \(K_\parallel = K_\perp \) for \(|\alpha| > \alpha_h \) and \(K_\parallel = K_\perp \) for other oscillators. In this situation, when the cut-off frequency \(\omega_h \) increases gradually, correspondingly, the number of contrarians increases. In Fig. 5(a), we draw the
Amplitude R with a narrow range of ω_0. In this map, forward (black) continuation and backward (red) continuation are manifested. $K_+ = -1.5$, $K_- = 4.0$, $a = 0.01$ and $\gamma = 0.05$. Here $K_i = K_+$ for $|\omega| > \omega_0$ and $K_i = K_-$ for other oscillators.

In Fig. 6, we present the bifurcation diagram on the space of K_+ and ω_0. Different configurations are divided by the different curves. Stationary synchronous state and the traveling wave state are distinguished from Fig. 6. The right sides of the stationary synchronous state and the traveling wave state are the incoherent state. The stationary synchronous state can be found situated at the lower ω_0 border of the incoherent states, and the traveling wave state is apt to appear at large K_+ and at middle value of ω_0.

IV. CONCLUSIONS

In this research work, the Kuramoto model of whole coupled oscillators with an extrinsic pinning force is investigated, in which conformists with positive interaction strength and contrarians with negative interaction strength. In this system, two diverse relevance of the coupling strengths correlate with the natural frequencies of oscillators are considered, rich synchronous dynamical behaviors are found. We find a novel nonstationary dynamic state, the phase distributions of oscillators can be used to characterize the periodic coherent state. Because of the effects of pinning force to the model (2), we find that the phase distribution of contrarians is bimodal, the phase distributions and the phase difference oscillate in a confined region periodically. The traveling wave state presented in this system can be ascribed to two species. The diverse types of traveling wave dynamic state can be distinguished by the graph $\omega_0(\omega)$ of effective frequency. In addition, we manifest the bifurcation diagrams of the system model (2) for different cases from which the parameter scope of the nontrivial periodic coherent state, the stationary synchronous state and the traveling wave dynamic state can be obtained.

REFERENCES