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Abstract—In this work, we study the mean-field Kuramoto 

model with attractive (positive) and repulsive (negative) 

coupling strengths under an external pinning force. We consider 

the coupling strengths correlate with the natural frequencies of 

oscillators. It is found that the interplay between the 

correlations and the pinning force induces multistable coherent 

behaves like different forms of traveling wave states, stationary 

synchronous and novel non-stationary dynamical behave: a 

nontrivial periodic coherent state. The nontrivial periodic 

coherent state can be depicted by the phase distributions of 

oscillators, the phase distributions oscillate in a confined region 

periodically. Finally, the dynamical distribution regions of the 

system with the parameter scale are demonstrated. 

 

Index Terms—Kuramoto model, external pinning force, 

attractive interaction, repulsive interaction, nontrivial periodic 

coherent state 

I. INTRODUCTION 

ynchronization phenomenon exists widely in many 

subscience. They have been investigated according to 

phase models, which efficaciously describe systems of 

little coupled limit cycle oscillators. As a classic model, the 

Kuramoto model [1] has offered a pattern for studying 

synchronization in a broad scope of physical, biological and 

chemical domains, such as fireflies flashing in unison [2], 

electrochemical and spin-toque oscillators [3], laser networks 

[4-6], Josephson junction arrays [7], mercury beating-heart 
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oscillators [8], electronic networks [9-11], population 

networks [12,13], and social networks [14-22].  

The primordial Kuramoto model contains N phase 

oscillators, which are whole coupled together, and the 

equations take the following form: 

1

( ),   i=1,2,..., ,
N

i i ij j i

j

K N   


                       (1) 

where 
i  is the instantaneous phase for the i th oscillator,  i

 

is the frequency for the i th oscillator, and 
ij  is a 2π-period 

function accounting for the reciprocity between phase 

oscillators. The simple choice of ( ) (1/ )sinij N    leads to 

the classical Kuramoto model. K  is the global interaction 

strength. The model’s come down to hypothesis of sinusoidal 

interaction and infinite-range couplings allowed Kuramoto to 

achieve precise results for its quiescent states in the limit 

N→∞, an distinct phenomenon observed that the model’s 

long-term behavior furcates from an incoherent behave to a 

fractionally coherent state at a critical interaction strength 
cK . 

The coupling strength K  was assumed is positive in the early 

time, corresponding to an attractive interaction between 

oscillators and the average field. The attractive coupling is apt 

to align the oscillators in phase. The negative is assigned for 

the coupling strength K  later, the negative coupling as 

repulsive effect actuates oscillators separation and forms a 

phase distinction of π. When two different forms of couplings 

are added, the behaves of system becomes complicated. Hong 

and Strogatz considered positive and negative interactions in 

a mean field Kuramoto model [23, 24] and found a variety of 

dynamical behaviors including traveling wave states, partially 

synchronized states, and fully synchronized states. Borgers 

and Kopell studied the biological systems contain excitatory 

and inhibitory couplings [25]. Inhibitory interactions suppress 

the undesired synchronization and destabilize synchronized 

neural networks have been researched by Louzada et al. [26] 

and Freeman et al. [27], respectively. In human society, 

conformists positively follow the neighbors’ opinion when 

they interact with neighbors. However, the contrarians  refuse 

the neighbors’ viewpoint all the time. 

Compare with the earlier discussions of the Kuramoto model 

containing the positive and negative interactions. In the 

present work, we consider the Kuramoto model consist of 

attractive and repulsive coupling strengths under an external 

pinning force. Some researchers considered the pinning force 

in an active rotator [26–33]. Shinomoto and Kuramoto 

considered the phase change in active rotator models, they 

demonstrated two different scopes in the phase plot: a scope 

of time-periodic dynamical noticeable, and a scope of stable 

stationary synchronized behaves [34]. Hong studied a 
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coupled oscillator model, which contains the pinning force, 

and a peculiar dynamic state was found [35]. Through the 

investigation and study [36-42], we think that the Kuramoto 

model containing a pinning force could be better explored in 

some respects. 

This work aims at analyzing the effects of pinning force to 

the dynamical behavior under the interactions between 

attractive and repulsive couplings. The paper is arranged as 

follows. We state the model and express some properties on 

the model in Sec. Ⅱ. Sec. Ⅲ presents the numerical results and 

shows the phase diagrams of the model with different types of 

relevance between the distributions of frequencies and the 

interaction strengths of oscillators. The work is summarized 

in Sec. Ⅳ. 

II. Model 

We give a thought to the network of N phase oscillators with 

a pinning force, and the phase of each oscillator is evolved by 

the following equations 

 
1

sin sin( ),   =1,2,..., .
N

i
i i i j i

j

K
a i N

N
    



               (2) 

Where the frequency  i  is selected stochastically from a 

Lorentzian probability distribution, 2 2( ) /[ ( )]     g . 

Throughout this work, the width =0.05 . The second part on 

the right-hand side of Eq. (2) is the pinning force, and the 

dynamics of excitable limit-cycle oscillators can be simulated 

by means of the pinning force  [31, 32], and a  on behalf of 

the intensity of pinning force. 
iK  reflects the response of the 

𝑖th oscillator to the mean field. The oscillators in Eq. (2) can 

be divided into two sub-collections: the oscillators with 

positive coupling ( 0 K ) are conformist, which affect 

attractively with the surplus oscillators, and the oscillators 

with negative coupling ( 0 K ) are contrarian, which repulse 

the others, respectively. N on behalf of the sum of phase 

oscillators in above system.   

Next, we consider two cases for the interaction strengths 

correlate with the frequencies of oscillators. One case is that if 

0 i
, the interaction strength of the ith oscillator is 

arranged as 
iK K  and 

iK K  for other oscillator, and the 

another case is that the second situation, if 
0 i

, the 

interaction strength of the ith oscillator is arranged as 
iK K  

and 
iK K  for other oscillator. The correlation distributions 

are as follows: 

Case 1: 

0 02 2
( , ) [ ( | |) ( ) (1 ( | |)) ( )]

( )


      

  
       


g K H K K H K K

 

Case 2: 

0 02 2
( , ) [ ( | |) ( ) (1 ( | |)) ( )]

( )


      

  
       


g K H K K H K K

 

           (3) 

where H ( · ) on behalf of Heaviside expression. The above 

two different relevant situations have respective significance. 

Let’s hold the case 1 as an explanation, people in the 

mainstream share similar opinions in normal human society 

and they easy to get along with. On the contrary, there are 

radical who may be are apt to refuse the popular opinions. The 

case 1 may be a good choice for researcher to explore the 

dynamical behavior in such a present world.  

Collective behavior of phase synchronization is generally 

portrayed by the complex order parameter, the complex 

characterization parameter Re i  which is expressed by 

1

1
Re  ,





   j

N
ii

j

Z e
N

                               (4) 

where the Φ shows the average phase, and the real variant 

0 R 1   shows the macroscopic order. Then, the Eq. (2) can 

be expressed according to 𝑅 and Φ as 

  sin sin( ),   i=1,2,..., ,i i i i ia K R N                 
  (5) 

which shows the development of the 𝑖th oscillator 

autonomously according to 𝑅 and Φ. We explore collective 

synchronization of the system, each subpopulation’s 

synchronization also an important observed quantity. The 

synchronization behaviors of the conformists and contrarians 

are expressed by   R e   (1/ ) ,jii

j S
Z N e








   
    where 

S  denote the ensembles of conformists and contrarians, 

respectively, and 
N  denote the total quantities of positive 

and negative of oscillators, respectively. 

III. RESULTS AND DISCUSSION 

To explore the dynamical behaviors given by the Eq. (2), we 

performed numerical simulations by Runge–Kutta procedure 

of fourth-order, we assign the time interval 𝛿𝑡 = 0.01. From 

start to finish, we measured the quantities of interest by 

averaging and discarding the transient process. In addition, 

we set   1.5,    4.0,   = 0.01K K a    ,  10000N  and 

  0.05   unless specified. 

A. Situation with   iK K  for 
0  i   and   iK K  

otherwise 

At present, we consider the situation with   iK K  for 

0i   and   iK K  for other oscillator. We first 

investigated the synchronization plots of the order parameters 

R , 
R  and 

R  opposite 
0 . Fig. 1(a) shows the amplitudes 

against 
0 . When 

0   0  , the system has only contranrians. 

When the cut-off frequency 
0  increases gradually, the 

number of conformists also increases, we can see that the 

system presents several different regimes from Fig. 1(a), 

which mean different dynamical states in this system. It is 

shown that the amplitude of 
R  almost stays around 1, which 

indicates the conformists keep high synchronization for very 

low 
0 . However, the amplitudes of R  and 

R  manifest a 

doughty dependence on 
0 . So, we can distinguish the 

several different regimes of 
0  according to the change of 

amplitudes of R  and 
R , the break points are 

0,1 0.015  , 

0,2   0.021  , 
0,3   0.064   and 

0,4   0.088  , respectively. 

We characterize these different dynamics by some quantities 

of observation, such as the speed of a traveling wave   and 

the phase difference  . The quantity of observation   is 

defined as 
1

  (1/ )
N

jj
N 


     , when   0  , the system 

presents a mobile dynamic state behavior. The observed 

quantity of   (        ) denotes the phase 
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Fig. 1 (color online) Real parts (a)  of the order parameter R 

(in black square), 
R  (in red circle), and 

R  (in blue triangle) 

against 
0 . (b) Traveling speed    of wave opposite 

0 . (c) 

  between the mean phases of the different order 

parameters of conformists 
Z  and contrarians 

Z  opposite 

0 . (d)–(f) The parameter scope in (a)–(c) is enlarged. In 

above three graphs, forward continuation (with black) and 

backward continuation (with red) transition diagrams are 

presented.  1.5,   4.0,   = 0.01,K K a     and   0.05  . 

 

difference between the average phases of positive and 

negative of oscillators. In Fig. 1(b), we plot the   against 
0 , 

it is shown that the quantity   becomes nonzero in the region 

of 
0 0,2 0,4( ,  )   . Fig. 1(c) presents the   against 

0  in 

the same region, it is shown that   diverges from π. By 

comparing Figs. 1(b) and Figs. 1(c), we know that the mobile 

state exists in the region of 
0 0,2 0,4( ,  )   . In addition, it is 

noteworthy that the transition diagrams of R  (Fig. 1(a)),   

(Fig. 1(b)) and   (Fig. 1(c)) are not smooth continuous in 

the region of 
0 0,2 0,4( ,  )   , there is a jump at around 

0,3 , 

which implies that mobile dynamic states are divided into two 

parts, each part corresponding to one type state. We can see 

clearly that the 𝜋 state emerges in the regions of 
0 0,1     or 

0 0,4     in Figs. 1(b) and (c). The 𝜋 state corresponding to 

the conformists and contrarians gather into one synchronized 

cluster, respectively. The two peaks of the phase distributions 

have a separation of an angle of 𝜋. 

From Fig. 1 (a), we can see that the transition at around 
0,2  

is a discontinuous one. Figs. 1(d), 1(e) and 1(f) show the 

transition diagrams for the forward and backward transition. 

The forward transition diagram was calculated by adding 

continuously the value of 0 , these quantities R ,   and 

  were computed for 
0 0 0 0 0,    ,  ... ,    n      , that is 

to say, the tag end state of the prior one 0  is the initial 

conditions for next one. On the contrary, the backward 

transition plot is calculated by shrinking continuously the 

value of 
0 . Figs. 1(d), 1(e) and 1(f) show that the strong 

hysteresis exists at around 
0,2 , and the emergence of 

hysteresis manifests the coexistence of the cluster coherent 

states and the traveling dynamic behaviors in this region. 

We now use effective frequency to characterize the dynamics 

in different regimes. The effective frequency of 

corresponding oscillator is expressed as   /e td dt    . The 

effective frequency e
 is computed for every oscillator as 

shown in Figs. 2(a), 2(b), 2(c) and 2(d) with different 
0 , 

respectively. Correspondingly, the instantaneous plots of the 

phases are shown in Figs. 2(e), 2(f), 2(g) and 2(h), and all 

oscillators have been sorted on the basis of their natural 

frequencies. For example, if   i j  , then   i jn n . We 

know that π state is presented in the scope of 
0 0,1    . Figs. 

2(a) shows the frequency ( ) e
 with the oscillators’  

frequencies for 
0   0.01  , it is easy to see that the graph has 

one plateau   0e  , the plateau implies that there are some 

oscillators phase-locked to the mean field. Correspondingly, 

it is shown that a small part of oscillators are synchronized 

from the snapshot of phases shown in Fig. 2(e). In addition, it 

should be noted that the plateau is consecutive and symmetric 

about   0  . 

For 
0,2 0 0,3        , as shown in Figs. 2(b) and 2(f) for 

0   0.04  , the plot of ( ) e
 turns into skew symmetric 

about   0  , the platform is inconsecutive and splits into 

two discrete parts, the instantaneous plot of phases shows that 

one plateau for conformists and the other platform for part of 

the negative of oscillators. The Fig. 2(b) shows that the 

effective frequency on the platform deviates from   0e  . 

We know that the average field vibrates at a frequency 

distinguish from the population’s effective frequency for a 

mobile wave state [21]. Therefore, the plateau deviates from 

  0e   in Fig. 2(b) implies the existence of traveling wave 

states. For 
0,3 0 0,4        , as shown in Figs. 2(c) and 

2(g), the plot of ( ) e
 continues to be skew symmetric about 

  0   for 
0   0.08  , it is noteworthy that the platform is 

recovered to be a consecutive one in the plot ( ) e
. By 

comparing Fig. 2(b) and Fig.2 (c), we can distinguish the 

every types of mobile dynamic states on different positions of 

0,3 . For 
0 0,4    , we take 

0   0.1   as an example, as 

shown in Figs. 2(d) and 2(h). From Fig. 2(d), we can see that 

the plateau is return to a symmetric one about   0  , 

 
Fig. 2 (color online) Effective frequencies e

 are shown as a 

function of 
i  in above (a), (b), (c) and (d). instantaneous 

plots of the oscillators are presented in above (e), (f), (g) and 

(h). (a, e) 
0   0.01  ; (b, f) 

0   0.04  ; (c, g) 
0   0.08  ; (d, h) 

0   0.1  ;   1.5,    4.0,   = 0.01K K a     and   0.05  . 
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correspondingly, the π states are recovered in the system. 

Through the above analysis, we have identified several 

different dynamical states in the model Eq. (2). In addition, it 

is exciting that this system still presents a novel nonstationary 

dynamical behavior in the scope of 
0 0,1 0,2( ,  )   . The 

novel state is characterized by the phase distributions with 

evolutions of as shown in Fig. 3(a) (the conformists) and Fig. 

3(b) (the contrarians) for 
0   0.018  . We can see a fire-new 

dynamical state from Figs. 3(a) and 3(b), which is different 

from the mobile wave state and the π state found by Hong and 

Strogatz [21]. First, the phase distributions are nonstationary, 

second, the distributions of phase do not mobile along the 

phase space, third, the phase distributions oscillate in a 

limited scope periodically. In addition, the phase distribution 

of contrarians is bimodal, and the reason is that there is a 

fraction of contrarians which get synchronized, and the 

contrarians with positive frequencies are fixed to a diverse 

phase in contrasting to some oscillators with negative 

frequencies. Furthermore, we investigated the nontrivial 

periodic coherent state from the evolution of oscillators for 

phase. As exhibited in Fig. 3(c), it is obvious that there exist 

several clusters, and the phase change time dependent 

periodically of each oscillator. In addition, the period of 

evolutions for the phase distributions is identical to that for 

phase of oscillators by contrasting Figs. 3(a), 3(b) and 3(c).   

 
Fig. 3 (color online) Time variations of the phase 

distributions for the conformists (a) and contrarians (b), 

respectively. (c) Time evolutions of oscillators’ phases. 

Colors in (a)-(c) on behalf of the number of oscillators; 

specific value can be confirmed according to color bars. (d) 

Amplitudes R  (black), 
R  (blue), and 

R  (red), of the order 

parameter. (e) average phase   (black), 
  (bright green), 

and 
  (red). (f) phase difference  .   oscillates 

periodically. 
0   0.018  ，   1.5,    4.0,   = 0.01K K a     

and   0.05  . 

The nontrivial periodic coherent state also can be validated 

through the amplitudes, R  and 
R , of the order parameter. In 

Fig. 3(d), we plot the evolutions of amplitudes, R  (black), 

R  (red) and 
R  (blue), of the order parameters. Fig. 3(e) 

manifests the Time variations of average phases   (the curve 

one with black), 
  (the curve one with red) and 

  (the 

curve one with bright green). It is shown that the amplitudes 

and the average phases oscillate periodically with time. In Fig. 

3(f), we present the evolution of the phase difference   

between conformists and contrarians, it is shown that the   

also oscillates periodically. 

 
Fig. 4 (color online) Bifurcation plot of the system (2) on the 

space of K
 and 

0 . The different dynamics are divided by 

the different curves. Nontrivial periodic coherent states locate 

at the lower 
0  border of the traveling dynamic state. 

Traveling dynamic states are apt to appear at large 
K . 

Traveling wave state I is the traveling wave state in which the 

platform in plot of ( ) e
is split into two parts. Traveling 

wave state II is the traveling wave state in which the platform 

in plot of ( ) e
is concatenated. The stationary synchronous 

state can be found below the nontrivial periodic coherent state 

and the traveling wave state.   1.5,   = 0.01K a    and 

  0.05  . Here   iK K  for 
0  i   and   iK K  for other 

oscillators.   

The dynamics in the system (2) for the present relevance 

between the interaction strengths and the distributions of 

frequencies is summarized as shown in Fig. 4, we plot the 

bifurcation diagram as functions of 
K  and 

0 . From Fig. 4, 

we can distinguish the region for the different dynamical 

states. We find that the nontrivial periodic coherent states 

locate at the lower 
0  boundary of the traveling wave state. 

The traveling dynamic states are apt to appear at large 
K  and 

the traveling dynamic state appears in a broader window with 

the increase of 
0 . Below the nontrivial periodic coherent 

behavior and the traveling dynamic state, we can find the 

stationary synchronous state. It is worth noting that different 

dynamics in the model (2) can be realized by changing the 

coupling strength 
0  at the intermediate 

K , which reflects 

the important role of cut-off frequency 
0  in this system. 

B. Situation with   iK K  for 
0  i   and   iK K  

otherwise 

We now consider the situation with   iK K  for 
0 i
 

and   iK K  for other oscillators. In this situation, when the 

cut-off frequency 
0  increases gradually, correspondingly, 

the number of contrarians increases. In Fig. 5(a), we draw the 

IAENG International Journal of Applied Mathematics, 52:1, IJAM_52_1_09

Volume 52, Issue 1: March 2022

 
______________________________________________________________________________________ 



 

 
Fig. 5 (color online) (a) Real parts of the cpmplex parameters 

R (black), 
R  (blue), and 

R  (red) opposite 
0 . (b) 

Amplitude R with a narrow range of 
0 . In this map, forward 

(black) continuation and backward (red) continuation are 

manifested.   1.5,    4.0,   = 0.01K K a     and   0.05  . 

Here   iK K  for 
0 > i   and   iK K  for other 

oscillators.   

the amplitudes of the order parameters R  and R
 against 

0 , 

it is shown that there are several different dynamics in this 

system. With the increase of 
0 , this system successively 

presents rich dynamics, such as stationary synchronous state, 

the traveling wave state Ⅰ (the platform in the map of ( ) e
 is 

split into two pieces), the traveling waves state Ⅱ (the 

platform in the map of ( ) e
 is a concatenated one), and the 

disorder state. In addition, we find that the transition between 

the traveling wave state Ⅱ and the disorder state has a jump. 

We use the forward and the backward continuation diagram to 

investigate the discontinuous change as manifested in Fig. 

5(b), the hysteresis is displayed. Correspondingly, we can 

know that the traveling wave state Ⅱ and the incoherent state 

can coexist in this region. 

 
Fig. 6 (color online) Bifurcation map of the system model (2) 

on the scope of K
 and 

0 . Different dynamics are divided 

by the different curves. Stationary synchronous state situates 

at the lower 
0  border of the incoherent state and traveling 

wave state. Traveling wave state is apt to appear at large 
K  

and at middle 
0 . On the right sides of the stationary 

synchronous behavior and the traveling dynamic state are the 

incoherent state.   1.5,   = 0.01K a    and   0.05  . Here 

  iK K  for 
0 > i   and   iK K  for other oscillators.  

In Fig. 6, we present the bifurcation diagram on the space of 

K  and 
0  on the dynamics of the model (2) with the current 

correlation. It is obvious that different dynamical regions can 

be distinguished from Fig. 6. On the right sides of the 

stationary synchronous dynamic state and the traveling wave 

state are the incoherent state. The stationary synchronous 

state can be found situate at the lower 
0  border of the 

incoherent states, and the traveling wave state is apt to appear 

at large 
K  and at middle value of 

0 . 

IV. CONCLUSIONS 

In this research work, the Kuramoto model of whole coupled 

oscillators with an extrinsic pinning force is investigated, in 

which conformists with positive interaction strength and 

contrarians with negative interaction strength. In this system, 

two diverse relevance of the coupling strengths correlate with 

the natural frequencies of oscillators are considered, rich 

synchronous dynamical behaviors are found. We find a novel 

nonstationary dynamic state, the phase distributions of 

oscillators can be used to characterize the periodic coherent 

state. Because of the effects of pinning force to the model (2), 

we find that the phase distribution of contrarians is bimodal, 

the phase distributions and the phase difference oscillate in a 

confined region periodically. The traveling wave state 

presented in this system can be ascribed to two species. The 

diverse types of traveling wave dynamic state can be 

distinguished by the graph ( ) e
 of effective frequency. In 

addition, we manifest the bifurcation diagrams of the system 

model (2) for different cases from which the parameter scope 

of the nontrivial periodic coherent state, the stationary 

synchronous state and the traveling wave dynamic state can be 

obtained. 
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