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Abstract—One of the variants of Vehicle Routing Problems
(VRP) is the Vehicle Routing Problems with Time Windows and
Split Delivery (VRPTWSD) considered by this paper in which,
deliveries of customers’ demands are allowed to be split between
two or among many vehicles within a time frame. Obtaining an
optimal solution for the total distance travelled whenever split
is involved has been a major challenge. This paper formulated
mathematical model for VRPTWSD aiming at minimizing the
distribution cost or travel cost. Since this problem is NP-
hard, researchers have developed variants Genetic Algorithms
(GA) in solving this class of problem improving on preceding
algorithms. This paper discusses modifications carried out on
the Reproduction, Crossover and Mutation operators used in
Genetic Algorithm which are applied in that order to the
current population with a view to solving VRPTWSD. The
Modified Genetic Algorithm (MGA) so formed is applied to
various sizes of Solomon benchmark problems. The compu-
tational results presented show that out of the 56 instances
considered, 53 instances were improved upon when compared
with best known solutions based on the total distance travelled,
average total distance and average number of vehicles. Also,
it observes that, with the split deliveries, the total distribution
cost tends to decrease. The MGA is seen to be efficient, robust
and occupying less computer memory hence, recommended for
future use.

Index Terms—Split Deliveries, Time Windows, Mutation,
Crossover, Modified Genetic Algorithm, Vehicle Routing Prob-
lems.

I. INTRODUCTION

THE concept of Vehicle Routing Problem (VRP)
was first put forward officially by [1]. VRP is a

combinatorial optimization and integer programming
problem which finds the most efficient routes for fleets of
vehicles to service sets of customers subjected to some
certain constraints [2]. Among the variants of VRP is the
Vehicle Routing Problem with Time Windows and Split
Deliveries (VRPTWSD) and it was first introduced by Dror
and Trudeau [3]. Other VRP variants includes; Traveling
Salesman Problem [4] and [5], Capacitated Vehicle Routing

The manuscript was received on 27th September, 2020; revised on 3rd
August, 2021.

Olateju Samuel Olaniyi is a student of the Department of Mathemat-
ics, African Institute of Mathematical Science (AIMS), Senegal. (email:
samuel.olaniyi@aims-senegal.org).

Adebayo Kayode James is a lecturer in the Department of Mathe-
matics, Ekiti State University, Ado Ekiti, Ekiti State, Nigeria. (email:
kayode.adeabyo@eksu.edu.ng).

Abdullahi Adinoyi Ibrahim is a lecturer in the Department of
Mathematical Sciences, Baze University, Abuja, Nigeria. (email: abdul-
lahi.ibrahim@bazeuniversity.edu.ng).

Aderibigbe Felix Makanjuola is a lecturer in the Department of Math-
ematics, Ekiti State University, Ado Ekiti, Ekiti State, Nigeria. (Email:
felixaderibigbe@eksu.edu.ng.)

Problem (CVRP) [6], VRP with Time Windows [7], Pickup
and Delivery VRP [8], Dynamic VRP treated by [9] and
[10], VRP with Focus on Multiple Priorities [11] and lots
more.

In VRPTWSD, the constraint that every customer is
visited by one vehicle is relaxed and a customer can be
visited by multiple vehicles [12]. The customer’s demand
can be split (split delivery) if the demand is greater than the
vehicle carrying capacity. The VRPTWSD can be defined
as an undirected graph G(V,E) where V = {0, 1, 2, ..., n}
denotes the set of vertices and E = {(i, j) : i, j ∈ V, i < j}
denotes the set of edges on the graph, G. The vertex, 0,
denotes the depot where the fleet of vehicles are placed
at initial time and other vertices denote the m−customer
nodes. Each customer is associated with a certain demand
di > 0. On every edge {i, j} ∈ E of G is a non-negative
distribution cost, cij .

Applications of VRPTWSD to real life problems includes;
helicopter screw scheduling [13], cattle feed distribution
[14], newspaper distribution process [15] and many more.
Metaheuristics have proven to be very efficient in solving
variants VRP. The aim of this paper is to modify existing
Genetic Algorithm (GA) for solving vehicle routing problem
with time windows and split delivery. The objectives are as
follow:
(i) to formulate a mathematical model for VRPTWSD;

(ii) to modify existing Genetic Algorithm (GA);
(iii) to implement the modified genetic algorithm on well-

known instances to determine the total distance covered
and the average number of vehicles;

(iv) to compare the results obtained with existing solutions.
The rest of the paper is structured as follow; related works

on the problem are presented in section II. Section III and IV
present the material, existing algorithm and methodology for
this work and the computational results are shown in section
V. Finally, VI concludes this paper.

II. RELATED WORKS ON VRPTWSD AND
GENETIC ALGORITHM (GA)

The authors in [16] developed a hybridized GA to solve
VRPTWSD. The method focuses on the two-fitness
approaches. Much more than the second fitness gave a
better and semi-optimal solution. The hybrid algorithm
was recommended for further research in order to obtain
much more desired results. In [17], a localized optimization
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framework was developed for solving VRPTW and
stressed on the scheme called Localized Genetic Algorithm
(LGA). The LGA was applied to VRPTW for minimizing
distance only. The result of the LGA scheme showed a
superior performance, producing an improved solution
when compared with other algorithms and also attained
best solutions on some well-known data sets. According
to [18], the authors solved SDVRP with 3D developing a
hybridized algorithm which fusses the genetic algorithm
and local search algorithm. Genetic Algorithm with some
heuristics were applied on vehicle routing problem by
[19]. In the process of obtaining solution, there were some
tuning that were performed during mutation which led to
better solutions and made the method relevant. Also, [20]
proposed variation to Genetic Algorithm to solve Capacitated
Vehicle Routing Problems. The proposed variation adopted
optimized crossover operator that was tested on benchmark
instances and the experimental results proved that the
variation in the algorithm is highly competitive in its
solution quality.

Other authors like [21] proposed heuristic into genetic al-
gorithm for solving multi-depot vehicle routing problem
with time windows (MDVRPTW). The authors concluded
based on the computational result that, the proposed methods
can be used to solve big size problems efficiently. In [22],
the authors highlighted three contributions. First, reviewed
previous literatures on green VRP. Secondly, implemented
genetic algorithm to solve energy minimizing vehicle routing
problem. Lastly, the authors showed some applications of
machine learning for parameter tuning of meta-heuristics.
According to [23], a “three-stage approach” was designed
and implemented on split delivery vehicle routing problem.
The results showed that the proposed algorithm yields fea-
sible and effective solutions to solving the problem. [24]
proposed a hybrid metaheuristics algorithm to solving multi-
depot vehicle routing problem. The computational results
showed that the proposed algorithm outperformed other
implemented algorithms on the instances used. Marcos et.
al. [25] proposed an iterated local search algorithm for
solving split delivery vehicle routing problem. The com-
putational result showed that the proposed algorithm was
highly efficient as exactly 55 best-known solutions were
equalled and there were 243 newly improved solutions out
of the sampled considered. The algorithm showed an average
improvement of 1.15% and the maximum improvement was
2.81%. In [26], the authors proposed and implemented hybrid
metaheuristics algorithms on split delivery vehicle routing
problems. The experimental results obtained showed that the
proposed algorithms are competitive in terms of solution
quality and time. [7] developed hybrid genetic algorithm and
particle swarm optimization to solve the Solomon’s instance
for VRPTW. The results obtained were impressive as some of
the results outperformed existing well-known solutions. [27]
implemented genetic algorithm on vehicle routing problem
with simultaneous pick-up and deliveries. The result of the
study shows the implemented algorithm have both weak and
strong feasibilities.

III. MATERIALS AND ALGORITHM
This section discusses the features necessary for adopting

the genetic algorithm in solving VRPTWSD and explicitly
explains the modifications on the genetic algorithm.

A. Nomenclatures

Notations to be used throughout this paper
• G(V,E) is a graph G with vertex V and edges E.
• E = {(i, j) : i, j ∈ V, i < j} set of edges.
• V = {0, 1, . . . , n} is the set of vertices. v0 is the depot

and v1, . . . , vn is the customer’s node.
• N = {1, 2, . . . , n} is the number of customers.
• dij : symmetrical distance travelled.
• tij : time travelled from node i to j.
• qi, i = 1, 2, 3, ..., n demand at node i.
• Ri = {r1(π1), . . . , ri(πi)} denotes the route of a

vehicle.
• ri(j): is the index of jth customer in the route (in

python time).
• time (Tr): total time required for delivery.
• time (Bs): time taken for the algorithm to achieve best

solution (in python time).
• NV : number of vehicles.
• TD: total travelled distance.
• Si: is the service time at customer i.
• [te, tl] : denote the earliest and latest time windows

and te < tl.
• Qk, k = 1, . . . , m is the vehicle carrying capacity.

B. The Decision Variables

Xk
ij = 1, if j is supplied after i by vehicle vm and 0, if

otherwise.
bki is moment at which service begins at customer i by
vehicle vk, k = 1, 2, . . . , m.
Y k
i is fraction of customer’s demand i delivered by vehicle
vm.
The objective of the model is to minimize the total distance
travelled with respect to the time windows constraints satis-
fying the split condition.

C. Priority Based on Time

A well-known priority placed on VRPs is the Time Windows,
where every customer is associated with a time horizon,
(see [28]), within which, the customer must be visited or
serviced. Thus, VRP with Time Priority (VRPTP) is one of
the most important extensions of the VRP. In the VRPTP,
each customer specifies a time window within which the
service must start and probably finish. The VRPTP can be
used to model various real-life applications, such as itemized
in [10].
In the VRP with Time Windows (VRPTW) credited to [29],
the traversal time, tij , for each arc (i, j) ∈ C and a time
window (te, tl), (See [30]), which corresponds, respec-
tively, to the earliest time, te, and the latest time, tl, within
which the vehicle should service the customer, ci. A sched-
ule, i.e., the combination of the starting times, Tik for the
service at a customer, ci, when visited by vehicle vk, is
considered feasible if

te ≤ Tik ≤ tl ∀ i ∈ C, k ∈ V, (1)
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(if vehicle vk does not visit customer ci, the time Tik is
irrelevant) and ξijk = 1 implies that:

Tik + tij ≤ Tjk ∀ (i, j) ∈ C, k ∈ V, (2)

holds. The latter constraint, (2), merges the routing decisions
with the time schedule. They can be linearized by means of
MTZ-like [31] constraints of the form:

Tik − Tjk +Mξijk ≤M − tij ∀ (i, j) ∈ C, k ∈ V (3)

It is worthy of note that, with the above definitions,
time windows are asymmetric in the sense that, arriving at
a customer, ci, before time te is allowed. In which case
the vehicle has to wait until time te, while arriving later
than time tl is prohibited. Some authors also add service
times, si, at vertices to their models. This is only a minor
extension, since it can be included by properly redefining
the travel times and time windows.

The time windows can be sub-divided into four frames.
Each customer, ci ∈ N , has a time windows, te < tij <
tl, i.e. an interval(te, tl). According to [11] and [10], the
following scenarios arise as sub-divisions:
PT1=

(
te, tl

)
: This time window indicates that; the vehicle

can arrive any time after the earliest, te, and must leave
before the latest time, tl. This implies that, the vehicle can
arrive at the customer’s place at any time of the day and
depart at any time as long as the delivery is done before
the latest departure time required by the customer. Of all the
time windows,

(
te,tl

)
is one that gives room for the vehicle

to service the customer at any convenient time within the
working period, Tk.
PT2 =

(
te, tl

]
: Here, the vehicle may arrive at the cus-

tomer’s location any time within the working period but must
depart on or before the allotted latest departure time set by
the customer.

PT3=
[
te, tl

)
: Here, the vehicle arrives on or after the

earliest time and leaves at any time before the latest departure
time. It is closed at the earliest time but open at the latest
time interval. In this case, should the vehicle arrive ahead
of the arrival time, it cannot be allowed to discharge, hence,
has to wait till the earliest arrival time.
PT4=

[
te, tl

]
: A vehicle that arrives earlier than te, has

to wait until te before it can start serving the customer.
Arriving later than tl is not allowed rather the vehicle must
leave at most by tl. This case places restriction at both the
arrival and departure time. It gives no room for the vehicle
to come at just any time earlier than the earliest time and
must depart on or before the latest departure time. Should
the vehicle not have finished discharging, it must leave at
the latest departure time to give room for other things as the
case may be. This case calls for the unloading time not to
be elongated unnecessarily as the customer might have other
things to attend to.

The time priority may be represented using the tree
diagram in figure 1.
From figure 1, PT (ci ) represents the time window priority
of a customer, ci, that can only be linked to a time window
priority,

(
te, tl

)
,
(
te, tl

]
,
[
te, tl

)
or
[
te, tl

]
at a time.

Such that:

PT (ci ) = PT 1 or PT 2 or PT 3 or PT 4 (4)

Fig. 1. Time Priority Tree

D. Priority Based on Split Deliveries

In real-life settings where the vehicles used are homogenous,
split deliveries occur when the demand of a customer cannot
be met by just one vehicle as in [32], [33] and more, which
[34] reasoned out as Non-split and Split Services.

Until very recently, we have assumed that all service tasks
are performed by a single vehicle in one service operation,
i.e., services are non-split. However, there are reasons for
splitting some services: On one hand, if demand exceeds
the vehicle capacity, more than one visit is unavoidable.
On the other hand, splitting service into several smaller
services request can produce significant cost savings. The
Split Delivery VRP (SDVRP) [35] and [36], allows, in
principle, that each demand be split into arbitrarily many
smaller demands served by different vehicles.

Obviously, the reasons for split deliveries could be broadly
and explicitly classified under the followings:
(i) the vehicle, vk, has serviced some customer(s),
c1, c2, . . . , cN−n , along the route, ri (xi ) , with the
quantities, q(c1), q(c2), . . . , q(cN−n), where n is the
number of customers that have been serviced on the route,
thereby causing the quantity, q, to be delivered to customers,
cN−n+1, along the route not sufficient. Hence, called for
a split delivery by another vehicle, vk+1, rather than vk to
make up for the remaining. If the serviced customers,
c1, c2, . . . , cN−n, by the vehicle, vk, get the quantities:

q [c1 (vk )] + q [c2 (vk )] + · · ·+ q[cN−n (vk)]

=
N−n∑
i=1

q[ci (vk)] (5)

then, from (6) it implies that, the quantity, q, demanded by
the customer, q(cN−n+1), can be expressed as:

N−n∑
i=1

q[ci (vk)] + q[cN−n+1 (vk )] > Q(vk) (6)

If (7) holds then, it leads to

q[cN−n+1 (vk)] > Q(vk)−
N−n∑
i=1

q [ci (vk)] (7)

From (7), the split quantity required by q[cN−n+1 (vk)] is
the remaining quantity:

q [cN−n+1 (vk)]− {Q(vk)−
N−n∑
i=1

q [ci (vk)]} =Q(vk+1)

(8)
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Since the quantity that will be delivered by Q(vk+1) cannot
be determined a priori then:

q [cN−n+1 (vk)] = Q(vk) +Q(vk+1)−
N−n∑
i=1

q [ci (vk)] (9)

(ii) the quantity, q, that is demanded by the customer, q(ci),
exceeds the carrying capacity, Q, of the vehicle, Q(vk). This
is given by the relation:

q(ci) = q[ci (vk)] > Q(vk) (10)

leading to

q(ci) = Q(vk) +Q(vk+1)− q[ci (vk)] (11)

where Q(vk+1) is the carrying capacity of vehicle vk+1 and
q[ci (vk )] implies the quantity delivered or to be supplied to
customer ci by vk. The fractional part or whole of Q(vk+1)
that is added to Q(vk) in order to make up for the quantity
required by the customer, q(ci) is the split quantity.
(iii) a rider to (11) is when the quantity, q, that is demanded
by the customer, q(ci), exceeds the carrying capacity, Q, of
the vehicle, Q(vk) and such customer’s demand has to be
met by more than two vehicles, vk, vk+1, vk+2, . . . thus:

q(ci) = Q(vk) +Q(vk+1) +Q(vk+2) +Q(vk+3)

+ · · · − q[ci (vk)] (12)

Here, all the vehicles, vk, vk+1, vk+2, . . . have to leave
the depot for the customer directly. In order not to violate
the time window priority, the vehicles might need to time
their departure from the depot for the customer in order not
to cluster at the customer’s warehouse.

Fig. 2. Split Deliveries Priority Tree

From figure 2, a customer, ci, can only be linked to a split
delivery priority only once such that:

PSD(ci) = Q(vk) +Q(vk+1)−
N−n∑
i=1

q [ci (vk)] (13)

or
PSD(ci) = Q(vk) +Q(vk+1)− q[ci (vk)] (14)

or
PSD(ci) = Q(vk) +Q(vk+1) +Q(vk+2)

+ · · ·+Q(vk+n)− q[ci (vk)] (15)

where PSD(ci) represents the priority of a customer. It must
be put on record that, not every customer is bound to have
priorities based on split deliveries.

E. Mathematical Formulation

The dynamic of the VRP objective function is as follow:

min
n∑

i=0

n∑
j=1

m∑
k=1

dijX
k
ij (16)

Subject to:

n∑
j=1

Xk
0j = 1, k = 1, 2, . . . , m (17)

n∑
i=0

Xk
ip−

n∑
j=0

Xk
pj = 0, p = 0, 1, . . . , n (18)

m∑
k=1

Y k
i = 1, i = 1, 2, . . . , n (19)

n∑
k=1

qiY
k
i ≤ ak, k = 1, 2, . . . ,m (20)

Y k
i ≤

n∑
k=1

Xk
ij , i = 1, 2, . . . , n; k = 1, 2, . . . , m (21)

m∑
k=1

n∑
j=0

Xk
ij ≥ l, j = 0, 1, . . . , n (22)

bki + si + tij −Mij

(
1−Xk

ij

)
≤ bkj (23)

i = 1, . . . , n, j = 1, .., n, k = 1, . . . , n

ei ≤ bki ≤ li, i = 1, . . . , n (24)

Y k
i ≥ 0, i = 1, ..., n; k = 1, ...,m

bki ≥ 0, i = 1, ..., n; k = 1, ...,m (25)

Xk
ij ∈ {0, 1} , i = 0, 1, . . . , n; j = 1, . . . , n and k = 1, . . . ,m

(26)
where (17) ensures that each vehicle will leave the depot
and arrive at a customer’s location. (18) ensures that each
vehicle will leave a determined customer and arrive back
to the depot. (19) ensures that the total demand of each
customer will be satisfied. (20) ensures that the vehicle
capacity will not be exceeded. (21) ensures that the demand
of the customer will be satisfied if a determined vehicle goes
by that place. (22) ensures that each point will be visited at
least once by one vehicle. (23) is set of minimum time for
beginning the service of customer j in a determined route
and also there will be on sub tours. The constant Mij is a
large enough number, for instant, Mij = li + tij − ej . (24)
ensures that all customers will be served within their time
windows. (25) ensures that the decision variables vki and
bki are positive. Lastly, (26) ensures the decision variables
Xk

ij to be binary.
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F. Genetic Algorithm

Genetic Algorithm (GA) is inspired by the natural selection
mechanism introduced by [37]. The procedure is applied
for a pre-selected number of iterations and the output
result of the algorithm is the best solution found in the last
population or, in some cases, the best solution found during
the evolution of the algorithm. The operators used by GA
simulates the ways natural selection are carried out. The
most widely used operators used in GA are Reproduction,
Crossover, and Mutation operators which are applied in that
order to the current population.

The fitness assignment evaluates the chromosome based on
the ranking the value of the chromosome. This function
is defined as: (a) From the objective function (16), the
function value is calculated for individual. (b) the values
for the chromosomes are evaluated by comparing the values
of the chromosomes through sorting as created in objective
function. The function is defined as:

E (xi) =

ß
(N −R (xi))

2, if R (xi) > 1
kN2, R (xi) = 1

(27)

where N is the number of individuals, xi is the ith
individual, R(xi) is the sequence number of ith individual
and k, 1 < k < 2 is used to increase E(xi).

Summary of Genetic Algorithm

• Step 0:
(a) Generate a random population X of N feasible

chromosomes.
(b) For each chromosome s in the selected population,

evaluate its associated fitness. Record s∗ as the best
solution so far available.

(c) Encode each chromosome using binary or numeric
representation.

• Step 1:
(a) Select two parent chromosomes from population

X .
(b) Crossover the parents’ genes to create two children.
(c) Mutate the children genes randomly.
(d) If resulting solutions are infeasible, repeat step

1 until feasibility is achieved. Else, replace the
weakest two parents with the new children to form
a new population X and update s∗. Go to step 2.

• Step 2: If a termination condition has been reached,
stop; s∗ is the best available solution. Else, repeat step
1.

The Existing Genetic Algorithm is improved upon leading
to what follows in the next section.

IV. MODIFIED GENETIC ALGORITHM (MGA)

An important area of this paper is the modification that has
been done on the existing GA. This is presented herein in
Algorithm 1.

V. RESULTS AND DISCUSSIONS

The proposed MGA was implemented in python 3.7 on hp
4GB RAM, 2.5Ghz processor, core i7 laptop.

Algorithm 1: Modified Genetic Algorithm Procedure
Step 1: Initial Population Random generation of
chromosome α
Step 2: Initial Population Sorting Sort the initial
population based on the total travel time of each
chromosome.
Step 3: Counter Setup Set a, b = 0
Step 4: Apply Crossover Let a = a+ 1; Select two
parents, P1 and P2. Apply crossover to (P1, P2) and
choose one child, Ch at random.
Step 5: Apply Mutation Compare the randomly
generated rg and the Mutation rate Mr. If rg > Mr,
then proceed to Step 6. Otherwise, mutation is applied to
Ch and c0h is generated using split procedure.
Step 6: Iteration generation ∆ = 1. ∆ solutions with
distinct integer costs. Cost (Ch) − cost (δk) ≥ ∆,
1 ≤ K ≤ α. δk is the best solution of the population
Then, let b = 0 and Ch0 to resort population. Otherwise,
b = b+ 1
Step 7 (Generation limitations) If a = amax or
b = bmax, stop otherwise, go to step 4. amax is the
maximal number of crossovers that doesn’t yield a gene
and bmax is the maximal number of iterations without
the best solution.

A. Solomon Benchmark Problem Sets

The public available Solomon benchmark’s problem set [38]
consists of 100 customers with Euclidean distance. Accord-
ing to the problem, the percentage of customers with time
windows varies between 25, 50, 75 and 100.
Six sets of problems: Route 1 (R1), Route 2 (R2), Customer
1 (C1), Customer 2 (C2), Route of Customer 1 (RC1)
and Route of Customer 2 (RC2). In sets R1 and R2, the
customer’s positions were created randomly through a
uniform distribution. The sets C1 and C2 customers are
divided in groups. In the sets RC1 and RC2, customers
are in sub-groups, that is, some of the customers is placed
randomly and some is placed in groups.

Besides, R1, C1 and RC1 problems have a short-term
planning horizon and combined with lighter capacity
vehicles. Only some customers are allowed in each route.
Sets R2, C2 and RC2 have a long-term planning horizon
and since they got a higher capacity vehicle, they are able
to supply more customers per route.

In each of the six set of problems, it is assumed that the
geographical distributions of the customers, the demand and
the service time do not change. Therefore, on set R1, the
problems from R101 to R104 are identical, except for the
customer with time window percentage, which is 100% in
problem R101, 75% in problem R102, 50% in problem R103
and 25% in problem R104. Problems from R101 to R104
are identical to problems from R105 to R108, except for the
difference is the time windows. Each Solomon’s problem
instance specifies the central depot, the maximum vehicle
number, carrying capacity of the vehicles, demands of each
customer and the maximum travel time of each vehicle.
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Fig. 3. Flowchat

B. Results Evaluation

In order to determine the efficiency and robustness of the
MGA, two different evaluations are carried out: the total
distance travel and the average total distance travelled. To
compute the Deviation Percentage, (DP), between the Best
Solution, (Bs) , and the Best-Known Solution, (Bk) , we use
the relation:

Dev. % =
Bs − Bk

Bk
× 100% (28)

C. Analysis

The modified algorithm is applied to Solomon’s benchmark
problem, which consists of 56 instances. The MGA will be
compared with other well-known results namely; Best-known
solution (Bs), Particle Swam Optimization (PSO) and Ant
Colony Optimization (ACO) as in [7].
Based on the formulated model, one of the major concerns
will be to minimize the total distance travelled, which are
presented in tables below.
In Table I, let the problem instance be (Probs), total travelled
distance (TD), number of vehicles required for delivery
(NV), total time required for delivery, (Tr) and time taken,
in python time, to obtain the best solution (Bs).

The results of the Modified Genetic Algorithm as presented
in Table I shows that, out of 56 instances tested on the
algorithm, 53 instances achieved the best total distance
travelled when compared with best known solution. This
implies that, the proposed algorithm shows an outstanding
and impressive results for the total distance travelled. While
applying the MGA has reduced the number of vehicles for
some instances, the split deliveries constraint helped to assign
multiple vehicles to a single customer and this feature has
contributed to the improvement of our solution.
Also, the number of vehicles utilized for total distance
travelled was reduced for some instances. The percentage
of deviation of the obtained results from the well-known
solution showed that, the proposed algorithm produced
optimal solutions. For instances with negative %Dev, it
means the obtained total travelled distance outperformed the
previously known and existing optimal solutions.

For the implemented instances, we used heuristics in some
places in order to place missing customer’s information back
into the different routes, after they have vanished during
crossover, mutation or both processes. Though, different
probabilities are considered on how often the heuristic
should be used and different penalties found.

In this paper, we set our maximum generation limit to 50
and test run with a population size of 100 as well as the
lower heuristic probability. As the probability gets higher,
every test ran took relatively the same time. Details of this
is shown in figure 1.

Table II depicts the best average distance, the number of
vehicles used to achieve this and the corresponding authors
for each instance. From the results, it was observed that,
the MGA compared favourably with the existing results.
It presents the average number of vehicles as well as the
average total distance travelled with respect to the problem
set. The results in Table II shows that, the values of total
distance travelled on average is very close to the best solution
obtained. This gives us an insight that, the modified GA
yields a robust result on its application to real-life situations.
Though, many noticeable researchers described different
algorithms for solving VRPTWSD with different crossover
and mutation operators, this paper presents a comparison of
the result of the MGA with other well-known solution as
shown in Table II.

Fig. 4. Heuristic probability

In figure 4, the recorded custom insertion which were test
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TABLE I
TOTAL DISTANCE TRAVELLED BASED ON MODIFIED GENETIC ALGORITHM

No. Probs Nodes Best known [39] PSO [39] ACO [39] Modified Genetic Algorithm (MGA)
TD NV TD NV TD NV NV TD time(Tr) time(BS) % Dev

1 C101 101 828.94 10 828.94 10 828.94 10 10 820.98 11157.97 3.10 −0.96
2 C102 102 828.94 10 828.94 10 828.94 10 10 824.77 7889.79 2.19 −0.50
3 C103 103 828.06 10 828.06 10 828.06 10 10 825.41 5015.33 1.39 −0.32
4 C104 104 824.78 10 824.78 10 824.78 10 10 823.47 4625.59 1.28 −0.16
5 C105 105 828.94 10 828.94 10 828.94 10 10 819.95 10283.75 2.86 −1.08
6 C106 106 828.94 10 828.94 10 828.94 10 10 820.97 9790.83 2.72 −0.96
7 C107 107 828.94 10 828.94 10 828.94 10 10 821.47 9377.16 2.60 −0.90
8 C108 108 828.94 10 828.94 10 828.94 10 10 824.38 8485.72 2.36 −0.55
9 C109 109 828.94 10 828.94 10 828.94 10 10 823.75 6516.58 1.81 −0.63
10 R101 101 1483.57 16 1642.87 20 1645.79 19 9 933.3 3686.91 1.02 −37.09
11 R102 102 1355.93 14 1472.62 18 1480.73 18 9 1169.07 9404.16 2.61 −13.78
12 R103 103 1133.35 12 1213.62 14 1213.62 14 8 698.16 9891.74 1.84 −38.40
13 R104 104 968.28 10 1007.24 9 982.01 10 8 702.31 4862.61 1.35 −27.47
14 R105 105 1262.53 12 1360.78 15 1360.78 15 8 1113.91 9972.59 2.77 −11.77
15 R106 106 1201.78 12 1241.52 13 1251.98 12 8 703.94 4375.67 1.22 −41.43
16 R107 107 1051.92 11 1076.13 11 1076.13 11 8 695.34 3602.06 1.00 −33.90
17 R108 108 948.57 10 963.99 9 948.57 10 8 697.86 3982.17 1.11 −26.43
18 R109 109 1110.40 12 1151.84 13 1151.84 13 8 700.13 8687.20 2.41 −36.95
19 R110 110 1080.36 11 1080.36 11 1080.36 11 8 702.31 7542.01 2.10 −34.99
20 R111 111 987.80 10 1053.50 12 1088.48 12 8 703.60 9017.18 2.50 −28.77
21 R112 112 953.63 10 953.63 10 953.63 10 8 701.13 3601.56 1.00 −26.48
22 C201 201 591.56 3 591.56 3 591.56 3 3 409.24 46177.97 12.83 −30.82
23 C202 202 591.56 3 591.56 3 591.56 3 3 406.42 37276.42 10.35 −31.30
24 C203 203 591.17 3 591.17 3 591.17 3 3 407.02 28928.30 8.036 −31.15
25 C204 204 590.60 3 590.60 3 590.60 3 3 408.17 18408.64 5.11 −30.89
26 C205 205 588.88 3 588.88 3 588.88 3 3 407.67 43410.51 12.06 −30.77
27 C206 206 588.49 3 588.49 3 588.49 3 3 406.35 40554.26 11.27 −30.95
28 C207 207 588.29 3 588.29 3 588.29 3 3 407.99 37548.86 10.43 −30.65
29 C208 208 588.32 3 588.32 3 588.32 3 3 408.14 37060.18 10.29 −30.63
30 R201 201 1148.48 9 1179.79 9 1148.48 9 2 679.56 10105.53 2.81 −40.83
31 R202 202 1049.74 7 1049.74 7 1079.36 6 2 678.74 7819.19 2.17 −35.34
32 R203 203 900.08 5 932.76 7 939.54 3 2 680.39 5709.81 1.59 −24.41
33 R204 204 772.33 4 772.33 4 772.33 4 2 792.95 6213.03 1.73 2.67
34 R205 205 959.74 4 970.89 6 970.89 6 2 681.44 7562.29 2.10 −29.00
35 R206 206 898.91 5 906.14 3 906.14 3 2 683.58 5750.57 1.60 −23.95
36 R207 207 814.78 3 814.78 3 814.78 3 2 681.92 4029.05 1.12 −16.31
37 R208 208 715.37 3 725.42 4 725.75 2 2 679.40 4193.44 1.17 −5.03
38 R209 209 879.53 6 879.53 6 879.53 6 2 685.74 3849.57 1.07 −22.03
39 R210 210 932.89 7 954.12 3 939.34 3 2 683.97 6473.33 1.80 −26.68
40 R211 211 761.10 4 885.71 2 888.73 5 2 678.51 3681.63 1.02 −10.85
41 RC101 101 1481.27 13 1623.58 15 1639.97 16 10 1170.92 13073.77 3.63 −20.95
42 RC102 102 1395.25 13 1482.91 14 1477.54 13 9 1169.07 9404.16 2.61 −16.21
43 RC103 103 1221.53 10 1262.02 11 1262.02 11 10 1160.88 6635.94 1.84 −4.97
44 RC104 104 1135.48 10 1135.48 10 1135.48 10 10 1123.02 5040.29 1.40 −1.10
45 RC105 105 1354.20 12 1518.60 16 1629.44 13 9 1113.91 9972.59 2.77 −17.74
46 RC106 106 1226.62 11 1384.92 12 1377.35 13 10 1118.12 7736.18 2.15 −8.85
47 RC107 107 1150.99 10 1212.83 12 1230.48 11 10 1107.56 4020.34 1.12 −3.77
48 RC108 108 1076.81 10 1117.53 11 1117.53 11 10 1115.28 1115.28 1.01 3.57
49 RC201 201 1134.91 6 1406.91 4 1286.83 9 2 898.20 9492.81 2.64 −20.86
50 RC202 202 1113.53 8 1113.53 8 1113.53 8 2 896.78 7279.51 2.02 −19.47
51 RC203 203 945.96 5 945.96 5 1049.62 3 2 899.64 5378.87 1.49 −4.90
52 RC204 204 796.11 4 798.41 3 798.46 3 2 894.07 4503.97 1.25 12.30
53 RC205 205 1168.22 8 1168.22 8 1168.22 8 2 897.86 8125.09 2.26 −23.14
54 RC206 206 1059.89 7 1084.30 8 1059.89 7 2 904.24 6524.38 1.81 −14.69
55 RC207 207 976.40 7 976.40 7 1053.58 6 2 900.75 4201.01 1.17 −7.75
56 RC208 208 785.93 4 816.10 5 806.87 5 2 449.19 3608.54 1.00 −42.85

runs with a population size of 100, shows that as the heuristic
probability gets higher on every test run, it took more or less
the same time to get a better solution.

VI. CONCLUSION

The modification to GA proposed in this paper yielded
impressive results as compared with previously known so-
lutions. The results as presented in Table I showed that
out of 56 instances considered, the total distance for 53
instances were improved upon. The results were compared
on the total distance travelled and the average total distance
travel for each of the problem instances. The results obtained
shows that the MGA used the least number of vehicles with

comparable average travelled distance which was consistent
for all implemented problem data sets.

The crossover operator searches for common parts be-
tween parent solutions and compared with other crossover
operators that also deal with custom insert heuristics for
constructing feasible solutions. Thus, on evaluating of the
outcome, it became evident that, the choice of choosing
a custom insertion heuristic method in most cases, find a
better solution. Hence, the algorithm can be used to solve
VRPTWSD and applied to other variants of VRP in the near
future.
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TABLE II
AVERAGE DISTANCE TRAVELLED

Author C1 R1 C2 R2 RC1 RC2
[40] 916.67

/10.00
1356.92
/13.00

644.63
/3.00

1276.00
/3.18

1514.29
/13.00

1634.43
/3.71

[41] 902.9
/10.00

1381.9
/13.33

653.2
/3.13

1293.4
/3.27

1545.3
/13.25

1595.1
/3.88

[42] 930
/10.00

1317
/12.66

681
/3.00

1167
/2.91

1523
/12.38

1398
/3.38

[43] 955.39
/10.00

1386.46
/12.83

717.31
/3.00

1366.48
/3.09

1545.92
/12.50

1598.06
/3.38

[44] 843.84
/10.00

1242.40
/13.50

607.58
/3.13

977.12
/4.09

1408.76
/13.50

1111.37
/5.13

[45] 828.38
/10.00

1205.06
/12.31

—- —- 1360.40
/12.00

—-

[46] 828.38
/10.00

1201.79
/12.33

—- —- 1364.17
/11.95

—-

[47] 828.38
/10.00

1233.34
/12.42

596.63
/3.00

990.99
/3.09

1403.74
/12.00

1220.99
/3.38

[48] 828.38
/10.00

1211.53
/12.08

589.86
/3.00

949.27
/2.82

1361.76
/11.88

1097.63
/3.38

[49] 834.05
/10.00

1241.89
/12.50

591.78
/3.00

995.39
/2.91

1408.87
/12.38

1139.70
/3.38

[50] 832.88
/10.00

1253.24
/12.17

593.49
/3.00

1039.56
/2.82

1408.44
/11.88

1244.96
/3.25

[51] 828.9
/10.00

1242.7
/12.8

589.86
/3.00

1016.4
/3.00

1412
/13.00

1201.2
/3.7

[52] 828.38
/10.00

1221.1
/11.92

589.93
/3.00

975.43
/2.73

1389.89
/11.5

1159.37
/3.25

[53] 828.38
/10.00

1224
/11.92

590.9
/3.00

1012
/2.73

1417
/11.5

1195
/3.25

[39] 828.48
/10.00

1220.92
/12.5

590.6
/3.00

938.75
/3.1

1386.35
/12.12

1132.12
/3.38

[54] 828.38
/10.00

1187.32
/13.08

591.74
/3.00

897.95
/4.00

1348.22
/12.63

1036.65
/5.63

[55] 828.38
/10.00

1213.66
/12.08

589.86
/3.00

961.44
/2.73

1370.01
/11.75

1126.75
/3.25

[7] 839.28
/10.01

1192.76
/12.78

601.29
/3.05

916.62
/4.72

1362.02
/12.50

1054.60
/5.82

Modified
Genetic
Algo-
rithm

822.79
/10.00

793.41
/8.17

407.63
/3.00

691.47
/2.00

1134.85
/9.75

842.59
/2.00
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