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Abstract—A coloring ϕ : V (G) → {1, 2, ..., k} of G is 2-
distance if any two vertices at distance at most two from each
other get different colors. If every vertex v of G has its own
set L(v) of admissible colors where |L(v)| ≥ k, then we say
that V (G) has a list L of size k. A graph G is said to be
list 2-distance k-colorable if any list L of size k allows a 2-
distance coloring ϕ such that ϕ(v)∈ L(v) whenever v ∈ V (G).
In this paper, we proved that: Every planar graph with neither
3-cycles nor intersect 4-cycles and ∆(G) ≥ 18 is list 2-distance
(∆ + 8)-colorable.

Index Terms—list 2-distance k-colorable, cycle, intersect,
maximum degree.

I. INTRODUCTION

AColoring ϕ : V (G) → {1, 2, ..., k} of G is 2-distance
if any two vertices at distance at most two from each

other get different colors. The minimum number of colors in
2-distance coloring of G is its 2-distance chromatic number,
denoted by χ2(G). If every vertex v of G has its own set
L(v) of admissible colors where |L(v)| ≥ k, then we say that
V (G) has a list L of size k. A graph G is said to be list 2-
distance k-colorable if any list L of size k allows a 2-distance
coloring ϕ such that ϕ(v) ∈ L(v) whenever v ∈ V (G). The
least k for which G is list 2-distance k-colorable is the list
2-distance chromatic number of G, denoted by χl

2(G).
Regarding 2-distance coloring of planar graphs, in 1977,

Wegner[8] conjectured that for a graph G: (1)χ2(G) ≤ 7
if ∆(G) = 3. (2)χ2(G) ≤ ∆(G) + 5 if 4 ≤ ∆(G) ≤ 7.
(3)χ2(G) ≤ b 3

2∆(G)c+1 if ∆(G) ≥ 8. Wegner also claimed
that the upper bounds are tight if the conjecture is true. The
conjecture remains open till this moment.

For 2-distance coloring problem of planar graphs without
4,5-cycles, Haiyang Zhu et al. [9] proved that: (1)χ2(G) ≤
∆(G) + 7 if ∆(G) ≤ 7. (2)χ2(G) ≤ 14 if ∆(G) = 8.
(3)χ2(G) ≤ ∆(G) + 5 if ∆(G) ≥ 9.

For every planar graph without 4-cycles, Haiyang Zhu et
al.[10] proved that: χ2(G) ≤ ∆(G) + 12. And for every
planar graph without 3,4,7-cycles and ∆(G) ≥ 15, Bu and
Lv[5] proved that: χ2(G) ≤ ∆(G) + 4.

At the same time, list 2-distance chromatic number of
planar graphs have been extensively studied. Borodin and
Ivanova[3,4] proved that: If G is a planar graph which
satisfies g(G) ≥ 6 and ∆(G) ≥ 24, then χl

2(G) ≤ ∆(G)+2.
Then Bu and Yan[6,7] proved that: (1)For every planar graph
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Fig. 1. A Graph Gp with Girth 4, ∆(Gp) = 2p, and χl
2(Gp) = 3p.

without 3,5-cycles and intersect 4-cycles, χl
2(G) ≤ ∆(G)+6.

(2)If G is a planar graph which satisfies g(G) ≥ 5 and
∆(G) ≤ 5, then χl

2(G) ≤ 13.
In this paper, we shall prove the following Theorem 1.
Theorem 1: For every planar graph with neither 3-cycles

nor intersect 4-cycles and ∆(G) ≥ 18, χl
2(G) ≤ ∆(G) + 8.

We note that the condition in Theorem 1 cannot be deleted.
In [1], Marthe Bonamy et al. found that there are some planar
graphs with intersect 4-cycles satisfying that the difference
between χl

2(G) and ∆(G) can be arbitrarily large (see Fig.1).
To prove this result, we suppose that it is false. In Section

3, we exhibit some properties of a minimal counterexample
(regarding the number of vertices and edges) that contra-
dicts Theorem 1. Relying on these properties, we use the
Discharging Method in Section 4 to obtain a contradiction.

II. NOTATIONS

In this section, we introduce notation used throughout the
paper. Given a graph G, we use V , E, F , ∆ and δ to
denote the vertex set, edge set, face set, maximum degree and
minimum degree in G, respectively. For v ∈ V (G), let dG(v)
denote the degree of v in G, simply d(v). A vertex of degree
k (resp. at least k, at most k) will be called k-vertex (resp.
k+-vertex, k−-vertex). For f ∈ F (G), let dG(f) denote the
degree of f in G, simply d(f). A face of degree k (resp.
at least k, at most k) will be called k-face (resp. k+-face,
k−-face).

Let NG(v) be the set of v’s neighbors. Let v’s k-neighbor
be a vertex adjacent to v with degree k. Let nk(v) denote the
number of v’s k-neighbors. For a k-vertex v, we denote its
neighbors in ascending order of degree by v1, v2, ..., vk, and
for a 2-vertex vi ∈ NG(v), if v

′

i is a neighbor of vi except v,
then we call it v’s weak adjacent vertex. Let i(j)-vertex be
a vertex with degree i and with j 2-neighbors. A 3-vertex v
is a weak 3-vertex if d(v1) = 3, d(v2) + d(v3) ≤ ∆ + 4. A
3-vertex v is a strong 3-vertex if d(v1) = 3, d(v2) +d(v3) ≥
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∆+6. A v is a special 3-vertex if d(v1) = 4, d(v2)+d(v3) ≥
∆ + 5. A 4-vertex v is a weak 4-vertex if it is adjacent to
at least one special 3-vertex. We call two 4-cycles intersect
when they have at least one vertex in commom.

In the proof of the theorem, we always get a partial
L-2-distance coloring ϕ of a subgraph G′ of G. Then
we can extend ϕ to L-2-distance coloring ϕ

′
of G. Let

F (v) = {ϕ(u)|u ∈ N1(v) ∪ N2(v)} be the set of disable
coloring, and |F (v)| be the number of v’s disable coloring.

III. STRUCTURAL PROPERTIES

To begin, we prove five structural properties about minimal
counterexample. Many of our arguments count the number
of colors restricted from use on some uncolored element.

Property 1: δ(G) ≥ 2.
The proof is obvious.
Property 2: A 2-vertex is not adjacent to 2-vertices.

Proof: Assume that a 2-vertex u is adjacent to a 2-
vertex v. By the minimality of G, G − uv has an L − 2 −
distance coloring ϕ

′
. By recoloring u and v successively,

we get |F (u)| ≤ ∆ + 1, |F (v)| ≤ ∆ + 2. Thus ϕ
′

is a 2−
distance coloring of G with (∆+8) colors, a contradiction.

Property 3: There is no k-vertex v in G with one of the
following properties:
(1) Let 3 ≤ k ≤ 7, d(vi) = 2 for all 1 ≤ i ≤ k − 2, then

d(vk−1) + d(vk) ≤ ∆− k + 9.
(2) Let k = 3, d(v1) = 3, then d(v2) + d(v3) ≤ ∆ + 4 and

d(u)+d(w) ≤ ∆+5 where u and w are v1’s neighbors
except v.

(3) Let k = 4, d(v1) = 2, then d(v2) + d(v3) + d(v4) ≤
∆ + 6.

(4) Let k = 5, d(vi) = 2 for all 1 ≤ i ≤ 2, then d(v3) +
d(v4) + d(v5) ≤ ∆ + 5.

(5) Let k = 6, d(vi) = 2 for all 1 ≤ i ≤ j where j ∈ {2, 3},
then

∑6
m=j+1 d(vm) ≤ ∆ + 7− j.

(6) Let k = 7, d(vi) = 2 for all 1 ≤ i ≤ j where j ∈
{1, 2, 3, 4}, then

∑7
m=j+1 d(vm) ≤ ∆ + 7− j.

(7) Let k = 8, d(vi) = 2 for all 1 ≤ i ≤ 8, then there is an
index i ∈ {1, 2, ..., 8}, d(v

′

i) ≤ ∆− 1.
(8) Let k = 8, d(vi) = 2 for all 1 ≤ i ≤ 7, then d(v8) ≤

∆ − 7 and there is an index i ∈ {1, 2, ..., 7}, d(v
′

i) ≤
∆− 1.

(9) Let k = 8, d(vi) = 2 for all 1 ≤ i ≤ j where j ∈
{3, 4, 5, 6}, then

∑8
m=j+1 d(vm) ≤ ∆+7−j and there

is an index i ∈ {1, 2, ..., j}, d(v
′

i) ≤ ∆− 1.
(10) Let k = 9, d(vi) = 2 for all 1 ≤ i ≤ 9, then there is an

index i ∈ {1, 2, ..., 9}, d(v
′

i) ≤ ∆− 1.
(11) Let k = 9, d(vi) = 2 for all 1 ≤ i ≤ 8, then d(v9) ≤

∆ − 9 and there is an index i ∈ {1, 2, ..., 8}, d(v
′

i) ≤
∆− 1.

(12) Let k = 9, d(vi) = 2 for all 1 ≤ i ≤ j where j ∈ {6, 7},
then

∑9
m=j+1 d(vm) ≤ ∆ − j and there is an index

i ∈ {1, 2, ..., j}, d(v
′

i) ≤ ∆− 1.
(13) Let k = 10, d(vi) = 2 for all 1 ≤ i ≤ 10, then there

are indices i, j ∈ {1, 2, ..., 10}, d(v
′

i) ≤ ∆− 2, d(v
′

j) ≤
∆− 1, and i 6= j.

(14) Let k = 10, d(vi) = 2 for all 1 ≤ i ≤ 9, then d(v10) ≤
∆−11 and there are indices i, j ∈ {1, 2, ..., 9}, d(v

′

i) ≤
∆− 2, d(v

′

j) ≤ ∆− 1, and i 6= j.

Proof:

(1) Assume that d(vk−1) + d(vk) ≤ ∆− k + 9 for all 3 ≤
k ≤ 7. By the minimality of G, G − vv1 has an L −
2 − distance coloring. By recoloring v and vi for all
1 ≤ i ≤ k − 2 where 3 ≤ k ≤ 7 successively, we
get |F (v)| ≤ k − 2 + (d(vk−1) + d(vk)) ≤ ∆ + 7,
|F (vi)| ≤ ∆ + i+ 2 for all 1 ≤ i ≤ k−2. Therefore, G
is list 2− distance (∆ + 8)-colorable, a contradiction.

(2) Assume that d(v1) = 3, u and w are its neighbors except
v, d(v2)+d(v3) ≤ ∆+4 and d(u)+d(w) ≤ ∆+5. By
the minimality of G, G− vv1 has an L− 2− distance
coloring. By recoloring v1 and v successively, we get
|F (v1)| ≤ ∆ + 7, |F (v)| ≤ ∆ + 7. Therefore, G is list
2− distance (∆ + 8)-colorable, a contradiction.

(3) The proof is similar to (1).
(4) The proof is similar to (1).
(5) Assume that d(vi) = 2 for all 1 ≤ i ≤ j where

j ∈ {2, 3}, and
∑6

m=j+1 d(vm) ≤ ∆ − j + 7. By the
minimality of G, G − vv1 has an L − 2 − distance
coloring. By recoloring v and vi for all 1 ≤ i ≤ j
where j ∈ {2, 3} successively, we get |F (v)| ≤ ∆ + 7,
|F (vi)| ≤ ∆ − j + i + 6 for all 1 ≤ i ≤ j where
j ∈ {2, 3}. Therefore, G is list 2− distance (∆ + 8)-
colorable, a contradiction.

(6) The proof is similar to (5).
(7) Assume that d(v

′

1) ≤ ∆ − 1. By the minimality of G,
G−vv1 has an L−2−distance coloring. By recoloring
v2, v3, v4, v5, v6, v7, v8, v1 and v successively, we get
|F (vi)| ≤ ∆+ i−2 for all 2 ≤ i ≤ 8, |F (v1)| ≤ ∆+6,
|F (v)| = 2× 8 = 16. Therefore, G is list 2− distance
(∆ + 8)-colorable, a contradiction.

(8) Assume that d(v8) ≤ ∆ − 7 and d(v
′

1) ≤ ∆ − 1. By
the minimality of G, G− vv1 has an L− 2− distance
coloring. By recoloring v2, v3, v4, v5, v6, v7, v1 and
v successively, we get |F (vi)| ≤ ∆ + i − 1 for all
2 ≤ i ≤ 7, |F (v1)| ≤ ∆+6, |F (v)| ≤ ∆+7. Therefore,
G is list 2−distance (∆+8)-colorable, a contradiction.

(9) Assume that
∑8

m=j+1 d(vm) ≤ ∆ + 7 − j where j ∈
{3, 4, 5, 6} and d(v

′

1) ≤ ∆−1. By the minimality of G,
G−vv1 has an L−2−distance coloring. By recoloring
v, v2, v3, ..., vj and v1 successively, we get |F (v)| ≤
∆ + 7, |F (vi)| ≤ ∆− j+ i+ 7 for all 2 ≤ i ≤ j where
j ∈ {3, 4, 5, 6}, |F (v1)| ≤ ∆ + 7. Therefore, G is list
2− distance (∆ + 8)-colorable, a contradiction.

(10) The proof is similar to (7).
(11) The proof is similar to (8).
(12) The proof is similar to (9).
(13) Assume that d(v

′

1) ≤ ∆ − 2, and d(v
′

2) ≤ ∆ − 1. By
the minimality of G, G− vv1 has an L− 2− distance
coloring. By recoloring v3, v4, v5, v6, v7, v8, v9, v10,
v2, v1 and v successively, we get |F (vi)| ≤ ∆ + i− 3
for all 3 ≤ i ≤ 10, |F (v2)| ≤ ∆ + 7, |F (v1)| ≤ ∆ + 7,
|F (v)| = 2×10 = 20. Therefore, G is list 2−distance
(∆ + 8)-colorable, a contradiction.

(14) Assume that d(v
′

1) ≤ ∆ − 2, d(v
′

2) ≤ ∆ − 1 and
d(v10) ≤ ∆ − 11. By the minimality of G, G − vv1

has an L − 2 − distance coloring. By recoloring v3,
v4, v5, v6, v7, v8, v9, v2, v1 and v successively, we get
|F (vi)| ≤ ∆+ i−2 for all 3 ≤ i ≤ 9, |F (v2)| ≤ ∆+7,
|F (v1)| ≤ ∆ + 7, |F (v)| ≤ ∆ + 7. Therefore, G is list
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2− distance (∆ + 8)-colorable, a contradiction.

Property 4: There is no 4-vertex v in G with one of the
following properties:
(1) Let d(vi) = 3 for all 1 ≤ i ≤ 4, then d(vi1) + d(vi2) ≤

∆ + 4 for all i ∈ {1, 2, 3, 4} where vi1 and vi2 are vi’s
neighbors except v.

(2) Let d(vi) = 3 for all 1 ≤ i ≤ 3, then d(vi1) + d(vi2) ≤
∆ + 4 for all i ∈ {1, 2, 3} where vi1 and vi2 are vi’s
neighbors except v and d(v4) ≤ ∆− 2.
Proof:

(1) Assume that d(vi1) + d(vi2) ≤ ∆ + 4 for all i ∈
{1, 2, 3, 4} where vi1 and vi2 are vi’s neighbors ex-
cept v. By the minimality of G, G − vv1 has an
L − 2 − distance coloring. By recoloring v1, v2, v3,
v4 and v successively, we get |F (vi)| ≤ ∆ + i+ 3 for
all 1 ≤ i ≤ 4, |F (v)| = 3×4 = 12. Therefore, G is list
2− distance (∆ + 8)-colorable, a contradiction.

(2) Assume that d(vi1)+d(vi2) ≤ ∆+4 for all i ∈ {1, 2, 3}
where vi1 and vi2 are vi’s neighbors except v and
d(v4) ≤ ∆ − 2. By the minimality of G, G − vv1 has
an L− 2− distance coloring. By recoloring v1, v2, v3

and v successively, we get |F (vi)| ≤ ∆ + i+ 2 for all
1 ≤ i ≤ 3, |F (v)| ≤ ∆−2 + 3×3 = ∆ + 7. Therefore,
G is list 2−distance (∆+8)-colorable, a contradiction.

Property 5: In G, every 7(0)-vertex is adjacent to at most
six 3(1)-vertices, and when it is adjacent to six 3(1)-vertices,
d(v7) ≥ ∆− 10.

Proof: Assume that a 7(0)-vertex v is adjacent to seven
3(1)-vertices, v1, v2, v3, v4, v5, v6, v7 and m is a 2-vertex
which is also a neighbor of v1. By the minimality of G,
G−vv1 has an L−2−distance coloring. By recoloring v1, m
and v successively, we get |F (v1)| ≤ ∆+7, |F (m)| ≤ ∆+2,
and |F (v)| = 3× 7 = 21. Therefore, G is list 2− distance
(∆ + 8)-colorable, a contradiction.

Assume that 7(0)-vertex v is adjacent to six 3(1)-vertices,
v1, v2, v3, v4, v5, v6, d(v7) ≤ ∆ − 11 and m is a 2-vertex
which is also a neighbor of v1. By the minimality of G,
G−vv1 has an L−2−distance coloring. By recoloring v1, m
and v successively, we get |F (v1)| ≤ ∆+7, |F (m)| ≤ ∆+2,
and |F (v)| ≤ ∆+7. Therefore, G is list 2−distance (∆+8)-
colorable, a contradiction.

IV. PROOF OF THEOREM 1
In this section, we give the proof of our main results by

discharging method.
Proof: We prove Theorem 1 by contradiction. Let G be

a planar graph with neither 3-cycles nor intersect 4-cycles
and with fewest sum of the number of vertices and edges
such that χl

2(G) > ∆(G) + 8. That is to say, there exists
a list L of size ∆ + 8 of V (G), but G is not L-2-distance
colorable. By the minimality of G, G is connected.

According to Euler’s formula |V | + |F | − |E| = 2, and∑
v∈V

d(v) =
∑
f∈F

d(f) = 2|E|, we get:∑
v∈V

( 3
2d(v)− 5) +

∑
f∈F

(d(f)− 5) = −10.

For all x ∈ V (G) ∪ F (G), we define an initial weight
function ω: if v ∈ V , let ω(v) = 3

2d(v) − 5; if f ∈ F , let

ω(f) = d(f)−5. Then we get
∑

x∈V (G)∪F (G) w(x) = −10.
If we obtain a new weight ω

′
(x) ≥ 0 for all x ∈ V ∪ F by

transferring weights from one element to another, then we
get a contradiction:

0 ≤
∑

x∈V ∪F
ω

′
(x) =

∑
x∈V ∪F

ω(x) = −10.

This contradiction shows the nonexistence of G. There-
fore, Theorem 1 is true.

We will redistribute the charge according to the eleven
discharging rules below. Note that each of the discharging
rules preserves the sum of the charges. Hence, the sum of the
charges after discharging is negative. By assuming that each
of the five structural properties above holds, we prove that
after discharging each element has nonnegative charge, this is
an obvious contradiction. We use the following discharging
rules:

(R1) When d(f) = 4
If f is incident with 3-vertices, then each 3-vertex sends

1
4 to f ; if f is incident with 4+-vertices, then each 4+-vertex
sends 1

2 to f .
(R2) Every 2-vertex v gets 1 from its adjacent 3+-vertices.
(R3) For a 3-vertex v, uv ∈ E(G); if 4 ≤ d(u) ≤ 5,

then v gets 1
4 from u; if d(u) = 6, then v gets 1

2 from u; if
7 ≤ d(u) ≤ 10, then v gets 3

4 from u; if 11 ≤ d(u) ≤ ∆−4,
then v gets 7

8 from u; if d(u) ≥ ∆−3, then v gets 1 from u.
In particular, each weak 3-vertex gets 3

4 from each adjacent
strong 3-vertex.

(R4) For a 4-vertex v, uv ∈ E(G); if d(u) = 5, then v
gets 1

4 from u; if 6 ≤ d(u) ≤ 10, then v gets 1
2 from u; if

d(u) ≥ 11, then v gets 1 from u. In particular, each weak
4-vertex gets 1

2 from each adjacent special 3-vertex.
(R5) For a 5-vertex v, uv ∈ E(G); if d(u) = 6, then v

gets 1
4 from u; if 7 ≤ d(u) ≤ ∆− 2, then v gets 1

2 from u;
if d(u) = ∆− 1, then v gets 3

4 from u; if d(u) = ∆, then v
gets 1 from u.

(R6) For a 6-vertex v, uv ∈ E(G); if 7 ≤ d(u) ≤ ∆− 2,
then v gets 1

2 from u; if d(u) = ∆− 1, then v gets 3
4 from

u; if d(u) = ∆, then v gets 1 from u.
(R7) For a 7-vertex v, uv ∈ E(G); if 8 ≤ d(u) ≤ 9, then

v gets 1
4 from u; if 10 ≤ d(u) ≤ ∆− 1, then v gets 1

2 from
u; if d(u) = ∆, then v gets 3

4 from u.
(R8) For an 8-vertex v, uv ∈ E(G); if 9 ≤ d(u) ≤ ∆−1,

then v gets 1
4 from u; if d(u) = ∆, then v gets 1

2 from u.
Moreover, v gets 3

16 from each weak adjacent ∆-vertex.
(R9) For a 9-vertex v, v gets 1

9 from each weak adjacent
∆-vertex.

(R10) For a 10-vertex v, v gets 1
16 from each weak

adjacent (∆− 1)+-vertex.
(R11) After R1-R10, if a 2-vertex v’s weight is positive.

Then v sends its excess weight to the 2-vertex which has
negative weight and is incident with the same 5-face with v.

In the following, we will prove that ω
′
(x) ≥ 0 for all

x ∈ V (G) ∪ F (G).
First we check ω

′
(f) ≥ 0, ∀f ∈ F (G).

Case 1: d(f) = 4.
When f is incident with 2-vertices, but it is not incident

with 3-vertices, from property 2, and by R1, ω
′
(f) ≥ (4 −

5) + 1
2 × 2 = 0.

When f is incident with both 2-vertices and 3-vertices,
from property 2, 3(1) and 3(2), and by R1, ω

′
(f) ≥ (4 −

5) + 1
4 × 2 + 1

2 = 0.
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When f is not incident with 2-vertices, but it is incident
with 3-vertices, from property 3(2), and by R1, ω

′
(f) ≥

(4− 5) + 1
4 × 2 + 1

2 × 2 = 1
2 > 0.

When f is incident with neither 2-vertices nor 3-vertices,
and by R1, ω

′
(f) ≥ (4− 5) + 1

2 × 4 = 1 > 0.
Case 2: d(f) ≥ 5.
ω

′
(f) = d(f)− 5 ≥ 0.

Then we check ω
′
(v) ≥ 0, ∀v ∈ V (G).

Case 1: d(v) = 2.
From property 2 and by R2, ω

′
(v) ≥ ( 3

2×2−5)+1×2 = 0.
Case 2: d(v) = 3. From property 3(1), n2(v) ≤ 1.
Case 2.1: n2(v) = 1.
From property 3(1), d(v2) + d(v3) ≥ ∆ + 7, so (d(v2),

d(v3)) ∈ {(7,∆), (8, (∆ − 1)+), (9, (∆ − 2)+), (10, (∆ −
3)+), (11+, 11+)}. By R3, v2 and v3 send at least 7

4 to v.
By R1 and R2, ω

′
(v) ≥ ( 3

2 × 3− 5)− 1 + 7
4 −

1
4 = 0.

Case 2.2: n2(v) = 0.
When v is adjacent to a 3-vertex v1, if d(v2) + d(v3) ≤

∆ + 4, then v is a weak 3-vertex, and from property 3(2),
d(u)+d(w) ≥ ∆+6 where u and w are v1’s neighbors except
v, so v1 is a strong 3-vertex. At the same time v2 and v3 are
3+-vertices. Again by property 3(2), v2 and v3 are not weak
3-vertices. By R1 and R3, ω

′
(v) = (3

2 ×3−5) + 3
4 −

1
4 = 0.

If d(v2) + d(v3) = ∆ + 5, then v is neither a strong 3-
vertex nor a weak 3-vertex. And (d(v2), d(v3)) ∈ { (5,∆),
(6, (∆− 1)+), (7, (∆− 2)+), (8, (∆− 3)+), (9, (∆− 4)+),
(10, (∆−5)+), (11+, 11+) }. By R3, v2 and v3 send at least
5
4 to v. By R1 and R4, ω

′
(v) ≥ ( 3

2×3−5)+ 5
4−

1
4 = 1

2 > 0.
Suppose d(v2) + d(v3) ≥ ∆ + 6, then v is a strong 3-

vertex. So (d(v2), d(v3)) ∈ {(6,∆), (7, (∆− 1)+), (8, (∆−
2)+), (9, (∆−3)+), (10, (∆−4)+), (11+, 11+)}. By R3, v2

and v3 send at least 3
2 to v. By R1, ω

′
(v) ≥ ( 3

2 × 3− 5)−
3
4 + 3

2 −
1
4 = 0.

When v is not adjacent to a 3-vertex, and by R1 and R3,
ω

′
(v) ≥ ( 3

2 × 3 − 5) + 1
4 × 3 − 1

4 = 0. In particular, if
v is a special 3-vertex, then by R1, R3 and R4, ω

′
(v) ≥

( 3
2 × 3− 5) + 1

4 + 1
4 + 1− 1

2 −
1
4 = 1

4 > 0.
Case 3: d(v) = 4. From property 3(1), n2(v) ≤ 2.
Case 3.1: n2(v) = 2.
From property 3(1), d(v3) + d(v4) ≥ ∆ + 6, so (d(v3),

d(v4)) ∈ {(6,∆), (7, (∆ − 1)+), (8, (∆ − 2)+), (9, (∆ −
3)+), (10, (∆ − 4)+), (11+, 11+)}. By R4, v3 and v4 send
at least 3

2 to v. By R1 and R2, ω
′
(v) ≥ ( 3

2 × 4 − 5) − 1 ×
2 + 3

2 −
1
2 = 0.

Case 3.2: n2(v) = 1.
From property 3(3), d(v2)+d(v3)+d(v4)≥∆+7. So

(d(v2), d(v3), d(v4))∈{(3, 4,∆), (3, 5, (∆−1)+), (3, 6, (∆−
2)+), (3, 7, (∆− 3)+), (3, 8, (∆− 4)+), (3, 9, (∆− 5)+),
(3, 10, (∆ − 6)+), (3, 11+, 11+), (4+, 4+, 10+)}. By R3
and R4, v2, v3 and v4 send at least 3

4 to v. By R1-R3,
ω

′
(v) ≥ ( 3

2 × 4− 5)− 1 + 3
4 −

1
2 = 1

4 > 0.
Case 3.3: n2(v) = 0.
Case 3.3.1: n3(v) = 4.
From property 4(1), there exists a vertex vi, d(vi1) +

d(vi2) ≥ ∆ + 5 for some i ∈ {1, 2, 3, 4} where vi1 and
vi2 are vi’s neighbors except v. So vi is a special 3-vertex,
by R1, R3 and R4, ω

′
(v) = (3

2 ×4−5)− 1
4 ×4+ 1

2 −
1
2 = 0.

Case 3.3.2: n3(v) = 3.
If d(v4) ≤ ∆ − 2, then from property 4(2), there exists

a vertex vi such that d(vi1) + d(vi2) ≥ ∆ + 5 for some
i ∈ {1, 2, 3} where vi1 and vi2 are vi’s neighbors except

v. So vi is a special 3-vertex, by R1, R3 and R4, ω
′
(v) =

( 3
2×4−5)− 1

4×3+ 1
2−

1
2 = 1

4 > 0. Suppose d(v4) ≥ ∆−1,
then by R1, R3 and R4, ω

′
(v) = (3

2×4−5)− 1
4×3+1− 1

2 =
3
4 > 0.

Case 3.3.3: n3(v) ≤ 2.
By R1 and R3, ω

′
(v) ≥ ( 3

2 × 4− 5)− 1
4 × 2− 1

2 = 0.
Case 4: d(v) = 5. From property 3(1), n2(v) ≤ 3.
Case 4.1: n2(v) = 3.
From property 3(1), d(v4) + d(v5) ≥ ∆ + 5, so

(d(v4), d(v5)) ∈ {(5,∆), (6, (∆ − 1)+), (7+, 7+)}. By R5,
v4 and v5 send at least 1 to v. By R1 and R2, ω

′
(v) ≥

( 3
2 × 5− 5)− 1× 3 + 1− 1

2 = 0.
Case 4.2: n2(v) = 2.
From property 3(4), d(v3)+d(v4)+d(v5)≥∆+6. So

(d(v3), d(v4), d(v5))∈{(3,3,∆), (3,4,(∆− 1)+), (3,5+,7+),
(4, 4, (∆− 2)+), (4, 5+, 7+), (5+, 5+, 7+)}. By R4 and R5,
v3, v4 and v5 send at least 1

4 to v. By R1 and R2,
ω

′
(v) ≥ ( 3

2 × 5− 5)− 1× 2 + 1
4 −

1
2 = 1

4 > 0.
Case 4.3: n2(v) ≤ 1.
Then by R1, R2 and R3, ω

′
(v) ≥ ( 3

2 × 5− 5)− 1− 1
4 ×

4− 1
2 = 0.

Case 5: d(v) = 6. From property 3(1), n2(v) ≤ 4.
Case 5.1: n2(v) = 4.
From property 3(1), d(v5) + d(v6) ≥ ∆ + 4, so (d(v5),

d(v6)) ∈ {(4,∆), (5, (∆ − 1)+), (6+, 7+)}, by R4, R5 and
R6, v5 and v6 send at least 1

2 to v. By R1 and R2, ω
′
(v) ≥

( 3
2 × 6− 5)− 1× 4 + 1

2 −
1
2 = 0.

Case 5.2: n2(v) = 3.
From property 3(5), d(v4) + d(v5) + d(v6) ≥ ∆ + 5. So

(d(v4), d(v5), d(v6)) ∈ {(3, 3, (∆ − 1)+), (3, 4, (∆ − 2)+),
(3, 5, (∆ − 3)+), (3, 6+, 7+), (4, 4, (∆ − 3)+), (4, 5+, 7+),
(5+, 5+, 7+) }. By R3-R6, v4, v5 and v6 send at least − 1

2 to
v. By R1 and R2, ω

′
(v) ≥ ( 3

2 × 6− 5)− 1× 3− 1
2 −

1
2 = 0.

Case 5.3: n2(v) = 2.
From property 3(5), d(v3) + d(v4) + d(v5) + d(v6) ≥

∆ + 6. So ( d(v3), d(v4), d(v5), d(v6) ) ∈ { (3, 3, 3, (∆−
3)+), (3, 3, 4, (∆− 4)+), (3, 3, 5, (∆− 5)+), (3, 3, 6+, 7+),
(3, 4+, 4+, 7+), (4+, 4+, 4+, 7+) }. By R3-R6, v3, v4, v5

and v6 send at least −1 to v. By R1 and R2, ω
′
(v) ≥

( 3
2 × 6− 5)− 1× 2− 1− 1

2 = 1
2 > 0.

Case 5.4: n2(v) ≤ 1.
Then by R1, R2, R3, R4 and R5, ω

′
(v) ≥ ( 3

2 × 6− 5)−
1− 1

2 × 5− 1
2 = 0.

Case 6: d(v) = 7. From property 3(1), n2(v) ≤ 5.
Case 6.1: n2(v) = 5.
From property 3(1), d(v6) + d(v7) ≥ ∆ + 3, so (d(v6),

d(v7)) ∈ {(3,∆), (4, (∆ − 1)+), (5, (∆ − 2)+), (6, (∆ −
3)+), (7+, 7+)}, by R3-R7, v6 and v7 send at least 0 to v.
By R1 and R2, ω

′
(v) ≥ ( 3

2 × 7− 5)− 1× 5− 1
2 = 0.

Case 6.2: n2(v) = 4.
From property 3(6), d(v5) + d(v6) + d(v7) ≥ ∆ + 4. So

(d(v5), d(v6), d(v7)) ∈ { (3, 3, (∆− 2)+), (3, 4, (∆− 3)+),
(3, 5, (∆− 4)+), (3, 6, (∆− 5)+), (3, 7+, 7+), (4+, 4+, 7+)
}, by R3-R7, v5, v6 and v7 send at least −1 to v. By R1 and
R2, ω

′
(v) ≥ ( 3

2 × 7− 5)− 1× 4− 1− 1
2 = 0.

Case 6.3: n2(v) = 3.
From property 3(6), d(v4)+d(v5)+d(v6)+d(v7) ≥ ∆+5.

So ( d(v4), d(v5), d(v6), d(v7) ) ∈ { (3, 3, 3, (∆ − 4)+),
(3, 3, 4+, (∆ − 5)+), (3, 3, 5+, (∆ − 6)+), (3, 3, 6+, (∆ −
7)+), (3, 3, 7+, 7+), (3, 4+, 4+, 7+), (4+, 4+, 4+, 7+) }, by
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R3-R7, v4, v5, v6 and v7 send at least − 7
4 to v. By R1 and

R2, ω
′
(v) ≥ ( 3

2 × 7− 5)− 1× 3− 7
4 −

1
2 = 1

4 > 0.
Case 6.4: n2(v) = 2.
From property 3(6), d(v3)+d(v4)+d(v5)+d(v6)+d(v7) ≥

∆ + 6. So ( d(v3), d(v4), d(v5), d(v6), d(v7))∈{(3, 3, 3, 3,
(∆ − 6)+), (3, 3, 3, 4+, (∆ − 7)+), (3, 3, 3, 5+, 10+),
(3, 3, 3, 6+, 9+), (3, 3, 3, 7+, 7+), (3, 3, 4+, 4+, 7+),
(3, 4+, 4+, 4+, 7+), (4+, 4+, 4+, 7+)}, by R3-R7, v3,
v4, v5, v6 and v7 send at least − 5

2 to v. By R1 and R2,
ω

′
(v) ≥ ( 3

2 × 7− 5)− 1× 2− 5
2 −

1
2 = 1

2 > 0.
Case 6.5: n2(v) = 1. From property 3(6), d(v2)+d(v3)+

d(v4) + d(v5) + d(v6) + d(v7) ≥ ∆ + 7.
Case 6.5.1: n3(v) = 5.
So d(v7) ≥ ∆− 8. By R1-R3, ω

′
(v) = ( 3

2 × 7− 5)− 1−
3
4 × 5− 1

2 = 5
4 > 0.

Case 6.5.2: n3(v) ≤ 4.
Then by R1-R7, ω

′
(v) ≥ ( 3

2×7−5)−1− 3
4×4− 1

2×2− 1
2 =

0.
Case 6.6: n2(v) = 0.
Since v is adjacent to six 3(1)-vertices, v transfer most

weight. From property 5, d(v7) ≥ ∆ − 10. By R1 and R4-
R7, ω

′
(v) ≥ ( 3

2 × 7− 5)− 3
4 × 6− 1

2 = 1
2 > 0.

Case 7: d(v) = 8. From property 3(7), n2(v) ≤ 8.
Case 7.1: n2(v) = 8.
From property 3(7), d(v

′

i) = ∆ for all 1 ≤ i ≤ 8. By R1,
R2 and R8, ω

′
(v) ≥ ( 3

2 × 8− 5)− 1× 8 + 3
16 × 8− 1

2 = 0.
Case 7.2: n2(v) = 7.
If d(v8) ≤ ∆− 7. From property 3(8), d(v

′

i) = ∆ for all
1 ≤ i ≤ 7. By R1-R8, ω

′
(v) ≥ ( 3

2 × 8 − 5) − 1 × 7 − 3
4 +

3
16 × 7− 1

2 = 1
16 > 0.

Suppose d(v8) ≥ ∆ − 6; by R1, R2 and R8, ω
′
(v) =

( 3
2 × 8− 5)− 1× 7 + 1

2 −
1
2 = 0.

Case 7.3: n2(v) = 6.
If d(v7) + d(v8) ≤ ∆ + 1, from property 3(9) d(v

′

i) = ∆
for all 1 ≤ i ≤ 6. By R1-R8, ω

′
(v) ≥ ( 3

2 × 8− 5)− 1× 6−
3
4 × 2 + 3

16 × 6− 1
2 = 1

8 > 0.
Suppose d(v7) +d(v8) ≥ ∆ + 2, then So (d(v7), d(v8)) ∈
{(3, (∆ − 1)+), (4, (∆ − 2)+), (5, (∆ − 3)+), (6, (∆ −
4)+), (7, (∆ − 5)+), (8+, 8+)}, by R3-R8, v7 and v8 send
at least − 1

2 to v. By R1 and R2, ω
′
(v) ≥ ( 3

2 × 8− 5)− 1×
6− 1

2 −
1
2 = 0.

Case 7.4: n2(v) = 5.
If d(v6) + d(v7) + d(v8) ≤ ∆ + 2, from property 3(9),

d(v
′

i) = ∆ for all 1 ≤ i ≤ 5. By R1-R8, ω
′
(v) ≥ ( 3

2 × 8−
5)− 1× 5− 3

4 × 3 + 3
16 × 5− 1

2 = 3
16 > 0.

Suppose d(v6) + d(v7) + d(v8) ≥ ∆ + 3, then (d(v6),
d(v7), d(v8)) ∈ {(3, 3, (∆−3)+), (3, 4+, 8+), (4+, 4+, 8+)},
by R3-R8, v6, v7 and v8 send at least − 5

4 to v. By R1 and
R2, ω

′
(v) ≥ ( 3

2 × 8− 5)− 1× 5− 5
4 −

1
2 = 1

4 > 0.
Case 7.5: n2(v) = 4.
If d(v5) + d(v6) + d(v7) + d(v8) ≤ ∆ + 3, from property

3(9), d(v
′

i) = ∆ for all 1 ≤ i ≤ 4. By R1-R8, ω
′
(v) ≥

( 3
2 × 8− 5)− 1× 4− 3

4 × 4 + 3
16 × 4− 1

2 = 1
4 > 0.

Suppose d(v5) + d(v6) + d(v7) + d(v8) ≥ ∆ + 4, then v
transfer most weight when n3(v) = 3. By R1, R2 and R3,
ω

′
(v) ≥ ( 3

2 × 8− 5)− 1× 4− 3
4 × 3− 1

2 = 1
4 > 0.

Case 7.6: n2(v) = 3.
If d(v4) + d(v5) + d(v6) + d(v7) + d(v8) ≤ ∆ + 4, from

property 3(9), d(v
′

i) = ∆ for all 1 ≤ i ≤ 3. By R1-R8,
ω

′
(v) ≥ ( 3

2 × 8− 5)− 1× 3− 3
4 × 5 + 3

16 × 3− 1
2 = 5

16 > 0.

Suppose d(v4) + d(v5) + d(v6) + d(v7) + d(v8) ≥ ∆ + 5,
then v transfer most weight when n3(v) = 4; by R1-R3,
ω

′
(v) ≥ ( 3

2 × 8− 5)− 1× 3− 3
4 × 4− 1

2 = 1
2 > 0.

Case 7.7: n2(v) ≤ 2.
Then by R1-R8, ω

′
(v) ≥ ( 3

2×8−5)−1×2− 3
4×6− 1

2 = 0.
Case 8: d(v) = 9. From property 3(10), n2(v) ≤ 9.
Case 8.1: n2(v) = 9.
From property 3(10), v is weak adjacent to nine ∆-

vertices. By R1, R2 and R9, ω
′
(v) ≥ ( 3

2 × 9 − 5) − 1 ×
9 + 1

9 × 9− 1
2 = 0.

Case 8.2: n2(v) = 8.
If d(v9) ≤ ∆− 9, from property 3(11) v is weak adjacent

to eight ∆-vertices. By R1-R9, ω
′
(v) ≥ ( 3

2 × 9 − 5) − 1 ×
8− 3

4 + 1
9 × 8− 1

2 = 5
36 > 0.

Suppose d(v9) ≥ ∆−8, by R1 and R2, ω
′
(v) = ( 3

2 ×9−
5)− 1× 8− 1

2 = 0.
Case 8.3: n2(v) = 7.
If d(v8)+d(v9) ≤ ∆−7, from property 3(12), d(v

′

i) = ∆
for all 1 ≤ i ≤ 7. By R1-R9, ω

′
(v) ≥ ( 3

2 × 9− 5)− 1× 7−
3
4 × 2 + 1

9 × 7− 1
2 = 17

36 > 0.
Suppose d(v8) + d(v9) ≥ ∆ − 6, then (d(v8), d(v9)) ∈

{(3, (∆−9)+), (4+, 9+)}, by R3-R8, v8 and v9 send at least
− 3

4 to v. By R1 and R2, ω
′
(v) ≥ ( 3

2×9−5)−1×7− 3
4−

1
2 =

1
4 > 0.

Case 8.4: n2(v) = 6.
If d(v7) + d(v8) + d(v9) ≤ ∆ − 6, from property 3(12),

d(v
′

i) = ∆ for all 1 ≤ i ≤ 6. By R1-R9, ω
′
(v) ≥ ( 3

2 × 9−
5)− 1× 6− 3

4 × 3 + 1
9 × 6− 1

2 = 5
12 > 0.

Suppose d(v7)+d(v8)+d(v9)≥∆−5, then (d(v7), d(v8),
d(v9))∈{(3, 3, (∆ − 11)+), (3, 4+, 9+), (4+, 4+, 9+)}, by
R3-R8, v7, v8 and v9 send at least − 3

2 to v. By R1 and R2,
ω

′
(v) ≥ ( 3

2 × 9− 5)− 1× 6− 3
2 −

1
2 = 1

2 > 0.
Case 8.5: n2(v) ≤ 5.
Then by R1-R8, ω

′
(v) ≥ ( 3

2×9−5)−1×5− 3
4×4− 1

2 = 0.
Case 9: d(v) = 10. From property 3(13), n2(v) ≤ 10.
Case 9.1: n2(v) = 10.
From property 3(13), v is weak adjacent to ten (∆− 1)+-

vertices or nine ∆-vertices. By R1, R2 and R10, ω
′
(v) ≥

( 3
2 × 10− 5)− 1× 10 + 1

16 × 9− 1
2 = 1

16 > 0.
Case 9.2: n2(v) = 9.
If d(v10) ≤ ∆ − 11, from property 3(14), v is weak

adjacent to nine (∆−1)+-vertices or eight ∆-vertices. By R1,
R2, R3 and R10, ω

′
(v) ≥ ( 3

2×10−5)−1×9− 3
4 + 1

16×8− 1
2 =

1
4 > 0.

Suppose d(v10) ≥ ∆−10, by R3, R4, R8 and R9, ω
′
(v) =

( 3
2 × 10− 5)− 1× 9− 1

3 −
1
2 = 1

4 > 0.
Case 9.3: n2(v) ≤ 8.
Then by R1-R8, ω

′
(v) ≥ ( 3

2×10−5)−1×8− 3
4×2− 1

2 = 0.
Case 10: 11 ≤ d(v) ≤ (∆− 2).
By R2-R10, v send at most 1 to adjacent 8−-vertices. Then

by R1, ω
′
(v) = ( 3

2d(v)− 5)− d(v)− 1
2 = 1

2d(v)− 11
2 ≥ 0.

Case 11: d(v) = (∆− 1) ≥ 17.
By R2-R10, v send at most 1 to adjacent 10−-vertices and

1
16 to each weak 10-vertex. Then by R1, ω

′
(v) = ( 3

2d(v)−
5)−d(v)− 1

16d(v)− 1
2 = 7

16d(v)− 11
2 ≥

119
16 −

11
2 = 31

16 > 0.
Case 12: d(v) = ∆ ≥ 18.
By R2-R10, v send at most 1 to adjacent 10−-vertices and

3
16 to each weak 8+-vertex. Then by R1, ω

′
(v) = (3

2d(v)−
5)− d(v)− 3

16d(v)− 1
2 = 5

16d(v)− 11
2 ≥

45
8 −

11
2 = 1

8 > 0.
This completes the proof of Theorem 1.
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