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Abstract—In this paper, some time-dependent heat conduc-
tion problems in anisotropic thin plates are considered. To
study the problems, the governing equations of the problems
are transformed into Helmholtz-type equations. The Helmholtz-
type equations with respect to transformed boundary condi-
tions are solved numerically using Dual Reciprocity Bound-
ary Element Method (DRBEM). The method is tested using
several problems involving time-dependent heat conduction in
anisotropic thin plates. Two of the problems are with analytical
solution, and the other problem is with unknown analytical so-
lution. For problems with analytical solution, numerical results
obtained using the method have a good accuracy. Moreover, the
method is implemented to examine variation of temperature in
the anisotropic thin plates as time increases.

Index Terms—Time-dependent heat equation, heat distribu-
tion, anisotropic solid, Laplace transform, DRBEM.

I. INTRODUCTION

HEAT conduction problems in anisotropic materials have
been an attractive matters for researchers. A number of

researchers have studied these problems. Such researchers
are Paddock and Eesley [1], Capinski et. al. [2], Norris
et. al. [3], and Huxtable et. al. [4]. Paddock and Eesley
investigated transient thermoreflectance from thin metal films
[1]. Thermal conductivity measurements using a picosecond
optical pump and probe technique was examined by Capinski
et. al. [2]. Norris et. al. conducted femtosecond pump probe
technique examination of some materials [3]. Huxtable et.
al. studied thermal conductivity imaging at micrometre scale
[4]. Most of these study are experimental studies.

One way to study heat conduction in anisotropic materials
is through mathematical modelling. However, generally, the
resulting mathematical model may not be solved analytically.
Hence, in this paper we employ a numerical method to
solve the model. The numerical method used is a type of
Boundary Element Methods (BEM), which is known as
Dual Reciprocity Boundary Element Methods (DRBEM).
One of the advantages of these methods is their ability
to reduce the dimension of the problem. The problems
considered in this paper, which are time-dependent with
two-dimensional space problems, may be reduced into one-
dimensional problems. Boundary element methods have been
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employed by numerous researchers in their studies. Clements
and Lobo [5], Solekhudin [6], and Munadi et. al. [7], [8]
employed boundary element techniques to solve problems
involving water infiltration into homogeneous soils. Ashar
and Solekhudin [9] used the method for simulating pollutant
spread from a point source in a river.

The problems considered by the researchers are in ho-
mogeneous materials. Some of studies employing boundary
element techniques for solving problems in nonhomogeneous
materials have been also conducted by some researchers.
Solekhudin used the method for solving infiltration prob-
lems into layered soils [10]. Ang and Clements used the
method to solve nonlinear heat equation in nonhomoge-
neous anisotropic materials [11]. Azis et. al. [12] solved
problems in anisotropic functionally graded materials using
the method. In this paper, a DRBEM is employed to solve
time-dependent heat equations in anisotropic materials. The
method is tested to solve two problems with analytical
solutions, in order to investigate accuracy of the method.
In addition, the method is applied to solve a time-dependent
heat equation with unknown analytical solution. Numerical
solutions are presented to determine the dynamics of changes
in temperature distribution in the anisotropic materials.

II. PROBLEM FORMULATION AND BASIC EQUATIONS

In this section, mathematical models of problems involving
time-dependent heat equations in anisotropic materials are
presented. For the convenience of readers, a brief derivation
from a time-dependent heat equation into a Helmholtz-
type equation is presented. We consider a non-homogeneous
anisotropic solid on the Ox1x2 plane. Heat conduction in the
solid material is modelled as

2∑
i=1

2∑
j=1

∂

∂xi

(
kij

∂T

∂xj

)
+ g = ρC

∂T

∂t
, (1)

where T (x1, x2, t) is the temperature at point (x1, x2) at time
t > 0, kij are the thermal conductivity coefficients that are
considered to be the components of a conductivity matrix

¯̄k =

[
k11 k12
k21 k22

]
, (2)

and g, ρ, C are respectively the internal heat generation, the
density, and the specific heat capacity of the materials. Here,
the thermal conductivity coefficients satisfy kij = kji and
kiikjj > kij2, for i 6= j.
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If the thermal conductivity coefficients are constants,
Equation (1) can be written as

2∑
i=1

2∑
j=1

kij
∂2T

∂xixj
+ g = ρC

∂T

∂t
. (3)

The problem of interest here is solving Equation (3) in a
two dimensional region R bounded by a simple closed curve
B subject to initial condition T (x1, x2, 0) = T0(x1, x2) and
boundary conditions

T (x1, x2, t) = f1(x1, x2) for (x1, x2) ∈ B1 and t > 0,

(4)
2∑

i=1

2∑
j=1

kijni
∂T

∂xj
= f2(x1, x2) for (x1, x2) ∈ B2 and t > 0,

(5)

where T0, f1 and f2 are suitably prescribed functions, B1

and B2 are non-intersecting curves such that B1 ∪ B2 = B
and [n1, n2] is the unit normal vector pointing out curve B.

Since the conductivity matrix (2) is symmetric, it is
possible to obtain a new coordinate system of rectangular
coordinates Ox′1x

′
2, where[

x′1
x′2

] [
cos θ sin θ
−sin θ cos θ

]
=

[
x1
x2

]
, (6)

for a rotation angle θ, such that ¯̄k is transformed into

¯̄
k′ =

[
k1 0
0 k2

]
. (7)

Quantity k1 and k2 are called the principal conductivities
along the principal coordinates axes x′1 and x′2, respectively.
Using the coordinate system Ox′1x

′
2, Equation (3) becomes

2∑
i=1

ki
∂2T

∂x′i
2 + g = ρC

∂T

∂t
, (8)

which is the equation of heat conduction in orthotropic solid.
The heat conduction equation for an orthotropic solid (8)

can be transformed to a standard heat conduction equation
for an isotropic solid using new coordinate system OX1X2,
where X1 and X2 are defined as

X1 = x′1

(
k

k1

) 1
2

and X2 = x′2

(
k

k2

) 1
2

, (9)

where k is a reference conductivity, satisfying

k = (k1k2)
1
2 . (10)

Now heat equation (8) becomes

k
2∑

i=1

∂2T

∂X2
i

+ g = ρC
∂T

∂t
, (11)

which is the equation of heat conduction in isotropic solid.
Using Laplace transform

T =

∞∫
0

T (x, y, t)e−stdt, (12)

equation (11) can be written as

∂2T

∂X1
2 +

∂2T

∂X2
2 −

(
ρCs

k

)
T =

−ρCT0 − g
k

, (13)

where T and g is the Laplace transformations of T and g
respectively. Equation (13) is a Helmholtz-type equation.

Applying Transformations 6, 7, and 9, Boundary condi-
tions (4) and (5) can be transform into

T =u

(
X1

(
k1
k

)1/2

cos θ −X2

(
k2
k

)1/2

sin θ,

X1

(
k1
k

)1/2

sin θ +X2

(
k2
k

)1/2

cos θ, s
)

for (X1, X2) ∈ B1, (14)

∂T

∂n
=v

(
X1

(
k1
k

)1/2

cos θ −X2

(
k2
k

)1/2

sin θ,

X1

(
k1
k

)1/2

sin θ +X2

(
k2
k

)1/2

cos θ, s
)

×


√
k1
k

(
X̂1

)2
+
k2
k

(
X̂2

)2
k

√(
X̂1

)2
+
(
X̂2

)2


for (X1, X2) ∈ B2. (15)

To solve Equation (13) using DRBEM, we express the
solution in the form of an integral equation

λ(ξ, η)T (ξ, η, s) =

∫
B

[
T (X1, X2, s)

∂Φ(X1, X2; ξ, η)

∂n

− Φ(X1, X2; ξ, η)
∂T (X1, X2, s)

∂n

]
ds

+

∫∫
R

Φ(X1, X2; ξ, η)
[
G(X1, X2, s, k)

+A(s, k)T (X1, X2, s)
]
dX1dX2, (16)

where

λ(ξ, η) =

{
1
2 , if (ξ, η) on smooth part of B
1, if (ξ, η) ∈ R

, (17)

Φ(x, y; ξ, η) =
1

4π
ln[(x− ξ)2 + (y − η)2], (18)

G(a(j), b(j), s, k) =
−ρCT0(a(j), b(j))− g(a(j), b(j), s)

k
,

(19)

and

A(s, k) =− ρCs

k
. (20)

Equation (16) is then solved numerically by recasting the
equation into a system of linear algebraic equations as those
in [13], [14].

Numerical solutions of T obtained are in Laplace domain.
Hence, an inverse Laplace transform is needed. Here, we use
the Stehfest formula [15] formulated as

T (X1, X2, t) '
ln(2)

t

2P∑
p=1

KpT (X1, X2, sp), (21)
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where

sp =p
ln(2)

t
, (22)

Kp =

min(p,P )∑
m= p+1

2

mP (2m)!

(P −m)!m!(m− 1)!(p−m)!(2m− p)!
,

× (−1)p+P (23)

where P is a positive integer. To obtain a good accuracy and
efficiency of computational times, we take P = 3.

III. SPECIFIC PROBLEMS

The method presented in the preceding section is tested
using three problems. The first two problems are used to test
the accuracy of the method. The third problem, which may
not be solved analytically, is solved to present the behavior
of heat distribution in an anisotropic solid.

The three problems have the same domain, which is
illustrated in Figure 1. 
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Fig. 1: Domain of Problem 1, Problem 2, and Problem 3.

The boundary of the domain, B, is notated as B = B1 ∪
B2 ∪B3 ∪B4, where

B1 = {(x1, x2) ∈ R|x1 = 0, 0 ≤ x2 ≤ 1}, (24)
B2 = {(x1, x2) ∈ R|x1 = 1, 0 ≤ x2 ≤ 1}, (25)
B3 = {(x1, x2) ∈ R|0 < x1 < 1, x2 = 0}, (26)
B4 = {(x1, x2) ∈ R|0 < x1 < 1, x2 = 1}. (27)

A. Problem 1

In this problem, We consider an anisotropic square thin
plate region R, where

R = {(x1, x2) ∈ R| 0 < x1 < 1, 0 < x2 < 1}.

The heat equation on the thin plate is

∂T

∂t
= 9

∂2T

∂x21
+ 3

∂2T

∂x22
+ 4

∂2T

∂x1∂x2
+ x21 − 180x1

−480x2 − 18t, (28)

subject to initial boundary conditions

T (x1, x2, 0) =30x1x
2
2 + 10, (29)

T (x1, x2, t) =10, for (x1, x2) ∈ B1 and t > 0,
(30)

T (x2, x2, t) =t+ 30x22 + 10, for (x1, x2) ∈ B2

and t > 0, (31)
2∑

i=1

2∑
j=1

kij
∂T

∂xi
nxj

=− 18tx1, for (x1, x2) ∈ B3

and t > 0, (32)
2∑

i=1

2∑
j=1

kij
∂T

∂xi
nxj

=18tx1 + 180x1 + 270,

for (x1, x2) ∈ B4 and t > 0. (33)

The analytic solution of the problem is

T (x1, x2, t) = tx21 + 30x1x
2
2 + 10. (34)

To implement DRBEM, Heat equation (28) is transformed
into a Helmholtz-type equation using Transformation (6),
Transformation (9) and Laplace transform. The resulted
equation is

∂2T

∂X1
2 +

∂2T

∂X2
2 −

(
s

k

)
T

=
−30(1.628X1 − 0.245X2)(0.814X1 + 0.491X2)2

k

− 1

sk

(
(1.628X1 − 0.245X2)2 − 180(1.628X1

− 0.245X2)− 480(0.814X1 + 0.491X2)− 18

s

)
. (35)

Using the same transformations, the transformed
boundary-conditions are

T (X1, X2, s) = 10, for (X1, X2) ∈ B1, (36)

T (X1, X2, s) =

( 1
s + 30(0.814X1 + 0.491X2)2 + 10

s

)
,

for (X1, X2) ∈ B2, (37)

∂T (X1, X2, s)

∂n
=


√
k1
k

(
X̂1

)2
+
k2
k

(
X̂2

)2
k

√(
X̂1

)2
+
(
X̂2

)2


×
(
−18(1.628X1 − 0.245X2)

s2

)
,

for (X1, X2) ∈ B3, (38)

∂T (X1, X2, s)

∂n
=


√
k1
k

(
X̂∗1
)2

+
k2
k

(
X̂∗2
)2

k

√(
X̂∗1
)2

+
(
X̂∗2
)2


×
((

18(1.628X1 − 0.245X2)

s2

)
+

(
180(1.628X1 − 0.245X2) + 270

s

))
,

for (X1, X2) ∈ B4. (39)

To implement the DRBEM, curve B is discretized into
404 boundary elements, and 81 interior collocation points

IAENG International Journal of Applied Mathematics, 52:1, IJAM_52_1_17

Volume 52, Issue 1: March 2022

 
______________________________________________________________________________________ 



are chosen. Some of numerical results obtained at selected
points are presented and compared with the corresponding
analytic solutions. The results are presented in Table I.

TABLE I: Comparison of numerical and analytical solutions
of T at selected times and points

Time (x1, x2) Numerical Exact Abs. Error % Error
(0.1, 0.1) 10.03972 10.04 0.00028 0.003%

t = 1 (0.5, 0.5) 13.99766 14 0.00234 0.017%
(0.9, 0.9) 32.67688 32.68 0.00312 0.009%

(0.1, 0.1) 10.08028 10.08 0.00028 0.003%
t = 5 (0.5, 0.5) 14.99565 15 0.00435 0.029%

(0.9, 0.9) 35.90988 35.92 0.01012 0.028%

(0.1, 0.1) 10.13048 10.13 0.00048 0.005%
t = 10 (0.5, 0.5) 16.24273 16.25 0.00727 0.045%

(0.9, 0.9) 39.95123 39.97 0.01877 0.047%

Table I shows a comparison of numerical solutions ob-
tained using the DRBEM and corresponding analytic solu-
tions at three selected points at three different times t. The
three selected points are (0.1, 0.1), (0.5, 0.5) and (0.9, 0.9).
From the results presented in Table I, it can be seen that
as t increases, increases in the absolute errors are observed.
For instance, at point (0.1, 0.1) the absolute error at t = 1
is about 0.00028. The absolute error increases and reaches
0.00048 at t = 10. The other two points, (0.5, 0.5) and
(0.9, 0.9), share the similar fashion.

Among the three points, numerical solutions at point
(0.1, 0.1) are the most accurate solutions. On the other
hand, numerical solutions at (0.9, 0.9) are less accurate
compared to the numerical solutions at the other two points.
Specifically, at t = 5, the absolute error of the numerical
solution at (0.1, 0.1) is about 0.00028, which is the most
accurate compared to 0.00435 at (0.5, 0.5) and 0.01012 at
(0.9, 0.9). The similar trends also occur at t = 1 and t = 10.

The percentages of error are also presented in Table I. As
before, the percentages of error increase as t increases. For
point (0.1, 0.1) the percentage of error rises from 0.003% at
t = 1 to 0.005% at t = 10. The rises in the percentage of
error at (0.5, 0.5) are observed from 0.0017% at t = 1 to
0.0045% at t = 10. A steep increase in the percentages of
error occur at (0.9, 0.9) from 0.0009% at t = 1 to 0.0047%
at t = 10. Nevertheless, from the results presented, the
numerical solutions obtained using the method are in a good
accuracy.

B. Problem 2

In this problem, we consider a heat equation

1.7
∂2T

∂x21
+ 4.29

∂2T

∂x22
− 0.24

∂2T

∂x1∂x2
+ 18.08x1

−71.4x2 + 326.04 =
∂T

∂t
, (40)

subject to initial boundary conditions

T (x1, x2, 0) =38x22 + 21x21x2 + 8 (41)

T (x1, x2, t) =38x22 + 8, for (x1, x2) ∈ B1

and t > 0, (42)

T (x2, x2, t) =38x22 + 21x2 + 8t+ 8,

for (x1, x2) ∈ B2 and t > 0, (43)
2∑

i=1

2∑
j=1

kij
∂T

∂xi
nxj =− 96.6x21 + 0.96t,

for (x1, x2) ∈ B3 and t > 0, (44)
2∑

i=1

2∑
j=1

kij
∂T

∂xi
nxj

=96.6x21 − 5.04x1 − 0.96t+ 326.04,

for (x1, x2) ∈ B4 and t > 0, (45)

where B1, B2, B3 and B4 are defined as those in (24) - (27).
The analytic solution of the problem is

T (x1, x2, t) = 21x21x2 + 38x22 + 8tx1 + 8. (46)

As before, heat equation (40) is transformed into a
Helmholtz-type equation using the set of transformations
presented in the preceding section. Using the set of trans-
formations, heat equation (40) can be written as

∂2T

∂X1
2 +

∂2T

∂X2
2 −

(
s

k

)
T

=
1

k

[
− 21(0.6682X1 − 0.2362X2)2(1.0824X1

+ 0.4134X2)2 − 38(1.0824X1 + 0.4134X2)2 − 8

]
− 1

sk

[
(0.6682X1 − 0.2362X2)2 − 180(0.6682X1

− 0.2362X2)− 120(0.1059X1 + 1.4965X2)− 4

s

]
. (47)

The transformed boundary-conditions are

T (X1, X2, s) =
38(0.106X1 + 1.496X2)2 + 8

s
,

for (X1, X2) ∈ B1, (48)

T (X1, X2, s) =
38(0.106X1 + 1.496X2)2

s

+ 6
21(0.106X1 + 1.496X2) + 8 +

0.8

s
s

,

for (X1, X2) ∈ B2, (49)

∂T (X1, X2, s)

∂n
=


√
k1
k

(
X̂1

)2
+
k2
k

(
X̂2

)2
k

√(
X̂1

)2
+
(
X̂2

)2


×
[(
−105(0.668X1 − 0.236X2)2

s

)
+

0.8

s2

]
, for (X1, X2) ∈ B3, (50)

∂T (X1, X2, s)

∂n
=


√
k1
k

(
X̂∗1
)2

+
k2
k

(
X̂∗2
)2

k

√(
X̂∗1
)2

+
(
X̂∗2
)2


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×
[(

105(0.668X1 − 0.236X2)2

s

)
−
(

4.2(0.668X1 − 0.236X2) + 380

s

)
− 0.8

s2

]
, for (X1, X2) ∈ B4, (51)

After performing several computational experiments, it is
obtained that a good accuracy and efficiency achieved when
the boundary is discretized into 410 elements, and 81 interior
collocation points are chosen. Some of the results obtained
are presented in Figure 2 and Figure 3.

Figure 2 shows graphs of numerical solutions and the
corresponding analytical solutions along selected lines at
various time t. More specifically, the selected lines are
x1 = 0.2, x1 = 0.5, and x1 = 0.8. The times t presented
in the graphs are t = 1, t = 5, and t = 10. It can be seen
from Figure 2 that the graphs of numerical solutions and the
corresponding analytical solutions coincide. This means that
numerical solutions obtained using the method are in a good
accuracy. This shows that the numerical method presented
in the preceding section is a suitable method for solving the
problem numerically.

Figure 3 shows the percentage of errors of the numerical
solutions of the problem along the selected lines and times
t as those in Figure 2. From Figure 3, we can observe that
the percentage of errors of numerical solutions are less than
0.2%. We can also observe that the percentages of error tend
to increase as t rises. For more specific discussion, at t = 1
(Figure 3(a)), it can be seen that the percentage of error
tends to decrease as x2 increases. Along line x1 = 0.2, the
percentage of error is ranged between 0.01% and 0.07%.
Values of the percentage of error along line x1 = 0.5 are
between 0.02% and 0.08%. Along x1 = 0.8, the percentage
of errors is arranged between 0.03% and 0.1%. It is examined
that at any value of x2, except at x2 = 0.7, the percentage
of error at x1 = 0.2 is the smallest. On the other hand, at
x1 = 0.8, the percentage of error is the highest.

For t = 5 and t = 10, the graphs of the percentages of
error are shown in Figure 3(b) and Figure 3(c), respectively.
From the figures, the graphs of percentage of error have
similar fashion as those at t = 1. For t = 5, along line
x1 = 0.2, the percentage of error are between 0.04% and
0.13%. The percentages of error along line x1 = 0.5 and
x1 = 0.8 are from 0.07% to 0.15% and from 0.09% to
0.17%, respectively. For t = 10, the percentages of error
along x1 = 0.2, x1 = 0.5, and x1 = 0.8 are ranged between
0.07% to 0.16%, 0.1% to 0.18%, and 0.12% to 0.19%,
respectively. As before, the results show that the numerical
method used gives numerical solutions with high accuracy.

C. Problem 3

In the previous two problems, analytical solutions of the
problems are known. Hence, the numerical solutions obtained
can be compared with the corresponding analytical solutions
to investigate accuracy of the method. From the results
presented and discussed, it can be concluded that numerical
solutions obtained using the method presented are in good
accuracy. Hence, the method may be applied to solve heat
equation problems in anisotropic materials numerically.
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Fig. 2: Numerical and analytic solutions along selected
values of x1 at various t.
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Fig. 3: Percentage errors along selected values of x1 at
various t.

In Problem 3, we consider a problem with unknown
analytic solution. The problem is governed by equation

1.7
∂2T

∂x21
+ 4.29

∂2T

∂x22
− 0.24

∂2T

∂x1∂x2
=
∂T

∂t
, (52)

subject to initial and boundary conditions

T (x1, x2, 0) = 0 (53)
T (x1, x2, t) = 100, for (x1, x2) ∈ B1 and t > 0,

(54)
T (x2, x2, t) = 30, for (x1, x2) ∈ B2 and t > 0,

(55)
2∑

i=1

2∑
j=1

kij
∂T

∂xi
nxj

= 0, for (x1, x2) ∈ B3 and t > 0,

(56)
2∑

i=1

2∑
j=1

kij
∂T

∂xi
nxj = 0, for (x1, x2) ∈ B4 and t > 0,

(57)

where B1, B2, B3, and B4 are as those in (24) - (27).
To solve the problem numerically, the governing equation

is transformed into a Helmholtz-type equation

∂2T

∂X1
2 +

∂2T

∂X2
2 −

(
s

k

)
T = 0. (58)

The transformed boundary-conditions are

T (X1, X2, s) =
100

s
, for (X1, X2) ∈ B1, (59)

T (X1, X2, s) =
30

s
, for (X1, X2) ∈ B2, (60)

∂T (X1, X2, s)

∂n
= 0, for (X1, X2) ∈ B3, (61)

∂T (X1, X2, s)

∂n
= 0, for (X1, X2) ∈ B4. (62)

As that in Problem 2, the boundary B is discretized
into 410 elements, and 81 interior collocation points are
chosen. Some of numerical solutions obtained are presented
in Figures 4 - 6.
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Fig. 4: Variation of temperature T at some points as time t
increases.
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(a) t = 0.1

 

(b) t = 0.5

 

(c) t = 0.7

 

(d) t = 1.0

Fig. 5: Surface plot of temperature T over the region at four different times t.

Figure 4 shows the variation of the values of T at points
(0.2, 0.8), (0.5, 0.5), and (0.8, 0.2), from t = 0.1 to t = 1.
It can be seen that at any time t, the temperature at point
(0.2, 0.8) is the highest compared to those at (0.5, 0.5)
and (0.8, 0.2). On the other hand, the temperature at point
(0.8, 0.2) is the smallest contrasted to those at (0.2, 0.8) and
(0.5, 0.5). These results are expected, as point (0.2, 0.8) is
the nearest point to line x1 = 0, where the temperature on
the line is the highest over the region, which is 100◦. On the
other hand, point (0.8, 0.2) is the furthest point to the line.

It can be observed that variations of T at the three dif-
ferent points have similar fashion. Specifically, at (0.8, 0.2),
temperature T increase steeply from about 38◦ at t = 0.1 to
47o at t = 0.2. From t = 0.2 to t = 0.5, the temperature
rise gradually from about 47◦ to 49◦. Gradual increase in
temperature is still observed from 49◦ at t = 0.5 to 50◦

at t = 0.7, from which temperature reaches steady state
situation. At (0.5, 0.5) and (0.2, 0.8), from t = 0.1 to t = 0.2
temperature T inclines from about 59◦ to 67◦ and from about
84◦ to 87◦, respectively. From t = 0.2 to t = 0.5, T rises
gently from about 67◦ to 68◦ and from about 87◦ to 88◦,

respectively. Especially for (0.2, 0.8), T reaches its steady
state situation at t = 0.5. For point (0.5, 0.5), T increases
slowly from 68o to 69o, from t = 0.5 to t = 0.7. At t = 0.7,
it seems that the temperature at (0.5, 0.5) has reach its steady
state situation. Moreover, the rise in T at points nearer line
x1 = 0 is lower than those at further location. For instance,
the rise in T from t = 0.1 to t = 0.2 at point (0.8, 0.2),
the furthest location from x1 = 0 among the three points
considered, is about 9o. On the other hand, at point (0.2, 0.8),
the nearest location from x1 = 0 among the three points
examined, the increment in T is about 3◦.

Figure 5 shows surface plots of T over the region at four
different times t. Specifically, Figure 5(a) shows surface plot
of T at t = 0.1. Surface plot of T at t = 0.5 is shown in
Figure 5(b). For t = 0.7 and t = 1.0, the surface plot of
T are presented in Figure 5(c) and Figure 5(d), respectively.
From Figure 5, it seems that there is no variational value in
temperature T along any lines parallel to x2 axis. Meanwhile,
along any lines parallel to x1 axis, variational of T is
observed. It can also be observed that there is a big change
in the distribution od T over the region from t = 0.1 to

IAENG International Journal of Applied Mathematics, 52:1, IJAM_52_1_17

Volume 52, Issue 1: March 2022

 
______________________________________________________________________________________ 



t = 0.5. This means that there is observable increase in T
over the region from t = 0.1 to t = 0.5. However, from
t = 0.5 onwards, the distributions of T over the region are
about the same. This result shows that at t = 0.5, the steady
state condition is almost reached.
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Fig. 6: Values of temperature T along x1-axis for different
times t.

From the surface plots presented (see Figure 5), it can be
seen that for any time, the changes in T are observed along
x-axis direction. Figure 6 shows values of T at any line
y = c, 0 ≤ c ≤ 1, for different times t. More specifically,
there are four different times t, namely t = 0.1, t = 0.5,
t = 0.7, and t = 1.0. In Figure 6, values of T at t = 1.0 are
about the same as those at t = 0.7 (see Figure 4). Hence,
the graph of T for t = 1.0 is the same as that for t = 0.7.

For any time t, temperature T decreases along x1-axis. The
decrease in T varies with times t. At t = 0.1, a steep decrease
in T is observed from x1 = 0 to x1 = 0.6. Temperature T
declines from 100◦ to about 50◦. From x1 = 0.6, T decreases
gradually from about 50◦ to 30◦. On the other hand, at t =
0.5, temperature T = 50◦ is achieved at x1 = 0.8, from
which temperature T drops significantly from 50◦ to 30◦ at
x1 = 1. At t = 0.7 and t = 1.0 (the graphs of T of these two
t are coincide), small changes in the graph of T are detected,
compared to that at t = 0.5. The values of T at t = 0.7 and
t = 1.0 are about 0 to 2◦ higher than those at t = 0.5.
These results show that major changes in the distribution of
temperature T occurs from t = 0.1 to t = 0.5. From t = 0.5
to t = 1, small changes in T are observed. Moreover, it
seems that the steady state has been achieved at t = 0.7.

IV. CONCLUDING REMARKS

Problems involving time-dependent heat distribution in
anisotropic thin plates are considered. The problems are
solved numerically using an LTDRM. In order to solve
the problems using the LTDRM, a set of transformations
involving coordinate transformations and a Laplace trans-
form is employed to transform the governing equations into
Helmholtz-type equations. The LTDRM is tested using two
problems with analytic solution to examine its accuracy.
The numerical results show that the method is a suitable
and accurate method for solving the two problems, with
percentage errors less than 0.2%.

The implementation of the DRBEM to solve Problem
3, a problem with unknown analytical solution, results in
variational increase in temperature T at three different points.
A point near the boundary with the highest temperature,
a point in the middle of the plate, and a point near the
boundary with lowest temperature. At the point near the
highest temperature side of the thin plate, the increase in the
temperature from one time to another time is smaller than
those at further locations. On the other hand, at the point
near the boundary with lowest temperature, the incline in the
temperature is higher than those at other locations. Moreover,
at the beginning, for instance from t = 0.1 to t = 0.2, sharp
increases are observed over the region. After some times,
for instance from t = 0.5 to t = 0.7, the distributions of
temperature over the region are about the same. From the
results presented, the steady state condition has been attained
at t = 0.7.
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