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Abstract—In this paper, we consider a stochastic consumer-
resource model with time-dependent delays and harvesting
terms. We first establish some sufficient conditions for the
existence of the global positive solutions, and then prove stochas-
tic ultimate boundedness and asymptotic path estimation via
Lyapunov functions. Also, sufficient criteria for the extinction
of the stochastic consumer-resource model are obtained. Finally,
an example is given to illustrate the feasibility of our results.

Index Terms—Consumer-resource model, Stochastically ulti-
mate boundedness, Asymptotic pathwise estimation, Extinction,
Time delays, Harvesting terms.

I. INTRODUCTION

IN order to better study the relationships between pop-
ulations, Holland and DeAngelis predicted the dynamic

transitions between the results of interspecific interactions
using the consumer-resource (C-R) theory. As the param-
eter values of the consumer-resource interactions vary, all
possible outcomes of species coexistence emerged, such as
predation, parasitism, competition, mutualism, commensalis-
m. Therefore, consumer-resource interaction attracted much
attention, see [1]–[7] and the reference therein. In [2], the
authors introduced the following population dynamics of bi-
directional C-R interactions:{
z′1(t) = z1(t)[r1 − a1z1(t) + b1f1(z1, z2)− c1g1(z1, z2)],

z′2(t) = z2(t)[r2 − a2z2(t) + b2f2(z1, z2)− c2g2(z1, z2)],

where ui and ri represent the number density and the
population growth rate of species i, respectively; bifi(ui, uj)
and cigi(ui, uj) represent the bi-directional C-R interaction,
i, j = 1, 2.

Time delay is involved in more reasonable and meaningful
models of population interactions, which is the source of
instability in dynamic systems. It may cause population
fluctuations, see [7]–[12] and the reference therein. In [7],
the authors derived the following almost periodic C-R model
with time delays:

z′1(t) = z1(t)[r1(t)− a1(t)z1(t)− b1(t)z2(t)

+c1(t)z2(t− ϑ1(t))],

z′2(t) = z2(t)[r2(t)− a2(t)z2(t)− b2(t)z1(t)

+c2(t)z1(t− ϑ2(t))],
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where ci(t)zj(t−ϑi(t)) represents a positive feedback term,
which is due to gestation; the delay ϑi(t) represents a
gestation or maturation period, i 6= j, i, j = 1, 2.

Also, most population systems are inevitably influenced
by environmental noise. In [13], the authors have revealed
that all factors relating to the system, including the birth
rate, carrying capacity, competition coefficients and other pa-
rameters, exhibit random fluctuation more or less. Therefore,
deterministic systems with random factors have been widely
studied with many achievements made, see [14]–[22] and the
reference therein.

Motivated by the above, under the famous catch-per-unit-
effort harvesting hypothesis [23]–[25], we are concerned with
the following stochastic C-R system with time-dependent
delays and harvesting terms:

dz1(t) = z1(t)

[
r1(t)

z1(t− τ1(t)) +m1(t)
− a1(t)z1(t)

−b1(t)z2(t) + c1(t)z2(t− ϑ1(t))− h1(t)

]
dt

+δ1(t)z1(t)dB1(t),

dz2(t) = z2(t)

[
r2(t)

z2(t− τ2(t)) +m2(t)
− a2(t)z2(t)

−b2(t)z1(t) + c2(t)z1(t− ϑ2(t))− h2(t)

]
dt

+δ2(t)z2(t)dB2(t),
(1)

where ri(t), ai(t), bi(t), τi(t), mi(t), ci(t), hi(t), ϑi(t),
δi(t) are all positive, bounded and continuous functions on
[0,+∞) and mi(t) ≥ 1; Bi(t) represents independent Brow-
nian motion; σi(t) denotes the intensities of the white noises,
i = 1, 2. Although there exist many paper to investigate the
stochastic population model, very little work has been done
on the stochastic system with time-dependent delays and
harvesting terms. Therefore, it is very meaningful to study
the stochastic C-R model (1).

For convenience, we denote

gU = sup
t∈[0,+∞)

g(t), gL = inf
t∈[0,+∞)

g(t).

II. GLOBAL POSITIVE SOLUTIONS

To study the dynamical behavior of the stochastic C-R
system (1), we will give some conditions under which system
(1) has a unique global positive solution.

Denote (Ω,F , {Ft}t≥0, P ) be a complete probability s-
pace, and {Ft}t≥0 is a filtration that satisfies the usual
conditions. Let

z(t) = (z1(t), z2(t)) ∈ R2
+ = {z ∈ R2|zi > 0, i = 1, 2},
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and C([−ϑ̂, 0];R2
+) is the family of continuous functions

φ : [−ϑ̂, 0]→ R2
+ with the norm ‖φ‖1 = max

1≤i≤2
‖φi‖, ‖φi‖ =

sup
−ϑ̂≤θ≤0

|φi(θ)|, where

ϑ̂ = max{ϑ, τ}, ϑ = lim
1≤i≤2

{
sup
t∈R

ϑi(t)
}
,

τ = lim
1≤i≤2

{
sup
t∈R

τi(t)
}
, ϑ′ = max

1≤i≤2

{
sup
t∈R

ϑ′i(t)
}
< 1.

The initial data for system (1) is

φ(θ) = (φ1(θ), φ2(θ)), −ϑ̂ ≤ θ ≤ 0. (2)

Theorem 2.1: System (1) has a unique positive global
solution z(t) = (z1(t), z2(t)) for t ≥ −ϑ̂ with any given
initial value (2), and the solution will remain in R2

+ a.s.
(almost surely).

Proof: According to the assume, we know that the
coefficients of the stochastic system (1) are locally con-
tinuous. For any initial value φ(t) = (φ1(t), φ2(t)) ∈
C([−ϑ̂, 0];R2

+), there exists a unique local solution z(t) for
t ∈ [−ϑ̂, πe), where πe is the explosion time. It is easy to
see that the solution is global equivalent to πe = +∞ a.s.
Let φ(t) ∈ C([−ϑ̂, 0];R2

+) all lie within the interval [ 1
k0
, k0]

for k0 > 0. Define

πk = inf

{
t ∈ [0, πe) : z1(t) or z2(t) /∈

(
1

k
, k

)}
, k ≥ k0,

where πk is the stopping time.
Set inf ∅ =∞, whence πk is increasing as k →∞. Denote

π∞ = limk→∞ πk, then π∞ ≤ πe a.s. In order to prove
πe = ∞ a.s., it is only necessary to prove π∞ = ∞ a.s. If
π∞ 6= ∞ a.s., there exists T > 0 and ε ∈ (0, 1) such that
P{π∞ ≤ T} > ε. Therefore, there exists an integer k1 ≥ k0
such that P{πk ≤ T} ≥ ε, where k ≥ k1.

Consider a function V : R2
+ → R+ by V (z) = V1(z) +

V2(z), where

V1(z) = (z1 − 1− ln z1) + (z2 − 1− ln z2),

V2(z) = 0.5cU1

∫ t

t−ϑ1(t)

z22(s)ds

1− v′
+ 0.5cU2

∫ t

t−ϑ2(t)

z21(s)ds

1− v′
.

Obviously, V (z) is a nonnegative function. By using the Itô’s
formula to V (z), we have

dV1(z)

=

(
1− 1

z1

)
dz1 +

1

2z21
(dz1)2

+

(
1− 1

z2

)
dz1 +

1

2z22
(dz2)2

= (z1(t)− 1)

[
r1(t)

z1(t− τ1(t)) +m1(t)
− a1(t)z1(t)

−b1(t)z2(t) + c1(t)z2(t− ϑ1(t))− h1(t)

]
dt

+(z2(t)− 1)

[
r2(t)

z2(t− τ2(t)) +m2(t)
− a2(t)z2(t)

−b2(t)z1(t) + c2(t)z1(t− ϑ2(t))− h2(t)

]
dt

+0.5(δ21(t) + δ22(t))dt+ (z1(t)− 1)δ1(t)dB1(t)

+(z2(t)− 1)δ2(t)dB2(t)

= LV (z1, z2)dt+ (z1(t)− 1)δ1(t)dB1(t)

+(z2(t)− 1)δ2(t)dB2(t),

where

LV1(z)

= (z1(t)− 1)

[
r1(t)

z1(t− τ1(t)) +m1(t)
− a1(t)z1(t)

−b1(t)z2(t) + c1(t)z2(t− ϑ1(t))− h1(t)

]
+(z2(t)− 1)

[
r2(t)

z2(t− τ2(t)) +m2(t)
− a2(t)z2(t)

−b2(t)z1(t) + c2(t)z1(t− ϑ2(t))− h2(t)

]
+0.5(δ21(t) + δ22(t))

≤ −aL1 z21(t) + [rU1 + aU1 + bU2 ]z1(t) + 0.5cU1 z
2
1(t)

+0.5cU1 z
2
2(t− ϑ1(t))− aL2 z22(t) + [rU2 + aU2

+bU1 ]z2(t) + 0.5cU2 z
2
2(t) + 0.5cU2 z

2
1(t− ϑ2(t))

+0.5(δU1 )2 + 0.5(δU2 )2.

Compute

dV2(z) =
cU1

2(1− ϑ′)
z22(t)− cU1 (1− ϑ′1(t))

2(1− ϑ′)
z22(t− ϑ1(t))

+
cU2

2(1− ϑ′)
z21(t)− cU2 (1− ϑ′2(t))

2(1− ϑ′)
z21(t− ϑ2(t))

≤ cU1
2(1− ϑ′)

z22(t)− 0.5cU1 z
2
2(t− ϑ1(t))

+
cU2

2(1− ϑ′)
z21(t)− 0.5cU2 z

2
1(t− ϑ2(t)).

Then

LV = LV1 + LV2

≤
(
− aL1 + 0.5cU1 +

cU2
2(1− ϑ′)

)
z21(t)

+[rU1 + aU1 + bU2 ]z1(t) +

(
− aL2 + cU2

+
cU1

2(1− ϑ′)

)
z22(t) + [rU2 + aU2 + bU1 ]z2(t)

+0.5(δU1 )2 + 0.5(δU2 )2

≤ A,

where A is the upper bound of LV . Therefore, we have

dV (z) ≤ Kdt+ (z1(t)− 1)δ1(t)dB1(t)

+(z2(t)− 1)δ2(t)dB2(t).

A conclusion can be obtained by using the same proof
method as [19], so it is omitted. The proof is completed.

III. STOCHASTICALLY ULTIMATE BOUNDEDNESS

Lemma 3.1: Let γ ∈ (0, 1), then there exists a constant
N = N(γ) > 0, which is independent of (φ1(θ), φ2(θ)) ∈
C([−ϑ̂, 0], R2

+), such that the solution z = (z1, z2) of the
stochastic model (1) has

lim sup
t→+∞

E|z|γ ≤ N.
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Proof: To define V (z) = zγ1 + zγ2 , applying the Itô
formula to the system (1), we have

dV (z) = LV (z1, z2)dt+ δ1(t)γzγ1 (t)dB1(t)

+δ2(t)γzγ2 (t)dB2(t),

where

LV (z1, z2)

= γzγ1 (t)

[
r1(t)

z1(t− τ1(t)) +m1(t)
− a1(t)z1(t)

−b1(t)z2(t) + c1(t)z2(t− ϑ1(t))− h1(t)

]
+γzγ2 (t)

[
r2(t)

z2(t− τ2(t)) +m2(t)
− a2(t)z2(t)

−b2(t)z1(t) + c2(t)z1(t− ϑ2(t))− h2(t)

]
+0.5γ(γ − 1)(zγ1 (t)δ21(t) + zγ2 (t)δ22(t))

≤ γrU1 z
γ
1 (t) + γcU1 z

γ
1 (t)z2(t− ϑ1(t)) + γrU2 z

γ
2 (t)

+γcU2 z
γ
2 (t)z1(t− ϑ2(t))

≤ γrU1 z
γ
1 (t) + 0.25(γcU1 )2z2γ1 (t) + z22(t− ϑ1(t))

+γrU2 z
γ
2 (t) + 0.25(γcU2 )2z2γ2 (t) + z21(t− ϑ2(t))

≤ G(z)− V (z) + z22(t− ϑ1(t)) + z21(t− ϑ2(t))

− eϑ

1− ϑ′
(z21(t) + z22(t)),

G(z)

= γrU1 z
γ
1 (t) + 0.25(γcU1 )2z2γ1 (t) + γrU2 z

γ
2 (t)

+0.25(γcU2 )2z2γ2 (t) +
1− ϑ′ + eϑ

1− ϑ′
(z21(t) + z22(t)).

Since γ ∈ (0, 1), G(z) is bounded in R2
+, i.e. G(z) ≤ M̂ ,

where M̂ ≥ 0 for any z ∈ R2
+.

Hence, we have

dV (z)

≤
[
M̂ − V (z) + z22(t− ϑ1(t)) + z21(t− ϑ2(t))

− ev

1− ϑ′
(z21(t) + z22(t))

]
dt

+δU1 γz
γ
1 (t)dB1(t) + δU2 γz

γ
2 (t)dB2(t). (3)

By virtue of (3), we apply the Itô formula to etV (z),

d(etV (z))

= etV (z)dt+ etdV (z)

≤ et
[
M̂ + z22(t− ϑ1(t)) + z21(t− ϑ2(t))

− ev

1− ϑ′
(z21(t) + z22(t))

]
dt

+δU1 γe
tzγ1 (t)dB1(t) + δU2 γe

tzγ2 (t)dB2(t),

then

etEV (z)

≤ V (z1(0), z2(0)) + etM̂ − E
[

eϑ

1− ϑ′

∫ t

0

es(z21(s)

+z22(s))ds

]
+ E

∫ t

0

esz22(s− ϑ1(s))ds

+E

∫ t

0

esz21(s− ϑ2(s))ds

]
dt

≤ V (z1(0), z2(0)) + etM̂ +
eϑ

1− ϑ′

∫ 0

−ϑ1(t)

esz22(s)ds

+
eϑ

1− ϑ′

∫ 0

−ϑ2(t)

esz21(s)ds.

We easily infer that lim sup
t→+∞

EV (u) ≤ M̂ .

On the other hand,

|z|γ = (z21 + z22)
γ
2 ≤ 2

γ
2 max{zγ1 , z

γ
2 } ≤ 2

γ
2 V (z).

Hence,

lim sup
t→+∞

E|z|γ ≤ 2
γ
2 M̂ := N.

The proof is completed.
Theorem 3.1: Let γ ∈ (0, 1), then the system (1) is

stochastically ultimate boundedness.
Proof: By using of the Lemma 3.1, we obtain

lim sup
t→+∞

E|z|γ ≤ N , where N > 0 is a constant. For any

ε > 0, let η = (N/ε)2. By Chebyshev’s inequality, we have

P
{
|z(t)| > η

}
≤

√
|z(t)|
η

,

then

lim sup
t→+∞

P
{
|z(t)| > η

}
≤ ε.

The proof is completed.

IV. ASYMPTOTIC PATHWISE ESTIMATION

Theorem 4.1: For any (φ1(θ), φ2(θ)) ∈ C([−ϑ̂, 0], R2
+),

the solution z = (z1, z2) of system (1) has the properties

lim sup
t→+∞

ln z1(t)

ln t
≤ 1, lim sup

t→+∞

ln z2(t)

ln t
≤ 1.

Proof: Define V (z) = ln(z1 + z2), by using the Itô
formula to system (1), we have

d(etV (z))

= etV (z)dt+ etdV (z)

≤ et ln(z1 + z2)dt+ etd ln(z1 + z2)

≤ et ln(z1 + z2)dt+
etz1

z1 + z2

[
r1(t)

z1(t− τ1(t)) +m1(t)

−a1(t)z1(t)− b1(t)z2(t) + c1(t)z2(t− ϑ1(t))

−h1(t)− 0.5
etδ21(t)z21
(z1 + z2)2

]
dt+

etδ1(t)z1
z1 + z2

dB1(t)

+
etz2

z1 + z2

[
r2(t)

z2(t− τ2(t)) +m2(t)
− a2(t)z2(t)

−b2(t)z1(t) + c2(t)z1(t− ϑ2(t))− h2(t)

−0.5
etδ22(t)z22
(z1 + z2)2

]
dt+

etδ2(t)z2
z1 + z2

dB2(t),

thus

et ln(z1 + z2)

= ln(z1(0) + z2(0)) +

∫ t

0

es ln(z1(s) + z2(s))ds

+

∫ t

0

esz1(s)

z1(s) + z2(s)

[
r1(s)

z1(s− τ1(s)) +m1(s)
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−a1(s)z1(s)− b1(s)z2(s) + c1(s)z2(s− ϑ1(s))

−h1(s)− 0.5
z21(s)esδ21(s)

(z1(s) + z2(s))2

]
ds+Q1(t)

+

∫ t

0

esz2(s)

z1(s) + z2(s)

[
r2(s)

z2(s− τ2(s)) +m2(s)

−a2(s)z2(s)− b2(s)z1(s) + c2(s)z1(s− ϑ2(s))

−h2(s)− 0.5
z22(s)esδ22(s)

(z1(s) + z2(s))2

]
ds+Q2(t), (4)

where Qi(t) =
∫ t
0
eszi(s)δi(s)
z1(s)+z2(s)

dBi(t), i = 1, 2.
Let Q(t) = Q1(t)+Q2(t), then Q(t) is a local martingale,

and

< Q(t), Q(t) > = 0.5

∫ t

0

z21(s)e2sδ21(s)

(z1(s) + z2(s))2
ds

+0.5

∫ t

0

z22(s)e2sδ22(s)

(z1(s) + z2(s))2
ds.

By employing the exponential martingale inequality and
the Borel-Cantelli lemma [3], for any positive constants l, α
and λ > 1, there exists a l(ω) for almost all ω ∈ Ω, such
that for all l ≥ l(ω), we have

H(t) ≤ e−lα

2
< H(t), H(t) > +λelα ln l, 0 ≤ t ≤ lα. (5)

By means of (5), we have

et ln(z1 + z2)

≤ ln(z1(0) + z2(0))

+

∫ t

0

es ln(z1(s) + z2(s))ds+ λelα ln l

+

∫ t

0

esz1(s)

z1(s) + z2(s)

[
rU1 + cU1 z2(s− ϑ1(s))

]
ds

+

∫ t

0

esz2(s)

z1(s) + z2(s)

[
rU2 + cU2 z1(s− ϑ2(s))

]
ds.

(6)

Since 0 ≤ t ≤ lα, l ≥ l(ω), we know s ≤ lα. Note that∫ t

0

esz2(s− ϑ1(s))ds

≤
∫ t

0

es−ϑ1(s)eϑ1(s)z2(s− ϑ1(s))

1− ϑ′
d(s− ϑ1(s))

≤ ev

1− ϑ′

∫ t−ϑ1(t)

−ϑ1(0)

esz2(s)ds

≤ ev

1− ϑ′

∫ 0

−ϑ1(0)

esz2(s)ds+
ev

1− ϑ′

∫ t

0

esz2(s)ds.

Similarly, we have∫ t

0

esz1(s− ϑ2(s))ds

≤ eϑ

1− ϑ′

∫ 0

−ϑ2(0)

esz1(s)ds+
eϑ

1− ϑ′

∫ t

0

esz1(s)ds.

Then (6) can be rewritten

et ln(z1 + z2)

≤ ln(z1(0) + z2(0)) +
cU1 e

ϑ

1− ϑ′

∫ 0

−ϑ1(0)

esz2(s)ds

+
cU2 e

ϑ

1− ϑ′

∫ 0

−ϑ2(0)

esz1(s)ds+

∫ t

0

es
[

ln(z1 + z2)

+rU1 + rU2 +
max{cU1 , cU2 }eϑ

1− ϑ′
(z1 + z2)]ds+ λelα ln l.

Obviously, there exists a constant K∗ > 0 such that

ln(z1 + z2) + rU1 + rU2 +
max{cU1 , cU2 }eϑ

1− ϑ′
(z1 + z2) ≤ K∗.

Let

Ĝ = ln(z1(0) + z2(0)) +
cU1 e

ϑ

1− ϑ′

∫ 0

−ϑ1(0)

esz2(s)ds

+
cU2 e

ϑ

1− ϑ′

∫ 0

−ϑ2(0)

esz1(s)ds,

then for all 0 ≤ t ≤ lα, l ≥ l(ω), we have

et ln(z1 + z2) ≤ Ĝ+

∫ t

0

esK∗ds+ λelα ln l.

If α(l − 1) ≤ t ≤ lα and l ≥ l(ω), then

ln(z1 + z2)

ln t
≤ Ĝ

et ln t
+
etK∗ −K∗

et ln t
+
λelα ln l

et ln t
.

That is

lim sup
t→+∞

ln(z1 + z2)

ln t
≤ λeα. (7)

Letting λ→ 1, α→ 0, by (7), we have

lim sup
t→+∞

ln z1(t)

ln t
≤ 1, lim sup

t→+∞

ln z2(t)

ln t
≤ 1, a.s.

The proof is completed.

V. EXTINCTION

Since natural and anthropogenic factors can cause popula-
tion declines or extinction, the study of extinction is of great
significance for biological populations. In this section, we
will mainly investigate the extinction of system (1).

Theorem 5.1: Assume that rUi − hLi − 0.5(δLi )2 < 0, and
c1(t) = 0 or c2(t) = 0, then for any given initial value
satisfying (φ1(θ), φ2(θ)) ∈ C([−ϑ̂, 0], R2

+), the solution z =
(z1, z2) of system (1) will be extinct with probability one,
that is

lim sup
t→∞

ln z1(t)

t
= 0, lim sup

t→∞

ln z2(t)

t
= 0.

Proof: If c1(t) = 0, applying the Itô formula to system
(1), we have

d ln z1(t) =

[
r1(t)

z1(t− τ1(t)) +m1(t)
− a1(t)z1(t)

−b1(t)z2(t)− h1(t)− 0.5δ21(t)

]
dt

+δ1(t)dB1(t),

d ln z2(t) =

[
r2(t)

z2(t− τ2(t)) +m2(t)
− a2(t)z2(t)

−b2(t)z1(t) + c2(t)z1(t− ϑ2(t))− h2(t)

−0.5δ22(t)

]
dt+ δ2(t)dB2(t),

Integrating both sides from 0 to t, we get

ln z1(t) ≤ ln z1(0) +

∫ t

0

(
r1(s)− h1(s)− 0.5δ21(s)

)
ds
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+

∫ t

0

δ1(s)dB1(s)

≤ ln z1(0) + (rU1 − hL1 − 0.5(δL1 )2)t

+

∫ t

0

δ1(s)dB1(s),

ln z2(t) ≤ ln z2(0) +

∫ t

0

(
r2(s) + c2(s)z1(s− ϑ2(s))

−h2(s)− 0.5δ22(s)

]
ds+

∫ t

0

δ2(s)dB2(s)

≤ ln z2(0) + (rU2 − hL1 − 0.5(δL2 )2)t

+

∫ t

0

c2(s)z1(s− ϑ2(s))ds

+

∫ t

0

δ2(s)dB2(s),

then

lim sup
t→∞

ln z1(t)

t
≤ rU1 − hL1 − 0.5(δL1 )2 < 0,

that is lim
t→∞

z1(t) = 0. Therefore,

lim sup
t→∞

ln z2(t)

t
≤ rU2 − hL1 − 0.5(δL2 )2 < 0.

In the same way, if c2(t) = 0, we have lim sup
t→∞

ln z2(t)
t < 0,

and obtain lim sup
t→∞

ln z1(t)
t < 0 a.s. The proof is completed.

Remark 5.1: It can be easily seen from Theorem 5.1 that
the stochastic perturbation and harvesting terms do affect
the extinction of the model (1). Excessive noise and over-
harvesting can lead to the extinction of entire species. There-
fore, stochastic perturbation and harvesting terms cannot be
ignored when considering population dynamics.

VI. AN EXAMPLE

Considering the stochastic consumer-resource model (1),
we choose the coefficients

r1(t) = 0.6− 0.01 sin 2t, r2(t) = 0.7 + 0.02 sin 2t,

a1(t) = 0.04 + 0.01 cos t, a2(t) = 0.05 + 0.02 cos t,

b1(t) = 0.04 + 0.02 cos 2t, b2(t) = 0.06 + 0.01 cos 2t,

c1(t) = 0.03 + 0.02 cos 2t, c2(t) = 0.04 + 0.01 cos 2t.

τ1(t) = τ2(t) = ϑ1(t) = ϑ2(t) = 0.02(1 + sin t),

m1(t) = m2(t) = 2

One can calculate that

rU1 = 0.61, rU2 = 0.72, aU1 = 0.05, aU2 = 0.07,

cU1 = 0.05, cU2 = 0.05, ϑ̂ = 0.04, ϑ′ = 0.02.

The initial data φ1(θ) = 0.5, φ2(θ) = 0.5, where θ ∈
[−0.04, 0].

If δ1(t) = 0.56 + 0.02 sin 2t, δ2(t) = 0.56 + 0.02 cos 2t,
h1(t) = 0.55 + 0.01 sin 2t and h2(t) = 0.61 + 0.01 sin 2t,
then we have

rU1 − hL1 − 0.5(δL1 )2 = −0.08 < 0,

rU2 − hL2 − 0.5(δU2 )2 = −0.03 < 0.

It is easy to see that the assumptions of Theorem 2.1-
Theorem 5.1 hold. Therefore, the solution of system (1) is
stochastic boundedness and extinction.
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Fig. 1: Dynamic behavior of zi(t) with hi(t) = δi(t) = 0, and
the initial condition (φ1(0), φ2(0)) = (0.5, 0, 5)T , i = 1, 2.
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Fig. 2: Dynamic behavior of zi(t) with h1(t) = 0.55 +
0.01 sin 2t, h2(t) = 0.61+0.01 sin 2t, δ1(t) = 0.56+0.02 sin 2t,
δ2(t) = 0.56 + 0.02 cos 2t, c1(t) = 0, where the initial condition
(φ1(0), φ2(0)) = (0.5, 0, 5)T , i = 1, 2.

VII. CONCLUSIONS

In this paper, we obtain a unique global positive solution
to the stochastic C-R model (1), which is stochastically
ultimate boundedness. Then, the asymptotic properties of
the sample paths and the extinction of the stochastic system
are investigated. The results show that the harvesting terms,
time delays and stochastic perturbation affect the population
model’s dynamic behavior, which is vital for population
development.

Some valuable questions deserve further study. On the one
hand, more realistic but complex models can be proposed.
For example, the effect of the impulse factor on the system’s
dynamic behavior (1) can be taken into consideration, see
[26] and [27]. On the other hand, the methods employed
in this paper can be used to explore other models, such as
Gilpin-Ayala model logistic model, epidemic models, and
worm propagation model, see [28]–[31] and the reference
therein. We will explore these possibilities in future studies.
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