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Existence of Solutions for a System of Coupled
Hybrid Fractional Integro-differential Equations

Xintao Gao, Li Chen*

Abstract—In this paper, we consider the existence of solutions
for a coupled system of hybrid fractional integro-differential
equations. As an application of the hybrid fixed point theorem
due to Dhage, we obtain the system has a coupled solution.

Index Terms—Caputo fractional derivative; coupled system;
hybrid fixed point theorem; fractional integro-differential equa-
tions.

I. INTRODUCTION

HE fractional differential equations are regarded as an
important mathematical branch, because the behavior
of many physical systems can be described by applying the
fractional order system theory [1-2]. The area of differential
equations devoted to quadratic perturbations of nonlinear
differential equations (called hybrid differential equations)
has attracted much attention to researchers and served as spe-
cial cases of dynamical systems. Many authors established
existence results for hybrid differential equations [3-9].
The authors in [4] investigeted the existence and unique-
ness of solutions to the first order ordinary hybrid differential
equation

i (st ) ~ o0 e
.%‘(to) =x9 € R.

In [10], Zhao et al. considered the existence of solution-
s to the hybrid differential equations involving Riemann-
Liouville fractional differential operators

NG
D0+(f(t,x(t))> =g(t,z(t), te[0,T],

here 0 < g < 1.

In [11], the authors discussed the existence of solutions
for a nonlocal boundary value problem of hybrid fractional
integro-differential equations

o(t) — i[ﬁihi(t,z(t))

C na
b £t 2(0)

:g(t,l’(t)), te [Oa 1]7

z(l) = A,
here € D® is Caputo fractional derivative, 1 < a < 2.
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The authors in [12] derived an existence result for the
fractional hybrid integro-differential equation

C | B = ot k@), I (1), 167 k(t), - - -, 15" k(1))
Ol ot k(t), 16" k(t), 157 k(t), - - -, 16" k(t))
=(t,k(t)), telo,1].

with mixed integral hybrid boundary value conditions.

On the other hand, coupled systems of fractional order
differential equations are very meaningful subject of the
mathematics and have various applications in disease models,
ecological models, nonlocal thermoelasticity and synchro-
nization of chaotic systems [13-16].

Bapurao C. Dhage et al. [17] studied the existence of
coupled solutions to the following coupled hybrid integro
differential equations of fractional order

x(t) - 3 1°
CD“’( =1

) = vlea.u0),
teJ=10,1],
JJ(O) =a, Z‘(l) = b7 y(O) = ¢, y(l) = d7

here © D is the Caputo fractional derivative.
By mixing idea of the afore works, in this paper, we
consider the following system of coupled hybrid fractional

integro-differential equations
z(t) — S IPihi(t,z(t), y(t), I 2 (t), I y(t))

C na 1=1
b ( o), 50 )
= (z)(ta x(t)vy(t))v te [07 1}7

m

(1)
y(t) — > Dik;(t,2(t),y(t), I%22(t), I°2y(t))
CpB j=1 >
g(t, z(t), y(t)
= w(t’x(t)vy(t))a te [07 1,
(2)
z(0) = p(z), (1) = A4, 3)
y(0) =v(y), y(1) =B, )

here D denotes the Caputo fractional derivative, a, 5 €
(1,2], IP, I are the Riemann-Liouville fractional integral
of order 3; > 0,v; > 0,¢ = 1,2,---m, j = 1,2, -
n, f,g € C(]0,1] x R x R — R\{0}),¢,v € C([0,1] x
RxR— R),hi,k; € C([0,1]] x Rx Rx Rx R— R) for
t=1,2---m, 3=12,---n, 01,05,01,09 > 0, T2 2
C([0,1],R) - R and A, B € R.
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In this paper, we use hybrid fixed point theorem to estab-
lish the sufficient conditions for the existence of solutions
to the coupled system (1)-(4). Even though we use the
standard tools, its exploration to the problem (1)-(4) is
new. Our results have some reference significance to the
existing literature on Caputo type nonlocal coupled system
of fractional integro-differential equations.

II. THE PRELIMINARY LEMMAS

Definition 2.1 [2] For a function u(t), the Caputo deriva-
tive of fractional order o > 0 is defined as
1 t
mfo (t=5)"""" "™ (s)ds, n = [a]+1,

provided that the integral on the right hand side exists.
Definition 2.2 [2] For a function u(t), the Riemann-
Liouville fractional derivative of order o« > 0 is defined as

;di ot s nfa—lu Sds.n = la
L(n—a) dt”/o (t=9) (s)ds,n = [o]+1,

provided that the integral on the right hand side exists.
Definition 2.3 [2] For a function u(¢), the Riemann-
Liouville fractional integral of order o > 0 is defined as

1 ! a—1
m/o (t —8)* u(s)ds,

provided that the integral on the right hand side exists.
Remark 2.4 If u(t) € C"[0,0), then

C ay, — 1 ! _Sn—a—lu(n) s)ds
D) ] L= (5)d

="y (t), n=a]+1.
Lemma 2.5 [2] Let 2 € AC™[0,1] and « > 0, then
I* CD%u(t) =

CD%u(t) =

D%u(t) =

I%u(t) =

u(t) +co+cit + Cth 4+ 4 Cn_ltn_l’

for some ¢; € R,i=0,1,---,n—1,n=[a] + 1.
Let the Banach space X = C]0, 1] equipped with standard
norm

|z[| = sup |z(t)],
0<t<1

which is a Banach algebra with the multiplication ”-” defined
by
(z - y)(t) = (t) - y(t).

We consider the product space £ = X x X, then the normed
linear space (E,||(,-)||) is a Banach space where the norm
[[(-; )] is given by

1 )l = [zl + [lyll-
R by
(@, y)(t)-(u, 0)(t) =

®)
Define the multiplication ”
(@(t)u(t), y(t)v(t))-

((z,9)-(u, 0))(t) =
(6)

Lemma 2.6 [17] The Banach space E is a Banach algebra
with the norm || (-, -)|| and the multiplication ” -” defined by
(5) and (6) respectively.

Definition 2.7 [18] We call that T : E — E'is u-Lipschitz
if there exists a constant y satisfies

1T (z,y) = T(@,9)ll < pllle =zl +lly = gl)

for all (z,y),(Z,y) € E with p > 0. Further if 4 < 1, then
T is a strict contraction.

Theorem 2.8 [18] Let S be a closed convex bounded
nonempty subset of a Banach algebra F, andlet A,C : £ —
E and B : S — E be three operators such that
(a) A and C are Lipschitzian with Lipschitz constants § and
;

(b) B is compact and continuous;

(¢)x=AzBy+ Cx = x € SforallyeS;

(d) 0M + p < 1, where M = ||B(S5)]|.

Then the operator equation AzBy + Cx = x has a solution
in S.

At this point, we give the following hypotheses.

(Hy) The functions f,g : [0,1] x R x R — R\{0}, ¢, :
0,1]] x Rx R — R,h;,kj : [0,]] x Rx RxRXxR— R
for:=1,2,---,m, j=1,2,---,n are continuous;

(H2) There exist positive functions L, L, with bounds
|ILs|| and || Ly respectively such that

£ (&2 (), y() = f (&, 2(t), g(t)] < Ly () (Jx—Z|+|y —7l),

l9(t,2(8), y (1) = g(t, 2(2), 5(1)| < Lg(t)(Jx =2+ ]y —9]),

for all t € [0,1] and =, Z,y,7 € R;
(H3) There exist positive functions Ly, Ly, with bounds

|hi(t7k17k27k37k4)_hi(t7k k27k37k4 | < Lh

Z|k —K,

| (t, o, ko ks, hea)—j (6, K kb, K, KD < Li, ( Z ks —FK.|,
for all t € [0,1] and (k1, ko, k3, k4), (K}, kb, k%, ky) € R
(Hy) There exist constants My > 0, M7 > 0 such that

\hi(t,z,y, T2, I y)| < M,

|k (t, 2, y, [%22, T%2y)| < M,

for all (t,x,y, [z, I°y), (t,x,y, %22, 1°2y) € [0,1] x Rx
RxRxRandi=1,2,---m, j=1,2,---,m;
(Hs) There exist two functions py,ps € L°([0,1], RT)
and four continuous nondecreasing functions 1,9, &1,&s ¢
[0,00) — [0, 00) such that

lo(t, 2, y)| < pr()¢1 (=) (Jy]),

[ (t, 2, )| < pa(t)i2(]z])E2(ly]),

forall t € [0,1],z,y € R;
(Hg) There exist constants M, M3 > 0 such that

S M27

o)

‘ v(y)
9(0, (), v

®) ‘
for any z,y € C([0,1], R);
(H7) There exists r > 0 such that

S M37

n

+goA+Z Ko

foA-l-ZF 7+1)

(ﬂz + 1)

<r,
P
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where So,
p=1—|LsA =Ll A . A Zfl Qo7 ()61, (5) TP () ds
— ——— || L, || max{1 + 1+ = i=1
; (Bi1+ 1)H | maxd 1“(911+ 1) F(611+ 1)} “ [ FOAV)
B Pp—— ) 1 1 ~Jo TTlay M4 T TG L))
2T, + e It w oy g, (12)
Also, by the equations (11) and (12), we find that
A+ My 35— m
_ 2|lpalva(r)éa(r) =1 0B +1) o(t) — S IPih(t, z(t), y(t), 19 2(t), I y(t))
A= + + Ma, i=1
I'(a+1) |f(1, A, B)| ’
S HOFONTO)
lipaliéa(r)a(r |B| + M; e = 5 fo (t — )™ h( Yds
P2 Y2 T )27 Jj=1 J 1 (1—s)Bi—
A= M. A— (=9 hb.Lé, 1%12(s),1%1 ds
RS R i S O 0
F(L,Ay(1)
f0: S‘[Jp]f(t,o,()% go = SFp]g(t1070)7 1 (1—gyo—? () ()
te[0,1 tel0,1 _ —s _ u(x w(x
Jo T M8)ds ~ ooy | T FOREwOn-
Hy = sup h;(¢,0,0,0,0), i=1,2,---,m,
te[0,1] The proof is completed. ]
Ko = sup K;(t,0,0,0,0), j=1,2,--n. By. Lemmg 3.1, we define an operator T : F — FE
te[0,1] associated with the problem (1)-(4) as follows
III. MAIN RESULT T(I7y)(t) = (Tl (I7y)(t),T2(:L'7y)(t)), (13)
In this section, we present the main existence result for where
the system of coupled hybrid fractional integro-differential Ty(z,y)(t) = 3 IPih(t, (1), y (1), I (1), I y(t))
equation (1)-(4). =
Lemma 3.1 Let & € X. Then z is a solution of the hybrid 1 t a1
ta(t),y) | =i [ (t— ,z(s), d
fractional integro-differential problem +F(t2 (1), y( )[F(a) Jo(t =) (s, x(s), y(s))ds

w(t) = 30 I8 hy(t, w(t), (1), I a(t), Iy (t))

A= [ U b a(s), (), T (), T y(s))ds
H(

¢ pa i=1 = f(1,A,B)
ftz(t),y(t)) "y @
= h(t), tel0,1], ~Jo & r(a) (s I(S)vy(s))ds> +(1- t)f(o,lffa(v)?u(y» :
(0) = pla), 2(1)=A ® (1
€T = x), = 4, n >
a Ty(a,y)(t) = > Dokt x(t), y(t), I%2a(t), P2y (t))
if and only if j=1
" ot (0,000 |y (¢ = )7~ 005, 0(5) (61
a(t) = 3 IPhi(t, (1), y(t), 1" x(t), I y(t)) L
=1 =30 [ Ok (sa(s)y(s) 2w (s) 172y (s)) ds
+f(t 2(t), y(t)) {r(a fo (t —5)*" h(s)ds +t< = 9(L,A,B)
A— Lamefitl h (s,z(8),y(s), 10 x(s),I%1y(s))ds 1 (1—s)?—1 (1
+t ;f R e " = Jo St (s, 2(),9(5)ds | + (1 =) ity |-
F(1,A,y(1)) (15)
! (1—5)“1h(8)d8) F(1-1) w(z) _ Observe that coupled system (1)-(4) has a solution if and
0 I(e) F0,u(@),y(0)) only if the operator equation T'(x,y) = (x,y) has a fixed

©))
Proof: Applying the Riemann-Liouville fractional inte-
gral operator I on both sides of the equaiton (7), we obtain

point.
Theorem 3.2 Assume that the hypotheses (H; )-(H7) hold.
Furthermore, if

w(t) = 3 10 hi(t,a(t), y(t), I (1), IPry(t)) WM“WLWM+A> X X
=1 m h
10 + max{l + 1+
R CONTO) (10) 2 r(”% H py maxd OO 0y
= [ “=A—h(s)ds + co + c1t. o k;
0 T(a) 1 1
| y RS vy R Ch e LS VA
Using the boundary conditions (8), we get <1
PRRIC)) an (16)
0= 10, u(z), y(O))’ Then the coupled system (1)-(4) has a coupled solution.
m . Proof: Define a subset S of the Banach space F by
A= [HOzs 192(s), I%y(s))d
Z; o T(5:) (s,2(5),y(s), 1 x(s), I"'y(s))ds S={(z,y) € E: |(z,y)| <r}. A7)
1 (1—s)>~1 F(1,4,y(1)) It is easy to see that S is a closed, convex and bounded
= Jo (7}‘2{) h(s)ds + 7f(o,ﬂg?y(o)) +cr. subset of the Banach space F.
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Define the operators A = (41,43) : E — E, C =
(C’l,C’g):E—>EandB ( 1,BQ)S—>Eby
Ar(z,y) = f(t,(t),y(t), te[0,1],
As(z,y) = g(t,2(t),y(t), te€[0,1],
Bi(w,y) = w5 Jo (t = )21 6(s, 2(s), y(s))ds
Ay [ ;&f; ha(s.a(s),(s) 07 (s), Py (s))ds
+t< = FAB)
- o (o))
+(1 - Doy, telo),
By(z,y) = F(B) fo (t—s) 11/)(5,93(5)734(5))615

kj(s,2(s),y(s), 1722 (s),1°2y(s))ds

s)7. B

B- Zfl“r&j

+t( =

1 sﬁ 1
-y ¢

1“(ﬁ)
+1 -

g9(1,A,B)

(s,z(s), y(s))ds>
€ [0,1],

v(y)

t) Gomte). @)

m

> I%h(t,a(t),

i=1

-y
Then operators Tl, T, given by (14),(15) are equivalent to
Ty (x(t),y(t) = Ar(z(t), y(1)) Ba (2(1), y (1)) +Ca (2(1),
To(x(t), y(t)) = Ax(2(t), y(t)) Ba((1),
Therefore, the operator 7' given by (13) can be rewritten

T(z,y)(t) = (Ta(z,y)(t), Ta(, y) (1))
= Az(t),y(t))B(z(t), y(t)) + C(z(t), y(t)).
Now we show that the operators A, B and C satisfy all the
conditions of Theorem 2.8 in a series of steps.
Step I. We show that A and C' are Lipschitzian on F. Let
(z,y), (Z,7) € E. Then by (Hs), (Hs), we have

Ci(z,y) = y(t), 1% a(t), I y(t)),

(1), 1%2a(t), 12y (1)).

|Ax (2, y)(t) — Ar(Z,9)(1))]
= [f(tx(8), y(t) — (£, 2(1),5(t))]
< Lp@)(|l(t) — 2(@)] + [y(t) = g()])

< Ly(t)(|lz — z|| + |ly — 7))

for all ¢ € [0, 1]. Taking the supremum over ¢, we obtain

[A1(z,y) = Au(Z, 9| < [ Lgll([lx = 2] + [ly = 7l)) (8)
for all (x,y),(Z,y) € E. In a similar manner, we can find
that

[A2(z,y) — A2(Z, 9) || < [|Lgll([l — Z[| + [ly — 7l]) (19)
for all (z,y),(Z,y) € E. (17) and (18) imply

[A(z,y) — Az, )|

= [|(A1(2,y), A2 (93 y)) — (A1(2,7), A2(Z, 7)) ||
= [[(As(z,y) — A1(2,7), Az (2, y) — A2(Z,7))]|
= [ A1z, y) = Ar(Z, 9) || + [[A2(z, y) — A2(Z, 7

< Il — 2l + 1y - g1)
Ll (2 = 21 + 1y — )
= (L1l + 11Dz — 2]+ lly — 71)

y(t)),
y(t)+Ca(x(t), y(1)).

for all (z,y),(Z,y) € E, that is, A is a Lipschitzian
with Lipschitz constant Ly = || Ly| + ||Lg|. Now for all
(z,y), (Z,7) € E, by definition of the operaor C, we get

[C1(z.y)(t) — C1(z. ) ()]
= | Z I%hi(t, (), y(t), 11w (t), I y(1))
- Z Iﬂl hi(t,2(1), §(t), I 2(1), I 5 (1))

Bl _
ZLJ“H@ L (6)((+ gl ~

I‘(51+1))Hy ylﬂ

Lk, |l 1 1
v max{l + v L+ ragn )

zl +lly —wl)

_|_
—_

(1+

IA
Ms

s
I
—

=
B
\

for all ¢ € [0, 1]. Taking the supremum over ¢, we have

[C1(z,y) — C1(z,9)]]
Ll
< Z (ﬁ}H max{l + F(911+1)71 + F(611+1)} (20)

(- 2] + ly — g

for all (z,y),(Z,y) € E. In a similar manner, we obtain

X{l + @, +1) L+ F(62+1)} 21

(Il = [ + Hy = 9l-

From (20) and (21), we have

= C@,9)l
T L,
< |X F(Bthl) max{l + g5y, 1+ rn )

1 1
max{1 + NSNS F(62+1)}
(||$ - $|| +lly =gl

for all (z,v),(Z,y) € E, that is, C is a Lipschitzian with
Lipschitz constant

[ Ln |l

Lo « T(Bi+D)

max{l + F(611+1) 1+ F(611+1)}

+ Z oy max{1 + vy L+ oy -

Step II. Now we show that B = (Bj, Bs) is completely
continuous from S to E. We first prove that B is contin-
uous. Let (z,,y,) be convergent sequences in S such that
Tn — T,Yn — Yy as n — oo. Then by Lebesgue dominated
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convergence theorem, we have

with t; < t5, we have
|Bi(z,y)(t2) — Bi(w,y)(t1)

|
(s))ds

Tim B (.90 < | fy L —o(s,(s),y

D i St — 5265, (), i (5))d O (), ()]
A=Y [ O (5,0 (5) i (8. 0 (5), Ty () AR+ 3 sty

+t7}i_{{.10< = FIAD) It2 |< FAB

i S e (s) () ) Iy U o a(o) (9 )

+(1—1) lim wzn) +t2 — t1| M2

FO,p(@n),v(yn))

= ﬁfo t— syt hrrolo (8,70 (8),yn(s))ds

i=1

lim hi(s,xn(s),yn(s),Ielzn(s),I‘sl yn(s))ds
n—oo

_s a—1_ —s a—1

< [lpalla () (r) fy L= th=s"" g
. 0—38§ a—1

Hpallen () (r) 2 L —ds

1
|Al+Mo ) vty

B
A- Zfl (11"()E)
+t<

f(1,A,B)

1 _s a—1 .
e gnda%@waw%>

+(1-1) hm %
= My fo ) o(s, x(s), y(s))ds

A Zfl a ;&f‘) hi(s,2(s),y(s), I 2(s), I y(s))ds
+t< = FOAD)

ol a=s)~t
0 T'(a)

+(1—t¢

¢@m><»@)
) Fe ks = Bi(w,y)(#).

Analogously, we can prove

lim B, (In; yn) (t)

n—oo

= BQ(J:,y)(t)

Hence, B(zy, yn) = (B1(Zn, Yn), B2(Tn, yn)) converges to
B(z,y) pointwise on [0, 1].

Next, we will show that B(.S) is uniformly bounded in S.
For any (z,y) € S, using (H4) — (Hg), we obtain

|Bi(z(t), y(®)] < 5 Jo (6= 9)°7 65, 2(s), y(s)) | ds

[Al+Mo Y vy

i=1 1 (1—s)* 1
A T o ( r@@ [0(s, 2(s),y(s))|ds
+M>
m 1
Al + M, —
_Anlnwan M ETEED
- Dla+1) |f(1,A,B)]| >
Taking the supremum over ¢, yields
2||p1 |1 (r)&a(r)
B < NP NP VIV
1Bl < RO
Al + M, . —
+' S TE oy
|f(1, A, B)|

for all (x,y) € S. Hence, By is uniformly bounded on S.
In a similar manner, we can obtain By is also uniformly
bounded on S. Hence B is uniformly bounded on S.

Now we show that B is equicontinuous. Let ¢1,t2 € [0, 1]

i= [th1 (r)€1(r)

+|t2 *t1|M2.

Obviously, |Bi(x,y)(t2) — Bi(z,y)(t1)] — 0 as t2 — t;.
Similarly, we can prove |Ba(x,y)(t2) — B2(x,y)(t1)| = 0
as to — tq1, these imply that B is equicontinuous from the
equicontinuity of By and Bs. With the help of Arzela-Ascoli
Theorem, B is completely continuous.

Step III. We now prove the condition (c) of Theorem 2.8
is satisfied. Let z,y € E and z,y € E such that

(z,y) = A(z,y)B(z,y) + C(z,y).
Using (Hs), (H4), (Hs), (Hg), we have

|[z(8)] = [Ax (2, y)(£) B1 (7, 9)(t) + C1 (2, y)(1)]
< [Ax(z, y) O)||Bi (2, 9) ()] + | Cr(, y) ()]
(

< 1F(t2(0), y()] | iy i — )27 (5, 2(s), 5(5))Ids
|Al+Mo Z T(B;+1) +1) 1 (1)1
+ \f(l vy B)] + fo ?Ea) [6(s, 2(s),5(s))|ds
+Ms,
+ 3 o S (s, (). 9(s). 1% (). I y(s)ds
< 17 2(0).5(0) ~ F(£.0.0) +17(2.0,0)]
[Al+Mo Y RrE=y
<2|pllrl(pri(+rl))5 M e MQ)

N th (t F?);l (|h (5,2(s), y(s), I (s), I**y(s))
—h;(s,0,0,0,0)| + Ho) ds

< (LA Il lF+ Tyl + fol

[AI+Mo ) vy

2 lpa [l (r)€x (r) =
Tatl) ~ + —aAB T M2)
s Bl
+Zf0 tF(B) {(”Lh,|

@+Nwmmm+a+m$ﬂmﬂ)+m}@
< (LAl + ) + fol

lAl+Mo 3 vy

2pa [ ()& () =
( Tt T FAB) +M2)
+ 2 ﬁ +1) ( L+ r(51+1)}
(]l + Iyl +Ho)-

Volume 52, Issue 1: March 2022



TAENG International Journal of Applied Mathematics, 52:1, IJAM_52 1 21

Taking the supremum over ¢, we can get

lz@1 < WLzl + 1yl + fol
( |A|+Mozm

2||pa |41 (r)€a (r) + If(linlB)l

T(at1) + Mz)

+ Z w1 Eallmax{l + 1155, 1+ rmy )

(IIwII + llyll) + Ho).
(22)
In a similar manner, we can get
Iy @I < [ILglICllz | + NIyl + g0]

1
( |BI+M1 Y rtrmy

2|lp2||ta(r)éa(r) j=1

T(G11) g ABT T M3>

+J21 ﬁ(”Lk, [ max{1 + F(921+1) 1+ F(621+1)}
(1] + lly[) + Ko).

(23)
Adding (22) and (23), we have

] + iy
< |1zaa+ £ ey w1 + gty L+ )|
(lell + 1)
eI+ 55 5 a1 + e 1+ e
() + )

+foh+ Z T + oA + E NoE
therefore, from (H7), we have

JoA + Z T 5+1 + 90A + Z F(“/J+1)

=1

]l + [yl < <.

P
Step IV. We show that the condition (d) of Theorem 2.8 hold.

M = [|B(S)|| = sup{[| B(z,y)[[}
= sup{[|Bi(z,y)[| + [ B2z, y) [} <A+ A.

From the above equations, we get

‘“Mm%ﬁmMWW%m9+M 1
m h

7 1 + ,

G+ " gy T i G, v )
n | Lyl 1 1

S (N IR YO

Thus all the conditions of Theorem 2.8 are satisfied. There-
fore, the equation (z,y) = T(x,y) has a solution in S.
Consequently, the coupled system of (1)-(4) has a coupled
solution, the proof is completely. [ |
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