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Abstract—In this paper, a reaction-diffusion phytoplankton-
zooplankton model with toxic effect is investigated. Firstly, the
basic properties of solutions of the model and the existence
of coexistent equilibrium are established. Secondly, the local
stability of nonnegative equilibrium solutions in the absence of
time delay is analyzed. Thirdly, delay-induced Hopf bifurca-
tion is derived by using the bifurcation theory. Finally, some
numerical simulations and conclusions are given.

Index Terms—phytoplankton-zooplankton system, reaction
diffusion, delay, stability, Hopf bifurcation.

I. INTRODUCTION

MARINE ecosystem plays a great role in human beings,
its service function and ecological value are the

important components of the earth life support system and
the basic elements of the sustainable development of society
and environment.

In marine ecological environment, the autotrophic phyto-
plankton are the primary producers. The growth of phyto-
plankton is not only directly controlled by photosynthesis,
but also restricted by the concentration of various nutrients.
To describe the interactions of nutrient and phytoplankton,
some basic mathematical models have been developed in
recent decades, see [1], [2], [3], [4], [5], [6]. The dynamic
behaviors were investigated, such as local stability and Hopf
bifurcation, global stability, travelling waves and so on.
This kind of model emphasizes the cycling process between
nutrient and autotrophic phytoplankton in low food web,
but ignores the effect of herbivorous zooplankton on the
ecosystem. In some cases, the predation of phytoplankton by
zooplankton is indirectly considered by introducing the loss
of autotrophic phytoplankton. Zooplankton do not participate
in the nutrient reproduction cycle and the food web cycle is
incomplete, so the nutrient-phytoplankton model is oversim-
ple. Moreover, zooplankton not only promote phytoplankton
growth by adjusting nutrients, but also limit the growth of
zooplankton through the feeding process. Therefore, it is
significant to study the phytoplankton-zooplankton model to
better understand the role of zooplankton in the food web
circulation system.
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From above theoretical basis, the following model was
formulated by means of ordinary differential equations in
[7]: 

dP
dt

= rP

(
1− P

K

)
− αPZ,

dZ
dt

= βPZ − µZ − θP 2Z

γ2 + P 2
,

(1)

where P and Z are the densities of toxin-producing phy-
toplankton population and zooplankton population, respec-
tively. All the parameters are positive constants, r is the
intrinsic growth rate of phytoplankton, K is the environ-
mental carrying capacity, α is the predation rate of zoo-
plankton to phytoplankton, β(β < α) denotes the ratio
of biomass consumed by zooplankton, µ is the mortality
rate of zooplankton due to natural death as well as due to
higher predation, θ denotes the rate of toxin liberation by
toxic-producing phytoplankton, and γ is the half-saturation
constant. It is observed that toxin-producing plankton may
terminate the planktonic blooms by decreasing the grazing
pressure of zooplankton and thus acts as a biological control.
Subsequently, some modified models are proposed in [8], [9],
[10], [11], [12] and complex dynamic behaviors are obtained
therein.

In the oceans, phytoplankton and zooplankton can move
with the tide. So it is more realistic to use reaction-diffusion
equations to model the aquatic system [13], [14], [15],
[16]. Motivated by the work aforementioned, in the present
paper, we first consider the reaction-diffusion phytoplankton-
zooplankton model as follows:

∂P (t, x)

∂t
= d1∆P (x, t) + rP (x, t)

(
1− P (x, t)

K

)
−αP (x, t)Z(x, t), (x, t) ∈ Ω× (0,+∞),

∂Z(x, t)

∂t
= d2∆Z(x, t) + βP (x, t)Z(x, t)− µZ(x, t)

−θP
2(x, t)Z(x, t)

γ2 + P 2(x, t)
, (x, t) ∈ Ω× (0,+∞),

∂P (x, t)

∂ν
=
∂Z(x, t)

∂ν
= 0, (x, t) ∈ ∂Ω× (0,+∞),

P (x, 0) = P0(x) ≥ 0, Z(x, 0) = Z0(x) ≥ 0 x ∈ Ω.
(2)

Here Ω ⊂ Rn(n = 1, 2, 3) is a bounded domain with smooth
boundary ∂Ω and ν is the outward unit normal on ∂Ω. ∆
is the usual Laplace operator. d1 and d2 are the diffusion
coefficients of phytoplankton and zooplankton, respectively.
It is assumed that the action of toxin is instantaneous in
system (2). However, this is not accurate enough. Time delay
can bring rich dynamic behaviors and cannot be ignored
[17], [18]. We further consider the following time-delayed
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reaction-diffusion model:

∂P (t, x)

∂t
= d1∆P (x, t) + rP (x, t)

(
1− P (x, t)

K

)
−αP (x, t)Z(x, t), (x, t) ∈ Ω× (0,+∞),

∂Z(x, t)

∂t
= d2∆Z(x, t) + βP (x, t)Z(x, t)− µZ(x, t)

−θP
2(x, t− τ)Z(x, t)

γ2 + P 2(x, t− τ)
, (x, t) ∈ Ω× (0,+∞),

∂P (x, t)

∂ν
=
∂Z(x, t)

∂ν
= 0, (x, t) ∈ ∂Ω× (0,+∞),

P (x, t) = P1(x) ≥ 0, Z(x, t) = Z1(x) ≥ 0,

(x, t) ∈ Ω× [−τ, 0],
(3)

where τ is the time needed for zooplankton from ingesting
toxic phytoplankton to dying. System (3) is more compre-
hensive and realistic. It incorporates the special case in [7].

It was pointed out that the population outbreak may
happen for the species with periodic fluctuation and it is
of great significance to investigate the periodic solutions of
biological systems [19]. As we know, Hopf bifurcation is an
interesting and significant phenomenon in the time-delayed
system, and time-periodic solutions can be generated by time
delay [20], [21]. So, the aim of this paper is to investigate
the stability of nonnegative solutions and the existence of
periodic solutions for phytoplankton-zooplankton systems (2)
and (3).

The rest of this paper is organized as follows. In Section
2, we establish the basic properties of solutions. In Section 3,
we present the existence of coexistent equilibrium about the
system. In Section 4, we analyze the stability of nonnegative
equilibria in the absence of time delay. In Section 5, we study
the effect of time delay and the existence of Hopf bifurcation.
In Section 6, we conduct some numerical simulations to
support the theoretical results. In Section 7, we give the
conclusions.

II. FUNDAMENTAL PROPERTIES OF SOLUTIONS

In this section, we establish the well-posedness of solu-
tions for system (2), including the existence, uniqueness,
positivity of the solutions, and the nonpersistence of the
system.
Lemma 2.1. System (2) has the unique and continuous
solution (P (x, t), Z(x, t)) for all t > 0 in Ω, and

0 ≤ P (x, t) ≤ B1, 0 ≤ Z(x, t) ≤ B2,

where

B1 = max{K, ‖ P0 ‖∞}, B2 = max{βγB1

αµ
, ‖ Z0 ‖∞},

‖ P0 ‖∞= sup
x∈Ω

P0(x), ‖ Z0 ‖∞= sup
x∈Ω

Z0(x).

Moreover, the solution is strictly positive when the initial
functions are not identical to zero.

The proof process of Lemma 2.1 is similarly to the method
in [22], so we omit it.
Lemma 2.2. If βK < µ+θ, then system (2) is not persistent.

Proof: From the nonnegativity of solution and the first
equation of (2), we have

∂P (x, t)

∂t
+ d1∆P (x, t) ≤ rP

(
1− P

K

)
.

Then the simple comparison argument for parabolic problem
in [23] shows that lim sup

t→+∞
P (x, t) ≤ K. Thus there exists

T1 ∈ (0,+∞) such that P (x, t) ≤ K+ε in Ω×[T1,+∞) for
an arbitrary constant ε > 0. Combining the second equation
of (2), we get

∂Z(x, t)

∂t
− d2∆Z(x, t) ≤ (β(K + ε)− µ− θ)Z(x, t),

and then
lim sup
t→+∞

Z(x, t) ≤ 0

by the continuity as ε→ 0. The proof is completed.

III. EXISTENCE OF COEXISTENT EQUILIBRIUM

Spatial diffusion and time delay do not change the number
and location of the constant steady states, so systems (1)-(3)
have the same equilibria, which are the roots of the following
algebraic equations:

rP

(
1− P

K

)
− αPZ = 0,

βPZ − µZ − θP 2Z

γ2 + P 2
= 0.

(4)

Obviously, (4) always has the zero equilibrium E0(0, 0)
and boundary equilibrium E1(K, 0). Then we explore the
existence of coexistent equilibrium. By solving the first
equation of (4), we have

Z =
r

α

(
1− P

K

)
.

Similarly, from the second equation of (4), we have

βP − µ− θP 2

γ2 + P 2
= 0,

which can be simplified as

βP 3 − (µ+ θ)P 2 + βγ2P − µr2 = 0. (5)

According to the Descartes’ rule of signs in [24], equation
(5) has one or three positive real roots, and has no negative
real root. Let

F (P ) = βP 3 − (µ+ θ)P 2 + βγ2P − µr2,

then we have

F ′(P ) = 3βP 2 − 2(µ+ θ)P + βγ,

and

lim
P→−∞

F (P ) = −∞, lim
P→+∞

F (P ) = +∞.

Due to the properties of function f(P ), we can conclude that
equation (5) has unique positive real root P ∗. Further, (4) has
the unique positive equilibrium E2(P ∗, Z∗) for P ∗ < K,
which can be guaranteed when K is sufficiently large.
Lemma 3.1. If K is sufficiently large, then system (3) has
the unique coexistent equilibrium E2(P ∗, Z∗).

In what follows, we shall discuss the effect of parameter
θ on the monotonicity of E2. Denote P ∗ = P ∗(θ) and
differentiate both sides of F (P ∗) = 0 with respect to θ,
we have

3βP ∗2
dP ∗

dθ
− P ∗2 − 2(µ+ θ)P ∗

dP ∗

dθ
+ βγ2 dP ∗

dθ
= 0,
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that is
dP ∗

dθ
=

P ∗2

3βP ∗2 − 2(µ+ θ)P ∗ + βγ2
.

Then we establish the sign of dP∗

dθ . The above denominator
can be transformed into

3β

[
P ∗ − µ+ θ

3β

]2

+ βγ2 − (µ+ θ)2

3β
,

we have
dP ∗

dθ
> 0,

dZ∗

dθ
< 0, for

√
3βγ > µ+ θ,

dP ∗

dθ
< 0,

dZ∗

dθ
> 0, for

√
3βγ < µ+ θ.

Thus, we can find that the positive equilibrium state P ∗ is
monotonically increasing and Z∗ is monotonically decreas-
ing as θ increases when

√
3βγ > µ+ θ, and vice versa.

IV. STABILITY OF NONNEGATIVE EQUILIBRIA IN THE
ABSENCE OF TIME DELAY

In this section, we shall discuss the stability of three
nonnegative equilibria E0, E1 and E2 for non-delayed sys-
tem (2). For convenience, we first introduce some concepts
about linear stability for reaction-diffusion equations. Let
0 = µ0 < µ1 < µ2 < · · · < µn < · · · denote the eigenvalues
of the operator −∆ in Ω under the homogeneous Neumann
boundary condition and S(µn) be the eigenfunction space
corresponding to µn.
Theorem 4.1. The equilibrium E0 is always unstable.

Proof: Linearizing system (2) at E0, we can obtain the
corresponding characteristic equation

(λ+ d1µn − r) (λ+ d2µn + µ) = 0,

and λ1n = −d1µn + r, λ2n = −d2µn − µ < 0. Thus, E0 is
unstable for λ10 = r > 0. The proof is completed.
Theorem 4.2. We have the following conclusions about the
stability conclusions for equilibrium E1:
(i) If K < P ∗, then E1 is locally asymptotically stable.
(ii) If βK < µ+θ, then E1 is globally asymptotically stable.
(iii) If K > P ∗, then E1 is unstable.

Proof: The characteristic equation of linearized system
of (2) at E1 is

(λ+ d1µn + r)

[
λ+ d2µn −

(
βK − µ− θK2

γ2 +K2

)]
= 0,

and
λ1n = −d1µn − r < 0,

λ2n = −d2µn +

(
βK − µ− θK2

γ2 +K2

)
.

From the analyses in previous section, we have βK − µ −
θK2

γ2+K2 < 0 for K < P ∗ and E1 is locally asymptotically
stable. On the other side, λ20 > 0 for K > P ∗ and E1 is
unstable.

Next we prove the global stability of E1. Based on the
nonnegativity of solutions and the proof of Lemma 2.2, we
get

lim
t→+∞

Z(x, t) = 0.

Then there exists T2 ∈ (0,+∞) such that Z(x, t) ≤ ε1 in
Ω × [T2,+∞) for an arbitrary constant ε1 > 0. We have
from the first equation of (2)

∂P (x, t)

∂t
− d1∆P (x, t) ≥ P (x, t)

[
r −

( r
K

+ ε1

)]
,

thus
lim inf
t→+∞

P (x, t) ≥ r
r
K + ε1

,

which implies
lim inf
t→+∞

P (x, t) ≥ K

by the continuity as ε1 → 0. By combining with the proof of
Lemma 2.2, we have lim

t→+∞
P (x, t) = K. Hence, we obtain

the conclusion of this theorem.
Remark 4.1. From Theorem 4.2, we know that the boundary
equilibrium E1 is always asymptotically stable when positive
equilibrium E2 does not exist. Conversely, E1 is unstable
when E2 exists.
Theorem 4.3. For system (2), the following statements are
true:
(i) If β

(
γ2 + P ∗2

)2
> 2θγ2P ∗, then E2 is locally asymp-

totically stable.
(ii) If β

(
γ2 + P ∗2

)2
< 2θγ2P ∗ and d2 is sufficiently small,

then E2 is unstable.
Proof: Linearizing system (2) at E2 can lead to the

following characteristic equation

λ2 + Tnλ+Dn = 0, (6)

where
Tn = (d1 + d2)µn +

r

K
P ∗ > 0,

Dn = d1d2µn+
r

K
P ∗d2µn+αP ∗Z∗

(
β − 2θγ2P ∗(

γ2 + P ∗2
)2
)
.

It is obvious that Dn > 0 for any n ∈ N when
β
(
γ2 + P ∗2

)2
> 2θγ2P ∗. Then we can prove the first case

of theorem.
On the other hand, E2 is unstable if there exists some n

such that Dn < 0. For β
(
γ2 + P ∗2

)2
< 2θγ2P ∗, we solve

Dn = 0 and obtain

µ±n =

− rP
∗d2
K ±

√(
rP∗d2
K

)2 − 4d1d2αP ∗Z∗
(
β − 2θγ2P∗

(r2+P∗2)2

)
2d1d2

.

According to the property of a parabola, to guarantee the
negativity of Dn, we only need the following condition

µ+
n > µ1,

that is√(
rP∗d2
K

)2 − 4d1d2αP ∗Z∗
(
β − 2θγ2P∗

(r2+P∗2)2

)
− rP∗d2

K

2d1d2
> µ1,

and √(
rP ∗

2d1K

)2

− D0

d1d2
− rP ∗

2Kd1
≥ µ1.

Hence the above inequation holds only if D0 < 0 and d1 is
sufficiently small. Therefore, the second case of theorem can
be obtained.
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V. DELAY-INDUCED HOPF BIFURCATION

Next, we maily focus on the effect of time delay on the
stability of positive equilibrium E2 when it is stable in the
absence of time delay.

The characteristic equation of (3) at E2 can be expressed
by

λ2 + Tnλ+ Cn +Be−λτ = 0, (7)

where
Tn = (d1 + d2)µn +

r

K
P ∗ > 0,

Cn = d1d2µ
2
n + d2µn

r

K
P ∗ + αβP ∗Z∗ > 0,

B = −2αθγ2P ∗2Z∗(
γ2 + P ∗2

)2 < 0,

and
Dn = Cn +B.

And then, we investigate the effect of time delay on the
stability of the positive equilibrium E2 when D0 > 0. In
fact, it is always true that Dn > 0 for any n ∈ N when
D0 > 0.

Assume that iω is a root of (7). We have

−ω2 + iTnω + Cn +B (cosωτ − i sinωτ) = 0,

which can be reduced to{
ω2 − Cn = B cosωτ,
Tnω = B sinωτ.

(8)

Adding the squares of the both sides of (8) can result in

ω4 +
(
T 2
n − 2Cn

)
ω2 + C2

n −B2 = 0. (9)

On the basis of D0 > 0, we find that C2
n − B2 > 0. In

addition, T 2
n − 2Cn =

(
d2

1 + d2
2

)
µ2
n + d1µn

2rP∗

K + r2

K2P
∗−

2αβP ∗Z∗. If T 2
0 − 2C0 = r2

K2P
∗ − 2αβP ∗Z∗ < 0, then

there exists N ∈ N+ such that T 2
n − 2Cn < 0 for n ≤

N . Hence, equation (9) has two positive roots only if the
following assumption holds:

(H1) Λ = T 4
n − 4CnT

2
n + 4B2 > 0 and T 2

n − 2Cn < 0 for
n ∈ N∗ ⊂ N.

The roots of equation (9) are in the form of

ω±n =

√
(2Cn − T 2

n)±
√

Λ

2

with

τ±nj =
1

ω±n

{
arccos

ω±n
2 − Cn
B

+ 2(j − 1)π

}
, j = 0, 1, 2, . . . ,

where n ∈ N∗.
Then we verify the transversality condition. Taking the

derivative of (7) with respect to τ , we have

2λ
dλ
dτ

+ Tn
dλ
dτ
−Be−λτ

(
λ+ τ

dλ
dτ

)
= 0,

which is equivalent to

Re
[

dλ
dτ

]−1

τ=τ±
nj ,λ=±iω±

n

= Re
(2iω±n + Tn)

(
cosω±n τ

±
nj + i sinω±n τ

±
nj

)
iBω±n

=
2ω±n cosω±n τ

±
nj + Tn sinω±n τ

±
nj

Bω±n

=
2ω±n

(
ω±n

2 − Cn
)

+ T 2
nω
±
n

B2ω±n

=
2
(
ω±n

2 − Cn
)

+ T 2
n

B2

=

(
2Cn − T 2

n

)
±
√

Λ + T 2
n − 2Cn

B2

=
±
√

Λ

B2
.

Therefore

Re
(

dλ
dτ

)∣∣∣∣
τ=τ+

nj

> 0, Re
(

dλ
dτ

)∣∣∣∣
τ=τ−

nj

< 0.

It is easy to show that τ+
n0 < τ−n0 < τ+

n1 < τ−n1 < τ+
n2 <

τ−n2 < · · · < τ+
nj < τ−nj < · · · for the same n ∈ N∗.

From above analyses, we can conclude the distribution of
roots of characteristic equation (7).
Lemma 5.1. For equation (7), the following statements are
true:
(i) If T 2

n − 2Cn > 0 for any n ∈ N and D0 > 0, then all
roots of (7) have negative real parts.
(ii) If D0 > 0 and (H1) are satisfied, then all roots of (7)
have negative real parts when τ ∈ [0, τ+

00), and equation (7)
has a pair of conjugated complex roots with positive real
parts when τ ∈ (τ+

00, τ
+
00 + δ), where δ is an appropriately

small constant.
Moreover, we get the stability of positive equilibrium E2

for time-delayed system (3).
Theorem 5.1. For system (3), the following statements are
true:
(i) If T 2

n − 2Cn > 0 for any n ∈ N and D0 > 0, then
the positive equilibrium E2 is asymptotically stable for any
τ > 0.
(ii) If D0 > 0 and (H1) are satisfied, then E2 is asymp-
totically stable when τ ∈ [0, τ+

00), and is unstable when
τ ∈ (τ+

00, τ
+
00 + δ). Specially, τ+

00 is the Hopf bifurcation
value and the bifurcating periodic solutions are spatially
homogeneous in this situation.

VI. NUMERICAL SIMULATIONS

In this section, we give some numerical simulations to
validate the previous theoretical derivations. We consider
systems (2) and (3) with d1 = d2 = 0.2.
Example 6.1. In non-delayed system (2), let
(r,K, α, β, µ, γ, θ) = (2, 4, 0.7, 0.01, 0.012, 5.7, 0.5). Then
the boundary equilibrium of system (2) is asymptotically
stable. See Fig. 1.
Example 6.2. In non-delayed system (2), let
(K,α, β, µ, γ, θ) = (400, 0.7, 0.01, 0.012, 5.7, 0.5). Then
the positive equilibrium of system (2) is asymptotically
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Fig. 1. The boundary equilibrium E1 of non-delayed system (2) is
asymptotically stable.

Fig. 2. The positive equilibrium E2 of non-delayed system (2) is
asymptotically stable.

stable when r = 2 and unstable when r = 0.2 . See Figs.
2-3.
Example 6.3. In time-delayed system (3), let
(r,K, α, β, µ, γ, θ) = (1.5, 400, 0.7, 0.02, 0.012, 5.7, 0.5).
Then the positive equilibrium of system (3) is asymptotically
stable when τ = 2.5 and unstable when τ = 35 . See Figs.
4-5.

Fig. 3. The positive equilibrium E2 of non-delayed system (2) is unstable
and nonconstant positive solution exists.

Fig. 4. The positive equilibrium E2 of time-delayed system (3) is
asymptotically stable.

VII. CONCLUSIONS

Plankton is the foundation of marine ecosystem, can
also be used as indicator species and as a marker for the
exploration of undersea petroleum resources. It is of great
significance to build the dynamic model to describe the
interactions between phytoplankton and zooplankton. There-
fore we revised the planktonic model proposed by means of
ordinary differential equations in [7] with extensions, i.e., the
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Fig. 5. The positive equilibrium E2 of time-delayed system (3) is unstable
and periodic solution exists.

spatial diffusion of both phytoplankton and zooplankton and
the action time delay of toxin.

In this paper, we are mainly concerned with the effects
of spatial diffusion and time delay on the stability of con-
stant nonnegative equilibrium solutions. By using meticulous
anslysis, the existence and asymptotic stability of constant
nonnegative equilibrium solutions are investigated. It is found
that time delay can destabilize the stability of equilibrium
solution and generate time-periodic phenomenon of Hopf
type. It is concluded that the phytoplankton-zooplankton
system has the unique positive equilibrium if the environ-
mental carrying capacity K of phytoplankton is sufficiently
large, which means that the two planktonic populations may
coexist.

From the viewpoint of mathematics, the boundary equi-
librium E1 and positive equilibrium E2 are asymptotically
stable under different conditions without considering time
delay. In the non-delayed system (2), the intrinsic growth
rate r of phytoplankton has vital impact on the stability of
positive equilibrium. The two planktonic population quanti-
ties may approach constant values without time delay when
the growth rate r is large. In stead, the spatial distribution
of two populations would uneven when r is appropriately
small.

When considering time delay, the stability of positive
equilibrium depends on the delay parameter τ . Small delay
does not change the stability. However, periodic phenomenon
can occur when time delay is larger than some critical value,
which means the periodic outbreaks of phytoplankton and
zooplankton.

Comparing with the study in [7], we not only extend
the mathematical model through considering spatial diffusion
and time delay, but also introduce the detailed mathematical
deduction. In addition, phytoplankton-zooplankton oscilla-

tions are largely attributed to the time needed for zooplankton
from ingesting toxic phytoplankton to dying.

Moreover, it is observed that the toxic phytoplankton can
gathered in patches to reduce the zooplankton’s grazing
[27] and zooplankton can make appropriate response to the
harmful phytoplankton [28]. The prey-taxis model can well
describe this situation and we will further study the novel
model in future.
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