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Abstract—This study addresses a distributed receding hori-
zon control strategy for a discrete linear system consisting of
several subsystems. These subsystems are updated sequentially.
The primary purpose of the study is to construct a control
strategy such that all states converge to origin. We implement
our proposed method to irrigation canal systems.

Index Terms—receding horizon control, distributed control,
model predictive control, irrigation canal systems, sequential
control

I. INTRODUCTION

D ISTRIBUTED receding horizon control, also known as
distributed model predictive control (DMPC), involves

some local controllers optimizing their local objective to
provide performances similar to those offered by centralized
MPC. The idea of DMPC schemes is to decompose a
large optimization problem into several subproblems which
correspond to the designated local controllers and use MPC
to design them. In this way, DMPC is preferable to control
large-scale systems such as irrigation systems due to its
capability in saving computational time (see [1]). Irrigation
canal systems consist of such interacting components as
gates, reaches or pools, and pumps which all work together
to meet the public’s water demand, see [2].

DMPC and any MPC-based controllers can be used to
control water levels or flow in irrigation canal systems by
manipulating the gates, reaches, and pumps (see [1]). There
are some control techniques based on MPC for irrigation
canal systems, like [3]–[8], etc. The authors in [1] summa-
rized some MPC methods for irrigation canal systems. In [3],
some DMPC algorithms based on Han’s parallel method for
the convex program are designed and implemented in canal
systems. As mentioned in [3], although the simulation result
has verified the method, some theoretical problems prevent
its applicability. In [4], two DMPC schemes based on game
theory are applied to an irrigation canal system with five
reaches, a slight modification of irrigation canal system [3].
A coalitional-based MPC is established for water networks
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and is applied to the first 7 reaches of Dez irrigation canal
by [5]. The authors in [6], and [7] proposed a simplified
method of [8] to reduce the risk in the operation process
of irrigation canals. In most literature, fixed setpoints are
used as control targets in the design. [9] dan [10], however,
established a strategy that enables the controllers to cope
with the imbalance of water supply and demand, i.e., the
changing setpoints.

In [11] and [12], a DMPC algorithm is designed for a
continuous nonlinear system with m inputs. To update these
inputs, m Lyapunov-based MPC controllers, also known as
LMPCs, are designed for each input. These LMPCs are
updated sequentially, starting from the LMPC m to LMPC
1. Each LMPC sends its optimal inputs trajectories and other
trajectories it received from other subsystems to the subsys-
tem right below it. When all the LMPCs have completed
updating their inputs, new optimal states measurement are
available to the system. In these methods, Lyapunov-based
auxiliary control laws are used to guarantee the stability of
each LMPC.

This paper discusses a DMPC algorithm for a discrete
linear system. It is assumed that the system consists of M
subsystems with input couplings. Apart from [11] and [12],
we updated the subsystems sequentially, in the proposed
method. We assume that the control design involves a fix
updating sequence that starts from subsystem in the upstream
to the ones in the downstream. Furthermore, the design only
considers fixed setpoints. We give a simulation of our method
to an irrigation canal system which consists of four reaches
as discussed in [3]. In addition, we provide a comparison
of our approach to Nash-Bargaining MPC [4]. Moreover, for
this irrigation canal, we omit any conditions that may cause
abrupt changes in the water levels, such as flood or water
loss in the canal due to any of its permeability. Interested
readers on the study of irrigation canals with impermeable
soil layers are directed to [13] and the references therein.

The paper is organized as follows: In Section I we provide
an introduction, the problem to be solved, and the method
briefly. Next, the description of the Sequential Distributed
Receding Horizon Control Scheme and the underlying as-
sumptions used in the design are provided in Section II. In
Section III, we discuss the properties of the proposed method.
A brief overview of irrigation canal systems is addressed in
Section IV, and simulation is in Section V. Lastly, we give
the conclusion in Section VI.

Notation 1: (p|k) denotes the prediction for time step
k + p made at time step k, where p and k are nonnegative
integers. Xi

1|k and U i0|k represent state prediction vector and
input for Subsysten i made at time step k, respectively.
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Moreover, A = diag(a11, a22, . . . , ann) means that A is a
n× n diagonal matrix with the main diagonal elements are
aii, i = 1, 2, . . . , n.

II. SEQUENTIAL DISTRIBUTED RECEDING HORIZON
CONTROL SCHEME

Considering a discrete linear time invariant system consists
of M interconnected subsystems, it is assumed that the
dynamics of each subsystem can be described as a discrete
linear time invariant model as follows{
xi(k + 1) = Aixi(k) +Biui(k) +

∑
j 6=iBijuj(k)

yi(k) = Cixi(k)
(1)

where xi ∈ Xi ⊆ Rni is the state of Subsystem i, while ui ∈
Ui ⊆ Rmi , and yi ∈ Yi ⊆ Rpi represent input and output of
Subsystem i, respectively. Both Xi and Ui are convex and
closed sets containing origin in its interior. From Eq. (1), it
can be seen that all the subsystems are coupled through the
inputs.

The following condition is assumed to apply to each
subsystem in order to simplify the control design.

Assumption 1: ∀i, i = 1, 2, . . . ,M , full state xi is avail-
able for all time steps.
Remember that without employing the Assumption 1, we
need to involve a state estimation in the design, which is
beyond the scope of this paper. The goal of control given to
Subsystem (1) is to design a DMPC controller which steers
the subsystem’s trajectories to origin while addressing the
constraints on input and state as well. To this end, we propose
a DMPC algorithm that updates the subsystems sequentially.
More precisely, at time step k, all subsystems have informa-
tion of the state of other subsystems, namely x(k), the state
measurement at time step k. Subsystem i use this information
to conduct an optimization which yields an optimal input
sequence U∗i (0|k). Next, the first element of this sequence
is chosen to implement the system. After that, Subsystem i
send U∗i (0|k) and U∗j (0|k) where j < i to Subsystem i+1.
The same process is repeated until Subsystem M . In this
way, Subsystem 1 does not have any information of any
Subsystem j, where j = 2, 3, . . . ,M , whereas Subsystem
M , does not send any information to the other subsystems.
The unknown information then approximated using linear
auxiliary control law κ(x) =

[
κ1(x) . . . κM (x)

]
, which

is assumed to be available at time k, where κi(x) represents
auxiliary control law of Subsystem i. This strategy also used
in [11] and [12]. Another study on DMPC for systems with
coupling inputs can be found in [14].

The proposed sequential DMPC is established using the
following assumptions. Let Xf,i be a terminal constraints set
for Subsystem i. The assumptions below apply to Xf,i and
the auxiliary control law, which are useful to characterize the
stability of the proposed method.

Assumption 2: Xf,i ⊂ Xi, and 0 ∈ Xf,i.
Assumption 3: For each xi ∈ Xf,i, there exist an auxiliary

feedback control law κi(x) = κixi(k) ∈ Ui such that xκi (k+
1) = (Ai+Biκi)xi(k)+

∑
j 6=iBijuj(k) ∈ Xf,i. In addition,

κi(x) is constant during two consecutive interval updates.
Assumption 3 declares the existence of auxiliary control

law in Xf,i and the invariance property of Xf,i under this
control law. These conditions are used to establish a stability
property in the Subsystem i.

According to the implementation strategy mentioned ear-
lier, the state of Subsystem i at time k + 1 can be rewritten
as

xi(k + 1) = Aixi(k) +Biui(k) +
∑
j<i

Biju
∗
j (k) +∑

j>i

Bijκj(xj(k)) (2)

where u∗j (k) and κj(xj(k)) denote optimal input and aux-
iliary feedback control law of Subsystem j at time step k,
respectively.

Remark 1: In Eq. (2), if Subsystem i is not affected by
Subsystem j, then Bij = 0. Thus, the interconnection matrix
Bij plays a role in determining whether the optimal control
u∗j (k) and the auxiliary control law κj(xj(k)) affecting the
dynamics of Subsystem i, where j 6= i.

To determine the optimal sequential DMPC control, at
each time step k, Subsystem i solves the following optimiza-
tion sequentially starting from Subsystem 1, and so on until
Subsystem M . In this paper, we assumed that the prediction
and control horizon lengths are equal to N ∈ N. The problem
need to be solved by all subsystems sequentially is described
as,

Pi : min
ui(p|k),p=0,1,...,N−1

Ji(k) (3)

s.t xi(k + 1) = Aixi(k) +Biui(k) +∑
j 6=i

Bijuj(k), (4)

uj(k) = u∗j (0|k), j = 1, 2, . . . , i− 1, (5)

uj(k) = κj(xj(k)), j = i+ 1, i+ 2, . . . ,M,
(6)

xi(k +N) ∈ Xf,i, (7)

where at the beginning of each optimization it is assumed
that the initial states and inputs of all subsystems are known
to the system. In addition, terminal constraint set Xf,i can
be determined using function ’oinfsetcl’ in Invariant Set
Toolbox [15].

Suppose that U∗i (0|k) be the optimal solution
of Problem Pi at time step k, where U∗i (0|k) =[
u∗i (0|k)T u∗i (1|k)T . . . u∗i (N − 1|k)T

]T
. In each

optimization, by following the receding horizon principle,
the first element of each optimal input sequence, i.e.,
u∗i (0|k) is chosen as the optimal input to be applied to
Subsystem i. Using these optimal inputs, each subsystem
can calculate its optimal state. These optimal states are then
used as initial values for the optimization at time step k+1.
This whole process is repeated max iter times, where
max iter is a positive integer chosen by the designer.

We use the following form of objective function since we
solve a regulation problem,

Ji(k) =
N−1∑
j=1

‖xi(j|k)‖2Qi
+
N−1∑
j=0

‖ui(j|k)‖2Ri
+

Vf,i (xi(N |k)) , (8)

where Qi and Ri are symmetric positive definite matrices,
Vf,i(·) is a terminal cost of the form as given below

Vf,i (xi(N |k)) = xi(N |k)TPixi(N |k) (9)
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where Pi is a symmetric positive definite matrix and is a
solution of the following equation

(Ai +Biκi)
TPi(Ai +Biκi)− Pi = −

(
Qi + κTi Riκi

)
.

(10)

This matrix Pi is also known as a Riccati matrix.
We use the following assumption on the terminal cost of

each subsystem.
Assumption 4: For every Subsystem i with xi(k) and

xi(k + 1) ∈ Xf,i, the following inequality holds

Vf,i (xi(k + 1))− Vf,i (xi(k))
≤ −‖xi(0|k)‖2Qi

− ‖ui(0|k)‖2Ri
,

for all k ≥ 0, and for all i = 1, 2, . . . ,M .
Assumption 4 states that Vf,i is a nonincreasing function in
Xf,i, for all i = 1, 2, . . . ,M .

To synthesize the sequential DMPC controller, the pro-
cesses in each subsystem are in general similar to those for
centralized MPC algorithms; for example, see [16]. Thus,
we derive the model prediction of each subsystem, transform
the objective function into a compact form. Then, we write
the resulting optimization problem into a suitable form as
required by the solver to be used in the optimization. To
begin with, for horizon prediction length equal to N , the
model prediction of Subsystem i can be derived recursively
as follows, i = 1, 2, . . . ,M . Note that quantities from the
other subsystems are constant during these N time steps;
thus, we have

xi(1|k) = Aixi(0|k) +Biui(0|k) +Bi1u
∗
1(k) + · · ·+

Bi(i−1)u
∗
i−1(k) +Bi(i+1)κi+1(xi+1(0|k))

+ · · ·+BiMκM (xM (0|k)),
xi(2|k) = A2

ixi(0|k) +AiBiui(0|k) +Biui(1|k) +
(AiBi1 +Bi1)u

∗
1(0|k) + · · ·+(

AiBi(i−1) +Bi(i−1)
)
u∗i−1(0|k) +(

AiBi(i+1) +Bi(i+1)κi+1

)
(xi+1(0|k))

+ · · ·+ (AiBiM +BiM )κM (xM (0|k))
...

xi(N |k) = ANi xi(0|k) +AN−1i Biui(0|k) + · · ·+

Biui(N − 1|k) +
N−1∑
p=0

AN−1−pi Bi1u
∗
1(0|k)

+ · · ·+
N−1∑
p=0

AN−1−pi Bi(i−1)u
∗
i−1(0|k) +

N−1∑
p=0

AN−1−pi Bi(i+1)κi+1(xi+1(0|k)) + · · ·+

N−1∑
p=0

AN−1−pi BiMκM (xM (0|k)).

These equations can be rewritten in a matrix form as

Xi
1|k = Aixi(0|k) + BiU i0|k +

i−1∑
j=1

Biju∗j (0|k) +

M∑
j=i+1

Bijκj (xj(0|k)) (11)

which is a model prediction of Subsystem i for N time
steps, where

Xi
1|k =


xi(1|k)
xi(2|k)

...
xi(N |k)

, Ai =


A1
i

A2
i

...
ANi

, Bi =


Bi 0 . . . 0
AiBi Bi . . . 0

...
...

. . .
...

AN−1i Bi AN−2i Bi . . . Bi

, U i0|k =


ui(0|k)
ui(1|k)

...
ui(N − 1|k)

,

Bij =


Bij

AiBij +Bij
...∑N−1

p=0 AN−1−pi Bij

.

Following [16], by having this prediction model, we pro-
ceed to transform the objective function given in Eq. (8)
into a suitable compact form as required by the Active Set
Method, namely

Ji(k) =
N−1∑
p=1

‖xi(p|k)‖2Qi
+
N−1∑
p=0

‖ui(p|k)‖2Ri
+

xi(N |k)TPixi(N |k),

=
(
Xi

1|k

)T
QiXi

1|k +
(
U i0|k

)T
RiU i0|k, (12)

where Qi = diag (Qi, Qi, . . . , Pi), and Ri =
diag (Ri, Ri, . . . , Ri). The matrix Riccati Pi can be
determined using function ’dlqr’ in MATLAB for the
corresponding Ai, Bi, Qi and Ri, i = 1, 2, . . . ,M .

We summarize our proposed control technique in the
following algorithm:

Algorithm 1: Computation of Sequential DMPC Con-
trollers
Require: N prediction horizon, M number of subsystems,
Ai, Bi, Bij , Qi, Ri, xi(0|k) initial state of Subsystem i,
i = 1, 2, . . . ,M , max iter maximum iteration
for k = 1 to max iter do

for i = 1 to M do
1. solve Pi in (3)-(7) to obtain U∗i (0|k),
2. apply the first element of U∗i (0|k) to get optimal
state of Subsystem i for k + 1,
3. send U∗j (0|k) to Subsystem i+1, j = 1, 2, . . . , i,
4. i← i+ 1

end for
5. xi(0|k)← xi(1|k),
6. k ← k + 1

end for
Notice that, at every time step, our proposed method

works to update all subsystems sequentially. Specifically, the
optimization of Subsystem i+ 1 will only be held once the
optimization Subsystem i is completed.

After discussing the problem and the underlying assump-
tions, we provide the method’s properties in the next section.

III. PROPERTIES OF THE PROPOSED METHOD

This section provides two properties of our sequential
DMPC strategy: the feasibility and stability of each sub-
system to the origin inside its terminal set. The following
theorem states the feasibility property.
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Theorem 3.1: Assume that Problem Pi given by Eqs. (3) -
(7) is feasible at time step k with the optimal input U∗i (0|k).
Then, Problem Pi is feasible for all k ≥ 0, i = 1, 2, . . . ,M .

Proof: Using similar steps discussed in [17] of using
the tail of previous optimization as a feasible solution for the
next one, we firstly note that from the feasible input at time
step k, we can form a feasible input for time step k+1. Let
the optimal input sequence at time step k, namely U∗i (0|k),
can be written as {u∗i (0|k), u∗i (1|k), . . . , u∗i (N − 1|k)}, and
the corresponding optimal state is given by Xi,∗

1|k =

{x∗i (0|k), x∗i (1|k), x∗i (2|k), . . . , x∗i (N |k)}. From Eq. 7, we
have x∗i (N |k) ∈ Xf,i. In addition, based on Assumption 3,
it follows that κi (x∗i (N |k)) ∈ Ui and xκi (x

∗
i (N |k)) ∈ Xf,i.

Thus, it is clearly that the input sequence U+
i (k + 1) =

{u∗i (1|k), . . . , u∗i (N − 1|k), κi (x∗i (N |k))} is a feasible in-
put sequence for time step k + 1. Using similar argument,
we can prove the feasibility for time step k + 2, and
so on. Therefore, Problem Pi is feasible for all k ≥ 0,
i = 1, 2, . . . ,M .

We provide the stability of the closed-loop system under
our proposed method in the following theorem.

Theorem 3.2: Let U∗i (0|k) denotes the optimal solution at
time step k of Problem Pi given in Eqs. 3 - 7, and u∗i (0|k)
is its first element. Then, the resulting closed loop system is
asymptotically stable in Xf,i, i = 1, 2, . . . ,M .

Proof: Suppose that the state and the optimal cost
correspond to U∗i (0|k) are denoted by Xi,∗

1|k and J∗i (k),
respectively. From Theorem 3.1, we have that U i,+1|k
is a feasible solution for optimization at time step
k + 1. Note that the state associates to this input is
Xi,+

1|k =
{
x∗i (1|k), x∗i (2|k), . . . , x∗i (N |k), x

∗,κ
i (N + 1|k)

}
,

where x∗,κi (N +1|k) is the state for input κi (x∗i (N |k)). As
stated in [17], these two input sequences correspondingly
result in the cost functions with only differences in some
terms, namely

J∗i (k) = ‖x∗i (0|k)‖
2
Qi

+

N−1∑
p=1

‖x∗i (p|k)‖
2
Qi

+

‖u∗i (0|k)‖
2
Ri

+
N−1∑
p=1

‖u∗i (p|k)‖
2
Ri

+

Vf,i (x
∗
i (N |k)) , and

J+
i (k + 1) =

N−1∑
p=1

‖x∗i (p|k)‖
2
Qi

+ ‖x∗i (N |k)‖
2
Qi

+

N−1∑
p=1

‖u∗i (p|k)‖
2
Ri

+ ‖κi (x∗i (N |k))‖
2
Ri

+ Vf,i
(
x∗,κi (N + 1|k)

)
.

Therefore, we have

J+
i (k + 1)− J∗i (k)

= −‖x∗i (0|k)‖
2
Qi
− ‖u∗i (0|k)‖

2
Ri
−

Vf,i (x
∗
i (N |k)) + ‖x∗i (N |k)‖

2
Qi

+ ‖κi (x∗i (N |k))‖
2
Ri

+

Vf,i
(
x∗,κi (N + 1|k)

)
. (13)

According to Assumption 4, the sum of the last four terms on
the right-hand side is less than or equal to zero. Thus, from

Eq.(13), we can conclude that the following inequalities hold

J+
i (k + 1)− J∗i (k) ≤ −‖x∗i (0|k)‖

2
Qi
− ‖u∗i (0|k)‖

2
Ri

≤ 0,

or, equivalently stated as

Ji,+(k + 1) ≤ Ji,∗(k).

Hence, for U∗i (1|k) the optimal solution at time step k + 1
with the corresponding optimal cost J∗i (k+1), the following
property is satisfied

J∗i (k + 1) ≤ J+
i (k + 1) ≤ J∗i (k),

which states that the optimal cost of Problem Pi is nonin-
creasing along the state trajectories. Notice that, the strict
inequality is satisfied for xi(k) 6= 0, meaning the optimal
cost is decreasing along non zero state trajectories. Further-
more, Ji(k) is bounded below by 0. Thus, Ji(k) converge
to 0 and Ji(k) = 0 if and only if xi(k) = 0. Therefore,
we can conclude that xi(k) converge to 0 as time increases,
i = 1, 2, . . . ,M .

Our proposed method is applied to an irrigation canal
system with a particular configuration as discussed in [3].
Therefore, we have briefly overviewed the system in the next
section.

IV. IRRIGATION CANAL SYSTEM

An irrigation canal system is a large-scale system con-
sisting of several connected canal reaches, each of which
is equipped with gates regulating the water flow through
the canals (see [18]). A pump at the very end downstream
canal is to release water to the users or consumers. There
are several configurations of irrigation canal systems, like
the one discussed in [2] which is made up of eight reaches,
four reaches [3], five reaches [4], and so on.

In general, the steps to synthesize our sequential DMPC
control for all of the canal structures above are similar.
Hence, we consider an irrigation canal system with con-
figuration as described in [3]. This irrigation canal system
consists of four reaches and a pump. Each canal reach and its
upstream gate constitute a subsystem, except for reach 4, gate
4, and the pump, which build Subsystem 4 (see [3]). Thus,
each subsystem has a local controller, except Subsystem
4, which has two local controllers that correspondingly
manipulate the gate and the pump. The control given to
the system aims to maintain the water level in each reach
to meet specific targets while respecting any boundaries on
gates, reaches, and the pump.

The dynamics of canal reaches represents water level
changes, which can be written mathematically as (see, for
example [2], [3])

hi(k + 1)− hi(k) =
Ts
Ai,s

(Qi,in(k)−Qi,out(k)) ,

where hi(k) is the water level at reach i, Qi,in(k) and
Qi,out(k) are inflow and outflow through reach i at time step
k, respectively, while Ts is the sampling time, and Ai,s is the
area of reach i, i = 1, 2, 3, 4. Using the mass conservation
law, it follows that Qi,out = Qi+1,in, i = 1, 2, 3, whereas
for reach 4, Q4,out = p4, where qi and p4 denote the flows
through gate i and pump 4, respectively, i = 1, 2, 3 (see [3]).
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Furthermore, inline with [3], we use the water level and flow
as the state and input of each subsystem, consecutively, as
described below

xi(k) = hi(k),

ui(k) =


qi(k), i = 1, 2, 3[
qi(k)

pi(k)

]
, i = 4.

Notice that, in this configuration, there are five inputs in-
volved in this system. Four of them correspond to the inflow
to each reach, while the rest is the outflow through the pump
in reach 4.

Since an irrigation canal system involves interaction be-
tween reaches, the dynamics of each subsystem can be
represented using a state-space model discussed in [19] by
taking xii = hi(k). This model, also known as a composite
model, incorporates decentralized dynamics and the inter-
action between subsystems. Thus, the composite model for
each subsystem is given by (see [19])

xi(k + 1) = Aixi(k) +Biui(k) +
∑
j 6=i

Wijuj(k) (14)

where xi(k) =
[
xi1(k)

T xi2(k)
T xi3(k)

T xi4(k)
T
]T

,
xii(k) denotes water level of reach i at time step k, xij(k)
is the effect of water changes in Subsystem j to Subsystem
i at time step k, Wij =

[
0 . . . BTij . . . 0

]T
, Ai is

a square matrix with ii-th element equals to Aii = 1 and
zero elsewhere, i, j = 1, 2, 3, 4, Bii = Ts

Ai
, i = 1, 2, 3,

B44 =
[
Ts

A4,s
− Ts

A4,s

]
, Bi(i+1) = − Ts

Ai,s
, i = 1, 2, B34 =[

− Ts

A4,s
0
]
, Bij = 0, j /∈ {i, i+ 1} (see [3]), Ts is

sampling time, Ai,s is the reach area in m2 of Subsystem i;
A1,s = 397, A2,s = 653, A3,s = 503, and A4,s = 1530, see
[2].

The following section implements the proposed method to
the irrigation canal system.

V. SIMULATION

Our proposed method is applied to an irrigation canal
system in [3] which has 4 reaches (thus M = 4), with
sampling time Ts = 240s, and prediction horizon length
N = 10 steps. We use the reach area Ai,s as given in Table
2.3 in [2] at low flow for i = 1, 2, 3, 4.

In the objective function of each subsystem, we use Qi =
100, Ri = 40 and the following constraints similar to [4],

0 ≤ ui(k + j) ≤ 672, i = 1, 2, 3, and[
0
0

]
≤ ui(k + j) ≤

[
672
480

]
, i = 4,

which represent the maximum bound on gates and pump
sampled every Ts = 240s, where j ≥ 0, k = 0, 1, . . . , N .
Moreover, we assume that the target water level in each
reach is 5m, whereas the initial water levels are hi(0) = 3,
i = 1, 2, 3, and h4(0) = 0 (see [4]). Since we are solving
a regulation problem, then these values are transformed
as hregi (0) = −2, i = 1, 2, 3, and hreg4 (0) = −5 for
computational purposes. The problem will be solved using
MATLAB involving ’fmincon’ and Active Set Algorithm.
In addition, the constraints are transformed into suitable

forms required by the solver using invariant set toolbox [15].
Particularly, we employ functions ’defineq’, ’normalise’, and
’aug2std’.

To implement the proposed sequential updating scheme,
the dynamics of each subsystem given by Eq. (14) is rewrit-
ten into the form in Eq. (2). Since Bij = 0, j /∈ {i, i+ 1}
(see [3]), thus we get

x1(k + 1) = A1x1(k) +B1u1(k) +W12u2(k)

= A1x1(k) +B1u1(k) +W12κ2(x2(k)), (15)
x2(k + 1) = A2x2(k) +B2u2(k) +W23u3(k)

= A2x2(k) +B2u2(k) +W23κ3(x3(k)), (16)
x3(k + 1) = A3x3(k) +B3u3(k) +W34u4(k)

= A3x3(k) +B3u3(k) +W34κ4(x4(k)), (17)
x4(k + 1) = A44x4(k) +B4u4(k), (18)

where κi is computed using ’dlqr’ in MATLAB for the
corresponding Qi and Ri, i = 1, 2, 3, 4. Furthermore, A1 =
diag(1, 0, 0, 0), A2 = diag(0, 1, 0, 0), A3 = diag(0, 0, 1, 0),
and A4 = diag(0, 0, 0, 1). Recall Eq. (2), notice that, for
each Subsystem i with dynamics given by Eqs. (15)-(18),
the terms uj(k) = u∗j (0|k), j = 1, 2, . . . , i − 1, are not
involved in these expressions. This is due to the abscence
of interaction from Subsystem j to Subsystem i where
j = 1, 2, . . . , i − 1, thus Bij = 0. As a result, we have
that Wij = 0, for all i = 1, 2, 3, 4, and j = 1, 2, . . . , i− 1.

Since the prediction horizon is N = 10, the model
prediction of each subsystem is obtained using Eqs. (15-18)
and (11) for N = 10. Thus, we have

X1
1|k = A1x1(0|k) + B1U1

0|k +W12κ2(x2(k)),

X2
1|k = A2x2(0|k) + B2U2

0|k +W23κ3(x3(k)),

X3
1|k = A3x3(0|kk) + B3U3

0|k +W34κ4(x4(k)),

X4
1|k = A4x4(0|k) + B4U4

0|k,

while their corresponding objective functions are given by

J1(k) =
(
X1

1|k

)T
Q1X

1
1|k +

(
U1
0|k

)T
R1U

1
0|k,

J2(k) =
(
X2

1|k

)T
Q2X

2
1|k +

(
U2
0|k

)T
R2U

2
0|k,

J3(k) =
(
X3

1|k

)T
Q3X

3
1|k +

(
U3
0|k

)T
R3U

3
0|k,

J4(k) =
(
X4

1|k

)T
Q4X

4
1|k +

(
U4
0|k

)T
R4U

4
0|k.

Since we only consider the input contraints in the controller
design, then the terminal set contraints Xf,i is not computed,
i = 1, 2, 3, 4. Hence, only the computation of terminal cost
is involved.

The simulation is performed using MATLAB for 30 it-
erations (max iter = 30). Moreover, the optimization for
each subsystem is solved using ’fmincon’ in MATLAB. In
addition, we also provided a comparison to the Nash Bargain-
ing MPC (NB-MPC) method in [4] where each subsystem
is weighted by wi; w1 = 0.3871, w2 = 0.2354, w3 =
0.3056, w4 = 0.4002. Note that, in our proposed strategy,
at every time step, we updated these four subsystems se-
quentially starting from Subsystem 1 until Subsystem 4.
In contrast, in NB-MPC [4], these subsystems are updated
simultaneously at every time step. We obtained the following
results as depicted in the figures below.
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Fig. 1. Flows of each reach in irrigation canal system with configuration as in [3] using Nash-Bargaining MPC [4] (first column) and the proposed
sequential DMPC (second column)
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Fig. 2. Water levels of each reach in irrigation canal system with configuration as in [3] using Nash-Bargaining MPC [4] (first column) and the proposed
sequential DMPC (second column)

Fig. 1 and Fig.2 show the flows and the water levels of
the irrigation canal system in [3] when controlled using NB-
MPC [4] and our sequential DMPC, respectively. The results
of NB-MPC [4] are provided in the first column and our
proposed method in the second. Based on the second column
of Fig.2, it can be seen that the water level at each canal
reach becomes zero or equivalent to 5m, as time increases.
The first three reaches need less than 12 steps or equal to
48 minutes for their water levels to converge to zero. Reach
4, on the other hand, takes a longer time, i.e., 25 steps or
100 minutes, to get the same level. Two reasons caused this
behavior. First, reach 4 has the smallest initial water level
compared to other reaches. In addition, there is an outflow
from reach 4 through the pump. As a result, although the
inflow in reach 4 is considered the largest, the existence of
these two makes the reach 4 need a longer time to reach
zero water level. In conclusion, our proposed method can
steer the water level to zero in each canal. If we compared
these results to those in the first column, it is clear that for
the irrigation canal system in [3], our proposed method has
produced better results.

VI. CONCLUSION

This paper discussed a sequential DMPC algorithm for
a discrete linear time invariant system built by M inter-
connected subsystems. It is shown that the recursive fea-
sibility of the resulting optimization problem is guaranteed
by assuming the initial feasibility. Moreover, our proposed

method stabilizes the system asymptotically. The proposed
control strategy is implemented to irrigation canal system
with particular configuration as given by [3]. In addition, a
comparison to the Nash-Bargaining MPC strategy [4] has
been made. It turns out that our proposed method stabilizes
the system asymptotically relatively faster compared to the
results from the Nash-Bargaining MPC strategy [4]. Hence,
from the results of our simulations and comparisons, we can
conclude that the approach we have developed has a potential
for further development.
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