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Abstract—In this paper, the classical two-dimensional
Helmholtz transmission problem is reduced to a local boundary
value problem by introducing an artificial boundary. A localized
Dirichlet-to-Neumann (DtN) mapping is defined on the artifi-
cial boundary. Then the variational equations and Galerkin
formulation are derived. The effectiveness of the methods is
demonstrated using various numerical examples.

Index Terms—acoustic transmission problem, Finite element
method, Radiation Boundary Conditions, Hankel function,
weak formulation.

I. INTRODUCTION

IN order to solve the Helmnoltz transmission problem in
an infinite domain, many numerical methods have been

proposed by many researchers. One of the most conven-
tional numerical methods for solving scattering problems
with constant parameters is to reformulate the transmission
problem as a system of BIE over the boundary of the obstacle
[1], [2], [3], [4], [5]. The second approach is the perfectly
matched layer (PML) method [6], [7], which is to surround
the computational domain by a layer of finite thickness with
specially designed medium that would either slow down
or attenuate all the waves that propagate from the inside
computational domain. This approach is easy to implement
and is very effective. Another popular conventional method
for the transmission problem is the coupling of finite element
method (FEM) and the boundary element method (BEM).
The common method is to introduce an enough big arti-
ficial boundary enclosing the obstacle inside and impose
an appropriate artificial boundary condition. Then one can
apply FEM to solve the Helmholtz equation on the bounded
domain and BEM to solve the exterior value problem outside
artificial boundary, respectively. Many authors realized the
coupling procedure to exterior transmission problem by de-
fined a Dirichlet-to-Neumann (DtN) mapping on the artificial
boundary [8], [9], [10], [11], [12], [13]. The authors of [12],
[13], [14], [15] define it by some basic boundary integral op-
erators, whereas some researchers represent the DtN mapping
through Fourier expansion series [8], [9], [16], [17], [18],
[11]. The authors of [19], [20], [21], [22] make an extension
of the standard DtN-FEM on general artificial boundary. But
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these exact boundary conditions are given in an infinite series
which must be truncated in actual computation and also some
significant error will appear in this case. Moreover, the exact
boundary condition is nonlocal, and result the dense blocks of
linear equations. Due to this, we consider local approximate
boundary conditions.

There are many types of local boundary conditions. The
simplest local boundary condition is the Sommerfeld con-
dition. Engquis and Majda [23], [24] developed a sequence
of local boundary conditions on the basis of factorization
of pseudodifferential operators. Bayliss and Turkel [25] pro-
posed another family of local boundary conditions, based
on the asymptotic approximation of the solution of the
wave equation. As for the numerical investigation of local
boundary conditions, Shirron and Babuska [26] compared
the performance and accuracy for various local boundary
conditions. In this paper, we deal with the two-dimensional
transmission problem in acoustics by the localization pro-
cedure initially proposed by Feng in [9]. We reduce the
classical transmission problem to a local boundary value
problem by defined a local DtN mapping. Then by using the
technique in [27] for interior acoustic transmission problem,
we show that the corresponding variational problem of the
local boundary value problem.

The organization of the paper is as follows: In Section 2,
we describe the classical Helmholtz transmission problem. In
Section 3, we reduce the transmission problem in acoustics to
a local boundary value problem. Then, we discuss the corre-
sponding variational equations and modified formulation in
Section 4. In the last section, we present some numerical
experiments to illustrate efficiency of the proposed method.

II. STATEMENT OF THE PROBLEM

Fig. 1. Boundary value problem (1)-(5).

Let Ω denote a bounded domain with smooth boundary
Γ, and let Ωc = R2/Ω be the unbounded exterior domain in
R2(see Fig. 1). We consider the following boundary value
problem in acoustics: Given the incident field ui, find the
total field u ∈ C2(Ω) ∩ C1(Ω) and the scattered field us ∈
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C2(Ωc) ∩ C1(Ωc) satisfying

∆u+ k21u = 0, in Ω, (1)

∆us + k22u
s = 0, in Ωc, (2)

u = us + ui, on Γ, (3)
∂u

∂ν
=

∂us

∂ν
+

∂ui

∂ν
, on Γ, (4)

where kj ̸= 0, j = 1, 2, are wave numbers with Im(kj) ≥ 0,
ν denotes the outer unit normal to the boundary and ∂/∂ν
means the normal derivative on Γ point from Ω to Ωc.
The derivation of these bounary condition by an appropri-
ate normalization can be found in [28]. Moreover, for the
uniqueness, the scattering field us has to satisfy the standard
Sommerfeld radiation condition

lim
r→∞

r
1
2 (

∂us

∂r
− ik2u

s) = 0 (5)

with i =
√
−1, r = |x| and x = (x1, x2) ∈ R2.

In order to obtain the uniqueness result of the transmission
problem, it needs to add some restrictions on the wave
number k1 and k2. Such constraints of wave numbers are
summarized in the following theorem.

Theorem 2.1: Let k2 ̸= 0 be such that Im(k2) ≥ 0, and
let k1 ̸= 0 be such that Im(k21k2) ≥ 0. Then the classical
transmission problem (1)-(5) has at most one solution.

A proof of the above theorem can be found in [3].

III. LOCALIZATION OF THE BOUNDARY VALUE PROBLEM

Fig. 2. Local boundary value problem (10)-(14)

We introduce in this section a local boundary value
problem in ΩR with the localized boundary condition on
ΓR (see Fig. 2). We describe the localization procedure
initially proposed in [9], which is actually the one most
correlated with the exact DtN mapping T . In [9], with a
simple manipulation, the normal derivative of us on ΓR

∂us

∂r
(R, θ) =

∞∑
n=0

′k2H
(1)
n

′
(k2R)(an cos(nθ) + bn sin(nθ))

(6)
can be written as

∂us

∂r
(R, θ) =

∞∑
n=0

′ k2H
(1)
n

′
(k2R)

H
(1)
n (k2R)

H(1)
n (k2R)(an cos(nθ)

+ bn sin(nθ)),
(7)

for ∀u ∈ Hs(ΓR), s ≥ 1/2. Here and throughout the
presentation, the prime behind the summation means that the

first term in the summation is multiplied by 1/2. By assuming
that k2R being sufficiently large and applying the asymptotic
expansion of the Hankel function in (7), we can obtain that

k2H
(1)
n

′
(k2R)

H
(1)
n (k2R)

∼ ik2

∞∑
m=0

(
i

2k2R
)mcm(n2), (8)

where the coefficients cm are defined recursively:

c0(n
2) =c1(n

2) = 1,

c2(n
2) =2(n2 − 1

4
),

· · · · ··
ck(n

2) =(2k − 2)(n, k − 1)− c2(n
2)(n, k − 2)− · · ·

− ck−1(n
2)(n, 1), k = 0, 1, 2...m.

here

(n,m) =
1

m!

m∏
k=1

(
n2 −

(
2k − 1

2

)2
)

is an even polynomial in n of degree 2m.
Because n2 can be regarded as eigenvalues of us corre-

sponding to the operator −∂2/∂θ2, we can interchange the
order of summations as substituting (8) into (7). Hence, we
have

∂us

∂r
(R, θ)

=
∞∑

n=0

′ k2H
(1)
n

′
(k2R)

H
(1)
n (k2R)

H(1)
n (k2R)(an cos(nθ) + bn sin(nθ))

∼
∞∑

n=0

′ik2

∞∑
m=0

(
i

2k2R
)mcm(n2)H(1)

n (k2R)(an cos(nθ)

+ bn sin(nθ))

=ik2

∞∑
m=0

(
i

2k2R
)mcm(− ∂2

∂θ2
)

∞∑
n=0

′H(1)
n (k2R)(an cos(nθ)

+ bn sin(nθ))

=ik2

∞∑
m=0

(
i

2k2R
)mcm(−∂2us

∂θ2
).

Thus the localized DtN mapping S : Hs(ΓR) 7→
Hs−1(ΓR), ∀ φ ∈ Hs(ΓR), 1/2 ≤ s ∈ R, is defined as

Sφ := ik2

∞∑
m=0

(
i

2k2R
)mcm(−∂2φ

∂θ2
), (9)

here S is a bounded linear operator. Now we can reduce
the boundary value problem (1)-(5) to the following local
boundary value problem: Given the incident field ui, find
u ∈ C2(Ω)∩C1(Ω) and us ∈ C2(ΩR)

∩
C1(ΩR) such that

∆u+ k21u = 0 in Ω, (10)

∆us + k22u
s = 0 in ΩR, (11)

u = us + ui on Γ, (12)
∂u

∂ν
=

∂us

∂ν
+

∂ui

∂ν
on Γ, (13)

∂us

∂ν
= Sus on ΓR. (14)
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The localized DtN mapping S and the truncated localized
DtN mapping SM can be written as

S =

∞∑
m=0

Sm (15)

and

SM =
M∑

m=0

Sm. (16)

respectively. Here M is the truncation order of S. The first
four terms of S read as

S0 = ik2, S1 = − 1

2R
,

S2 =
i

8k2R2
+

i

2k2R2

∂2

∂θ2
,

S3 =
1

8(k2)2R3
+

1

2(k2)2R3

∂2

∂θ2
.

In particular, the first term S0 gives the approximated Som-
merfeld condition.

IV. WEAK FORMULATION

In this section, we study the weak formulation of (10)-
(14). We first introduce the Sobolev spaces

Ht = Ht(Ω)×Ht(ΩR), (17)
Ht

Γ = {(v1, v2) ∈ Ht, v1 = v2 on Γ}, (18)

equipped with the norm

∥V ∥Ht =
(
∥v1∥2Ht(Ω) + ∥v2∥2Ht(ΩR)

)1/2
,

∀ V = (v1, v2) ∈ Ht. The standard weak formulation of
the nonlocal boundary value problem (10)-(14) reads: Given
ui, find U = (u, us) ∈ H1 such that

u− us = ui on Γ

and

A(U, V ) = a1(u, v1) + a2(u
s, v2) + b(us, v2) = ℓ(V ),

(19)
for any V = (v1, v2) ∈ H1

Γ, where

a1(u, v1) =

∫
Ω

∇u · ∇v̄1dx− k21

∫
Ω

uv̄1dx, (20)

a2(u
s, v2) =

∫
ΩR

∇us · ∇v̄2dx− k22

∫
ΩR

usv̄2dx,(21)

b(us, v2) = −
∫
ΓR

(Sus)v̄2ds, (22)

ℓ(V ) =

∫
Γ

∂ui

∂ν
v̄1ds. (23)

Here, a1(u, v1) is a sesquilinear form defined on H1(Ω) ×
H1(Ω), a2(us, v2) and b(us, v2) are sesquilinear forms de-
fined on H1(ΩR)×H1(ΩR), and ℓ(V ) is a linear functional
dependent on ∂ui/∂ν ∈ H−1/2(Γ).

Lemma 4.1: The sesquilinear form A is continuous, i.e.,

|A(U, V )| ≤ c∥U∥H1∥V ∥H1 , ∀ U, V ∈ H1
Γ, (24)

and satisfies the Gårding’s inequality taking the form

Re{A(V, V )} ≥ α∥V ∥2H1 − β∥V ∥2H1/2+ϵ , ∀ V ∈ H1
Γ,
(25)

where c > 0, α > 0, β ≥ 0, 1/2 > ϵ > 0 are all constants
independent of U and V .

A. Modified weak formulation

We consider the modified variational equation of (19)-(23)
for U = (u, us) ∈ H1,

AM (U, V ) = a1(u, v)+a2(u
s, ν)+bM (us, ν) = ℓ(v), (26)

∀ V = (v, ν) ∈ H1
Γ, where bM (us, ν) = −

∫
ΓR

(SMus)ν̄ds.

B. Galerkin formulation

Let Hh = (Sh, S
s
h) be the standard finite element space.

Now we consider the Galerkin formulation of (26): Given
ui, find Uh = (uh, u

s
h) ∈ Hh ⊂ H1 satisfying

AM (Uh, Vh) = a1(uh, vh)+a2(u
s
h, νh)+bM (us

h, νh) = ℓ(vh),
(27)

∀ Vh = (vh, νh) ∈ Hh
Γ.

It can be shown that the discrete sesquilinear form satisfies
the BBL-condition as follows [29] :

Lemma 4.2: Under the same assumptions on k1 and k2 as
in Theorem 2.1, suppose that the finite element space Hh

Γ ⊂
H1

Γ satisfies the standard approximation property, then there
exist constants M0 ≥ 0 and h0 > 0 such that AM (V,W ) for
0 < h ≤ h0, M ≥ M0 satisfies the BBL condition in the
form

sup
(0,0)̸=Wh∈Hh

Γ

|AN (Vh,Wh)|
∥Wh∥H1

≥ γ∥Vh∥H1 , ∀ Vh ∈ Hh
Γ.

(28)
Here, γ > 0 is the inf-sup constant independent of h.

V. NUMERICAL EXPERIMENTS

In this section, we present several numerical tests to
validate our theoretical results.

A. A model problem

We compute the scattering problem by an infinite circular
cylinder of radius R0, of a plane wave ui = eik2x·d

propagating along the positive x1 axis with the transmission
boundary condition on Γ. Here x = (x1, x2) and d = (1, 0)
is the unit vector describing the traveling direction of the
incident wave. The mathematical model can be formulated
as the transmission problem (1)-(5) with the interface Γ to
be a circle of radius R0. In this case, the exact solutions u
and us of (1)-(5) can be written as

u(r, θ) =
∑
n∈Z

anJn(k1r)e
inθ, ∀ r ≤ R, (29)

us(r, θ) =
∑
n∈Z

bnH
(1)
n (k2r)e

inθ, ∀ r ≥ R, (30)

where Jn(·) denotes the Bessel function of the first kind,
H

(1)
n (·) the Hankel function of the first kind, and an as well

as bn are Fourier coefficient of u and us on Γ respectively.
In terms of the Jacobi-Anger expansion formula under the
polar coordinates for the plane wave

ui(r, θ) = eik2rcosθ =
∑
n∈Z

inJn(k2r)e
inθ, (31)
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we can obtain an and bn in (29) and (30) explicitly by

an =
ink2(J

′
n(k2R0)H

(1)
n (k2R0)− Jn(k2R0)H

(1)′

n (k2R0))

k1J ′
n(k1R0)H

(1)
n (k2R0)− k2Jn(k1R0)H

(1)′
n (k2R0)

,

(32)

bn =
in(k2J

′
n(k1R0)Jn(k1R0)− k1J

′
n(k1R0)Jn(k2R0))

k1J ′
n(k1R0)H

(1)
n (k2R0)− k2Jn(k1R0)H

(1)′
n (k2R0)

.

(33)

Here the prime behind Bessel and Hankel functions denotes
the first order derivative. In the following simulations, the
infinite Fourier series (29) and (30) are truncated when the
relative change because of an additional mode in the fields
is below 10−6.

We add the artificial boundary ΓR to be a circle of radius
R. It enclose the circle of radius R0 with the same center
as Γ. Hence, the computational region ΩR is the annulus
between Γ and ΓR (see Fig. 3).

Fig. 3. Computational domain of the model problem.

To find the finite element solution of (27), we need to
numerically compute the sesquilinear form

b(us, ν) = −
∫
ΓR

(SMus)ν̄ds (34)

In what follows, some numerical examples using linear
Lagrange elements are presented. We generate an initial
coarse triangular mesh using the MATLAB PDEtool and
uniformly refine the mesh to perform a convergence study.
Moreover, we always set the radius R0 = 1, the wave number
k1 = 1 unless otherwise stated.

Experiment 1. In this test, we consider local boundary
value problem by the truncated localized DtN mpping SM

in (16). In (34), we choose M = 3, k2 = 2, R = 10
and compute the solutions for different h . From Fig. 4,
we can find that the numerical solutions is almost the same
as the exact solutions when h = 0.1399. Table I implies the
convergence order

∥U − Uh∥H0 = O(h2
F ), ∥U − Uh∥H1 = O(hF ), (35)

where U = (u, us) and Uh = (uh, u
s
h), hF is the finite

element meshsize.

TABLE I
NUMERICAL ERRORS WHEN R0 = 1,R = 10.

h H0-norm order H1-norm order
2.1674 4.4979E+0 1.0350E+1
1.0852 2.2710E+0 0.99 5.8138E+0 0.83
0.5523 6.3913E-1 1.88 2.1859E+0 1.45
0.2785 1.6650E-1 1.96 9.2622E-1 1.25
0.1399 4.2380E-2 1.99 4.3686E-1 1.09

Fig. 4. Absolute values of the exact solutions (left) and the numerical
solutions (right) of u (top)and us(bottom) for Experiment 1.

Experiment 2. We compute the model problem to ex-
amine the dependence of numerical errors on domain dis-
cretization , and use different wave numbers k2 = 2, 4, 6.
Moreover, we still choose R = 10. Fig. 5 is presented to
show the log-log plot of errors of U measured in H0-norm
and H1-norm respect to 1/h (h is the meshsize) and verifies
that the optimal order of convergence has been observed.
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Fig. 5. Log-log plots for numerical errors (vertical) of U vs. 1/h
(horizontal). Left: H0-norm; right: H1-norm.

Experiment 3. We compute the finite element solution
of (10)-(14) with the third order local boundary condition
(M = 3). We choose the wave number k2 = 2, and consider
four different values of radius R = 2, 4, 7, 10 respectively.
Numerical errors in H0-norm on Γ are presented in Fig. 6
indicating that there is no improvement of accuracy in the
case that k2R = 4 and a limited improvement of accuracy in
the case that k2R = 8, as the finite element mesh is refined.
However, significant improvements of accuracy are obtained
when k2R = 14 as the mesh is refined. The error in H0-
norm is roughly of O(h2) when R = 10 . This fact is in
good agreement with the assumptions for the derivation of
the local boundary conditions. Therefore, to reduce the error,
one has to place the artificial boundary at some distance away
from the scatterer as the wave number k2 is small.
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Fig. 6. Log-log plot vs. 1/h for errors in H0-norm(left) for a plane wave.

B. Another model problem

Next, we consider a point source ui = i
4H

(1)
0 (k2|x−x0|)

located at x0 ∈ R2\Ω. It can be expanded as

ui(r, θ) =
i

4

∑
n∈Z

H(1)
n (k2|x0|)Jn(k2r)einθ, (36)

In this case, exact solutions u and us of (1)-(5) also can
be written as (29) and (30) respectively, where the Fourier
coefficients an and bn are given explicitly by

an =
bnH

(1)
n (k2R0) +

i
4H

(1)
n (k2|x0|)Jn(k2R0)

Jn(k1R0)
, (37)

bn =
i

4
(

k2H
(1)
n (k2|x0|)J ′

n(k2R0)Jn(k1R0)

k1H
(1)
n (k2R0)J ′

n(k1R0)− k2H
(1)′
n (k2R0)Jn(k1R0)

− k1H
(1)
n (k2|x0|)Jn(k2R0)J

′
n(k1R0)

k1H
(1)
n (k2R0)J ′

n(k1R0)− k2H
(1)′
n (k2R0)Jn(k1R0)

).

(38)

Here the prime behind Bessel and Hankel functions denotes
the first order derivative. In the following examples, we
choose k1 = 1, R0 = 1, x0 = (2, 0).

Experiment 4. Let k2 = 2, R = 10, and we compute the
solutions for different h and present the solutions in Fig. 7
when h = 0.1399.

Experiment 5. We choose the third order truncated lo-
calized DtN mapping and let k2 = 2, R = 2 and 10,
respectively. Numerical errors and convergence order are
presented in Table II (R = 2) and in Table III (R = 10).
In particular, there is no apparent improvement as we refine
the mesh for the case that k2R = 4. This fact implies the
value of k2R must be large enough for the validation of
asymptotic expansion.

TABLE II
NUMERICAL ERRORS WHEN R0 = 1,R = 2.

h H0-norm order H1-norm order
0.4304 6.7210E-3 6.9834E-2
0.2152 3.8159E-3 0.82 3.5810E-2 0.96
0.1076 3.4898E-3 0.13 1.8891E-2 0.92
0.0538 3.4588E-3 0.013 1.1103E-2 0.77
0.0269 3.4546E-3 0.002 8.0426E-3 0.47

Fig. 7. Absolute values of the exact solutions (left) and the numerical
solutions (right) of u (top)and us(bottom) for Experiment 4.

TABLE III
NUMERICAL ERRORS WHEN R0 = 1,R = 10.

h H0-norm order H1-norm order
2.1674 1.9857E-1 4.5857E-1
1.0852 1.0585E-1 0.91 2.6860E-1 0.77
0.5523 3.0298E-2 1.85 1.0071E-1 1.45
0.2785 7.9075E-3 1.96 4.2116E-2 1.27
0.1399 2.0146E-3 1.99 1.9742E-2 1.10

VI. CONCLUSION

In this paper, we used a DtN Finite element method
(DtN-FEM) based on localized DtN mapping to solve the
classical two-dimensional Helmholtz transmission problem.
Based on the asymptotic expansion of Hankel functions
for large arguments, an approach for the construction of
localized DtN mapping is suggested and gives expression of
the normal derivative at spherical artificial boundary in terms
of linear combination of Laplace-Beltrami operator and its
iterates, i.e. tangential derivatives of even order exclusively.
Then the variational equations and Galerkin formulation are
derived. Numerical results are presented to demonstrate the
efficiency and accuracy of the schemes.
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