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Abstract—Development of viscous thin liquid film is in-
vestigated over an unsteady porous horizontal non-uniformly
stretching cylinder with effects of magnetic field and suc-
tion/injection. The full set of momentum equations are taken
for examination under the assumption that the film thickness
is uniform. Analytical and numerical solutions are obtained
for the governing set of nonlinear PDEs. It is found that the
film thickness diminished with increasing the cylinder radius
whereas film thickness enhanced in the presence of porous
medium and magnetic field. It has been observed that film
thickness reduced for suction through the surface of the cylinder
but reverse scenario is found for injection.

Index Terms—Unsteady flow, thin film, stretching cylinder,
viscous liquid, porous medium, magnetic field.

I. INTRODUCTION

IN the past decade, the development of unsteady thin
incompressible viscous liquid film on a stretchable surface

has gained huge applications in many industrial processes
like coating of wire and fiber material, production of rubber
and plastic sheets, polymer processing, etc. The steady flow
of viscous fluid over a flat stretchable surface was first
initiated by Crane [1] under the assumption that the sheet
is moving with a linear velocity and boundary layer ap-
proximation. Subsequently, many researchers reinvestigated
the problem of Crane [1] by taking different aspects of
fluid mechanics. Such as, Pavlov [2] analyzed the MHD
boundary layer flow on a stretchable flat sheet. Andersson
et al. [3] examined the boundary layer flow on a stretching
sheet with chemical reaction effect. Cortel [4] considered the
effects on nonlinear motion of the sheet and heat transfer.
Hayat et al. [5] studied the boundary layer flow of Jeffrey
fluid on a stretching sheet. Tian et al. [6] investigated
MHD stagnation-point nanofluid flow on a stretching sheet.
Saif et al. [7] explored the influences of homogeneous and
heterogenous chemical reactions on the flow of viscous fluid
on a nonlinear stretching sheet. Recently, Reman et al. [8],
Sattar et al. [9] and Farooq et al. [10] investigated the effects
of Sutterby nanoliquid, Jeffery-Hamel flow and MHD flow
over a nonlinear stretching sheet.
Wang [11] first investigated the boundary layer axisymmetric
flow of incompressible fluid over the surface of a hollow
horizontal cylinder that is stretched along the axial direction.
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Later, Ishak et al. [12] considered the effects of magnetic
field and heat transfer over a steady stretchable cylindrical
surface. Mukhopadhyay [13] studied the convective boundary
layer flow over a porous stretching cylinder with temperature
variation. Abbas et al. [14] probed the unsteady flow over a
shrinking cylinder with slip effect. Malik et al. [15] explored
the flow of magnetohydrodynamic tangent hyperbolic fluid
due to stretchable cylinder. Recently, Gholinia [16], Soomro
et al. [17], Waini et al. [18], Salahudin [19], Gajjela and
Garvandha [20] investigated the viscous boundary layer flow
on a stretching cylinder with the effects of CNTs nanofluid,
shrinking cylinder, hybrid-nonofluid, Carreau fluid model,
chemical reaction, etc.
The research works listed above are restricted to the bound-
ary layer flow of infinite fluid medium. Wang [21] first stud-
ied unsteady boundary layer flow of a viscous liquid having
finite film thickness that varies with time only. In this study,
he restricted himself for those type of motion that obeys a
specified family of time dependence and this special type of
velocity field helps to select a suitable similarity transforma-
tion that ultimately transformed the boundary layer equation
to a set of dimensionless ODEs, and finally solved the
equations numerically. Later, several researchers, Andersson
et al. [22], Dandapat et al. [23], Hayat et al. [24] Benos et
al. [25], Naganthran et al. [26] have attempted the problem
to study effects of heat and mass transfer, non-Newtonian
liquid, thermocapillarity, MHD, slip etc. Wang [27] analyzed
the boundary-layer flow of thin film on a stretching cylinder.
Recently, Gul et al. [28] considered the CNTs nanoliquid film
flow on a stretching cylinder. Physically, the boundary-layer
that developed due to forward motion of the sheet grows fast
and ultimately cover whole film thickness. Consequently, to
study the flow problem, one should take the full Navier-
Stokes equations instead of boundary-layer equations. Based
on the above physical situation, Dandapat and Maity [29] and
Dandapat et al. [30] first examined the unsteady film flow on
stretching sheet by taking full set of momentum equations
along with the deformable film surface.
The unsteady thin film development over a stretching cylin-
der by considering the full set of momentum equations has
not been considered till now. In this article, the unsteady thin
film development over a stretching cylinder is modeled by
considering full set of Navier-Stokes equations. The effects
of the porous medium, magnetic field and suction/injection
are considered for analysis. It is assumed that the liquid film
over the stretching cylinder is planar and it remains planar
for the entire stretching time.

II. MODELLING OF THE FLOW PROBLEM

A. Mathematical formulation
Considered the motion of thin liquid film on a porous

stretching cylindrical surface with effects of uniform trans-
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verse magnetic field and suction/injection (Figure 1). We
denote velocity in (r, z) directions as (u,w). The film
thickness h(t) remains planar through out the stretching
mechanism. Let the cylindrical surface at r = a is stretched
impulsively from the rest with velocity C(t)z, where a is
the radius of the cylinder and C(t) time depended constant.
A uniform magnetic field of constant strength B0 acts along
the r direction. The equation of continuity and momentum

Fig. 1. Sketch of the flow geometry.

for the axisymmetric flow of incompressible fluid can then
be written as:
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where ρ, p , ν and σ are the density, pressure, kinematic
viscosity and electric conductivity of the liquid, respectively.
k(> 0), φ(0 < φ < 1) are the permeability and porosity of
the porous medium.
The no-slip boundary condition at r = a are:

u = −us, w = C(t)z, (4)

where us is taken to be positive or negative according to
suction or injection at cylindrical surface.
The free surface boundary conditions at r = g(t)(= a+h(t))
are the zero tangential stress, the balance between the normal
stress and the ambient pressure and kinematic condition
respectively,

µ

(
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)
= 0, (5)

pa − p+ 2µ
∂u

∂r
= 0, (6)

dg

dt
= u, (7)

where pa is the atmospheric pressure.
The initial conditions (at t = 0) are

u = 0, w = 0, h = h0. (8)

B. Similarity transformation

The following similarity transformations are introduced
(see Dandapat [31], Usha and Ravindran [32]),

u(r, z, t) = u(r, t), w(r, z, t) = zf(r, t),

p(r, z, t) = −z
2

2
A(r, t) +B(r, t),

 (9)

in the governing equations (1)-(3). Set of equations (10)-(13)
are obtained after comparing the coefficient of like powers
of r from both sides as,
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∂A

∂r
= 0. (13)

The reduced boundary and initial conditions are:
at r = a

u(r, t) = −us, f(r, t) = C(t), (14)

at the surface r = g(t) = a+ h(t)

A = 0, B = 2µ
∂u

∂r
,

∂f

∂r
= 0, (15)

dg

dt
= u, (16)

at t = 0

f = 0, u = 0, h = h0. (17)

We obtained A(r, t) = 0 by solving the equations (13) with
the help of (15). The value of B(r, t) may be found from
equation (12) after integration with respect to r.

C. Scaling

The non-dimensional form of the above system of equa-
tions are obtained by the following dimensionless variables
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r
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f
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,
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a
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where u0(= h0C0), C0 are the characteristic velocity, and
initial stretching strength respectively.

The dimensionless set of equations are

1
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where, Re =
h2
0f0
ν , Mn = B0h0

√
σ
µ , β =

φh2
0

k are the
Reynolds number, the Hartmann number and the porosity
parameter respectively.
The dimensionless boundary and initial conditions are given
below.
At R = A:

U = −V, F =
C(τ)

C0
, (21)

where V = us/u0 is the non-dimensional suction/injection
velocity and V > 0 or V < 0 according to suction and
injection, respectively.
At film surface R = G(τ) = A+H(τ):

∂F

∂R
= 0, (22)

dG

dτ
= U. (23)

At time τ = 0:
F = U = 0, H = 1. (24)

III. ASYMPTOTIC SOLUTION FOR SMALL Re

The analytical solutions of the nonlinear governing equa-
tions (19)-(20) are derived by perturbation methods. We
assume that C(τ) = C0, Re << 1. We also assume that
Hartman number Mn2 and porosity parameter β are of order
Re. We expanded dependent variables in the power of Re as

Φ(R, τ) =
∑

εjΦj(R, τ). (25)

We found a set of PDE’s by comparing the coefficients of
like power of Re from both sides after substitution of the
equation (25) into the equations (19)-(20). Finally, solving
these equations and we found the velocity components F , U
as,
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In the aforementioned Mn2 = ReMn
2
, β = Reβ and Mn

2
,

β are of O(1). The film evolution equation (28) is derived
by substituting (27) into the kinematic condition (23) as

G
dG

dτ
=

1

2
(A2−G2)−V A+Re(1+Mn

2
+β)

[
− (G4 −A4)

16

+
1

8
(A2 −G2)(G2 −A2) +

G4

4
ln(G/A)

]
. (28)

Following the above asymptotic expansion (25) in equation
(28), we found the equation (29) for film thickness at O(Re0)
as
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Solving equations (29) and (32), we obtained the analytical
expression of film thickness as
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where c0 and c1 are the integration constants which we
determined here by the initial condition as c0 = 1+2(A+V )

and c1 = −(1 +Mn
2

+ β)
[
− c30

48A2 +
c30V
8A3 +

c20V
2
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]
.

IV. NUMERICAL SOLUTION

The numerical solution of the problem is obtained with the
higher values of Re, Mn and β by using the finite difference
technique. The traditional finite difference technique can’t
be used here as the boundary for film thickness always
varies with time. The physical region [0, H(τ)] is therefore
transformed to a fixed domain [0, 1] for numerical compu-
tation. The transformation (32) (see, [33]) is considered to
translate the moving physical domain into a fixed numerical-
computational domain.

η(τ) = 1− a1 ln

(
a2H(τ)− (R−A)

b2H(τ) + (R−A)

)
, 1 < c <∞,

(32)
where a1 = [ln(a2/b2)]−1, a2 = c + 1 and b2 = c− 1, c is
the grid spacing parameter in physical domain.
Equation (20) is discretized by the Crank-Nicholson finite
difference technique. The nonlinear term F 2 is estimated
by the Newton’s linearization technique (Fletcher [34]).
The numerical iterations are carried out with the following
tridiagonal system of linear algebraic equations,

PFn+1
j−1 +QFn+1

j +RFn+1
j+1 = (S)nj , (33)

where,

P =
B −A

4δη
− C

2δη2
,

Q =
1

δτ
+

C

δη2
+ 2Fnj ,

R =
A−B

4δη
− C

2δη2
,

(S)nj = Fnj

[
1

δτ
+ Fnj −

C

δη2
− Mn2

Re
− β

Re

]
+

Fnj−1

[
A−B

4δη
+

C

2δη2

]
+ Fnj+1

[
B −A

4δη
+

C

2δη2

]
,

A =
a1(a2 + b2)(HnWn

j − (R(j)−A)dHdτ )

(a2Hn − (R(j)−A))(b2Hn + (R(j)−A))
,

B =
a1(a2 + b2)H

R(j)Re(a2Hn − (R(j)−A))(b2Hn + (R(j)−A))
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+
a1(a2 + b2)Hn[(b2 − a2)Hn + 2(R(j)−A)]

Re(a2Hn − (R(j)−A))2(b2Hn + (R(j)−A))2
,
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.

At a fixed time level F is computed from the above tridiag-
onal system equations (33). Hence, U and H are computed
from the equation of continuity and kinematic condition
respectively.
The computation of the variables F , U and H will continue
until satisfying the following convergence criterion:∑

j |K
n+1
j −Kn

j |∑
j |K

n+1
j |

≤ ε, (34)

where K = (F,U,H), ε is the convergence criterium which
is taken as ε = 10−6 .
The numerical simulation is done with 51 grid points along
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Fig. 2. Variation of H with time τ for different values of A when Re =
0.1, Mn = 1, β = 1, V = −0.01.

with c = 104 and this gives the uniform grid distribution in
computational domain. The time step for numerical compu-
tation is taken as

δτ ≤ 0.25× δη2, (35)

which comes from the Courant-Friedrichs-Lewy (CFL) con-
dition of numerical stability.

V. RESULTS AND DISCUSSION

In figure 2, we have plotted analytical expression (31) for
film thickness H with time τ for various values of non-
dimensional radius A of the cylinder. It is found that the
film thickness diminishes with increasing values of A but
it can be seen that the results for A = 10 and above are
indistinguishable. Figure 3 shows the numerical simulation
of film height H for several values of Hartmann number Mn.
It is seen that film thinning rate decreases with increasing
values of Mn. This happens as the Lorentz force resists the
motion of the liquid film and it produces more resistance for
higher values of Mn. Figure 4 has illustrated the computation
of H with time τ for different porosity parameter β and
observed that film height enhances as β increases. The
porosity of the porous medium φ on the surface of the
stretching cylinder raises for higher β and resists the motion
of the liquid film. The influence of suction/injection velocity
V on film thinning process is depicted in figure 5. As shown
in figure 5(a), the film thinning rate increased with the higher
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1
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H
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Mn=3.0

Mn=1.0
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Mn=3.0

Fig. 3. Variation of H with time τ for different values Hartmann number
Mn when Re = 1.0, β = 1, A = 2, V = 0.01.

suction velocity at the surface of the cylinder. In figure 5(b),
the opposite scenario is noticed for injection. Figure 6 (a) and
6 (b) reveals the change of velocities F and U across the film
height at various time steps τ . From figure 6 (a), it is seen
that F increases gradually to achieve its stretching velocity
for large τ . Due to impulsive stretching, the velocity of the
cylinder first imparted to the adjacent liquid layer, and then
it spread out the entire film thickness by the viscous action.
Further, it is found that F is maximum at the surface of
the cylinder, and it diminished as film thickness increases.
It is also found from the graph that film height declined
with time. From figure 6 (b), it is observed that the vertical
velocity U diminished with raising time. Figure 7 (a) and
7 (b) depicts the impacts of Hartmann number Mn and
porosity parameter β on the radial velocity F . From figure 7
(a), it is observed that velocity F reduces insignificantly with
higher values of Mn. It is to be mentioned here that in the
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Fig. 4. Variation of H with time τ for different values of porosity parameter
β when Re = 1.0, Mn = 1, A = 2, V = 0.01.

presence of magnetic field a retarding body force known as
the Lorentz force is generated along the transverse direction
of the applied magnetic field. This Lorentz force opposes
the liquid motion and F reduces with raising Mn. It is also
obvious that the velocity component F decreases with β.
The porosity of the porous medium exerts resisting force to
the liquid motion as it restricts the flow of liquid along the
surface of the cylinder. The porosity parameter β heightens
due to the higher of porosity of the porous medium. As a
result, the velocity F decreases with β. Figure 8 portrays
the velocity component F with R for different values of V at
a fixed time. The velocity F increases with the higher values
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Fig. 5. Variation of H with τ for different values of suction/injection
velocity V when Re = 1.0, Mn = 2, β = 2, A = 2.
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Fig. 6. Variation of velocity compontes with respect to R for different
time when Re = 1.0, Mn = 1, β = 1, A = 2 and V = −0.01. Here, (a)
for F and (b) for U .
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Fig. 7. Variation of F with R when Re = 1.0, A = 2 and V = −0.01
and τ = 1. Here, (a) for different Mn with β = 1 and (b) for different β
with Mn = 1.

of suction velocity at the cylindrical surface but reverse
phenomenon is observed for injection. For suction from the
surface of cylinder there will be continuous loss of the liquid
mass from the system. As a result, the remaining liquid
moves faster along the stretching direction. For the injection
through the surface of the cylinder, the system continuously
gains more liquid mass resulting in slow motion. Now, the
impact of different stretching possibilities of the cylinder and
their consequence viz. when the cylinder
(i) is stretched impulsively from rest and maintains its
constant velocity C0 for further time as C(τ) = C0,
(ii) is stretched impulsively from rest and increases its
velocity continuously with time τ as C(τ) = C0(1− δτ)−1,
where (δτ) < 1 and
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Fig. 8. Variation of F with R for different suction/injection velocity when
Re = 1.0, Mn = 1, β = 1, A = 2 and τ = 1. Here, (a) for suction and
(b) for injection.
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Fig. 9. Variation of film thickness H for different stretching speed when
Re = 1.0, Mn = 1, β = 1 , A = 2 and V = −0.01.

(iii) is stretched from rest and increases its velocity with
time to attain a constant finite value C(τ) = C0(1− e−δτ )
as τ → ∞ is presented in figure 9. It is observed from
the figure that the change of film height for three cases of
stretching is markedly different. The film thinning rate is
more for the stretching of type (ii). One may expect that
the film thickness for the cases (i) and (iii) coincides after a
substantial time.

VI. CONCLUSION

Flow and development of thin viscous liquid film on an
unsteady stretching cylindrical surface are analyzed with
influence of transverse magnetic field and porous medium.
In the mathematical model the full set of Navier-Stokes
equations are included under the assumption that the film
thickness is uniform throughout the time. Both the analytical
and numerical solutions are obtained for nonlinear governing
set of PDEs. The major conclusions from the above analysis
are as follows:

1) Thickness of viscous liquid film H reduces for increas-
ing values of radius of the cylinder A. But this result
is indistinguishable for large values of A.

2) Thickness of viscous liquid film H enhances for in-
creasing values of the Hartmann number Mn and
porosity parameter β.

3) Thickness of viscous liquid film H declines for suction
on the cylindrical surface whereas the film thickness
increases for injection.
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4) The velocity of the liquid film attends maximum value
at the stretching cylindrical surface and it slows down
along the film thickness.

5) The rate of film thinning is more for the continuously
increasing stretching speed of the cylinder compared
to constant stretching.
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