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Abstract—This paper proposes two new methods to measure
the risk of individual stocks, which construct a portfolio, namely
Credible Monte Carlo Value at Risk (CMC VaR) and Credible
Monte Carlo Expected Tail Loss (CMC ETL). The CMC VaR is
developed by combining the concept of Credible Value at Risk
(Cr VaR) with Monte Carlo VaR (MC VaR). Meanwhile, CMC
ETL is constructed by mixing Credible ETL (Cr ETL) and MC
ETL. The new method’s performance is empirically verified
to evaluate the individual risk of each asset developing three
portfolios. The analyzed portfolios are designed by Indonesian
five stocks indexed by LQ 45, four stocks traded in New York
Stock Exchange (NYSE), two stocks indexed by NASDAQ, and
two stocks indexed by London Stock Exchange. We also assess
the accuracy of the CMC VaR by Kupiec Backtesting. The
empirical results of this paper implied that two novel methods
are effective in measuring the risk at 80 percent, 90 percent,
and 95 percent confidence levels. The proposed methods can
also overcome the drawback of VaR and ETL, which do not
contemplate the risk among assets grouped in a portfolio.

Index Terms—Conditional-Value-at-Risk, Monte-Carlo,
premium, VaR-algorithm.

I. INTRODUCTION

EFFECTIVE risk management has become a
prominent aspect of financial investors. This aspect

should consider the potential returns or manage the
investment risk encountered by investors. Determining an
appropriate method to manage the risk of an individual
asset or a portfolio asset among several risk measurement
methods developed by researchers is a challenging problem
[1].

Two risk measurement methods employed widely in
finance are Value at Risk (VaR) and Expected Tail Loss
(ETL). VaR at a confidence level (cl) 1 − a is defined as
a threshold of loss such that the loss probability exceeding
the threshold is not more than a [2]. Meanwhile, ETL at a
confidence level 1 − a is the expectation of loss, which is
greater than VaR [2].

Numerous researchers have developed VaR
and ETL to measure the risk of an asset or a
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portfolio asset ([3]; [4]). Several risk measure
methods elaborated from the two methods that can be
chosen to assess the financial risk had been proposed by
Mina and Ulmer [5], Castelacci and Siclary [6], Hong, Hu,
and Zhang [7], Hong, Hu, and Liu [8], Wang et al. [9],
Tzeng, Beaumont, and Ökten [10], and Martins-Filho and
Yao [11]. They constructed VaR and ETL based on Monte
Carlo Simulation concept that indicated well performance
in measuring the risk of several assets (portfolios).

Then, in 2016, Pitselis [12] also developed VaR and ETL
by presenting credible risk measurement methods, namely
Credible VaR (Cr VaR) and Credible ETL (Cr ETL). Both
methods were constructed by mixing a concept that was
previously popular to determine the insurance premium,
namely, the Bühlmann Credibility concept with classical
VaR/ETL employed to measure the investment risk.

Cr VaR and Cr ETL, presented by Pitselis [12], are new
types of risk measures. Both of them are a combination
of credibility theory utilized extensively in insurance and
risk measures, namely VaR chosen by the Basel Committee
on Banking Supervision as a standard to measure the risk
for capital requirements [13] and ETL as a complementary
measure of VaR [14]. Pitselis [12] claimed that both methods
provide more information than the classical VaR and ETL,
because they are able to capture the risk of individual assets
and portfolios constructed by similar but not identical asset
returns conjoined in sharing the risk.

In this paper, we are interested in developing two new risk
measures, namely Credible Monte Carlo VaR (CMC VaR)
and Credible Monte Carlo ETL (CMC ETL) constructed by
combining the basic notion of Cr VaR and Cr ETL proposed
by [12] with MC VaR employed in many research stated in
the prior paragraph.

The rest of this paper is organized as follows. The second
section explains the basic concept of risk measures and MC
VaR. In the third section, there is a derivation of CMC VaR.
Then, the formulation of CMC ETL is presented in the fourth
section. Meanwhile, in the fifth and in the sixth section,
CMC VaR and CMC ETL are examined and evaluated
successively from the empirical application. The application
of the two methods is utilized to measure the risk of four
portfolios which consist of stocks traded in the LQ 45 Index,
New York Stock Exchange (NYSE), NASDAQ, and London
Stock Exchange. The fifth section also shows the CMC VaR
accuracy in measuring risk. Then, in the sixth section, we
also give the application of CMC ETL for the individual
stocks constructing the four portfolios. In the last section,
we provide some conclusions.
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II. REVIEW OF RISK MEASURES

This section provides a brief theory of coherent risk
measure proposed by Artzner et al. [15]. Furthermore, the
definition of VaR and ETL and MC VaR, which becomes a
basic concept in developing the novel methods, are briefly
presented here.

Definition 2.1 Given a set of random variables which
are real-valued. A function ℘ : A → R is a coherent risk
measure if it fulfills the four axioms as follows ([15]; [12]):

a. Monotonicity Axiom. For all X ∈ A, then ℘(X) ≤ 0.
b. Positive Homogeneity Axiom. For all h ≥ 0, if X ∈
A, Xh ∈ A then ℘(hX) = h℘(X)

c. Translation Invariance Axiom. For all X ∈ A, X ≥ 0
and all r ∈ R, then ℘(X + r) = ℘(X)− r.

d. Subadditivity Axiom. For all X1, X2 ∈ A, if X1+X2 ∈
A, then ℘(X1 +X2) ≤ ℘(X1) + ℘(X2).

Next, we provide a quantile definition at a confidence
level, 1 − a, stated in Definition 2.2, which will be a basic
concept in VaR defined in Definition 2.3.

Definition 2.2 Consider a data set X1, X2, . . . , Xn, define
F (X) = P [X ≤ x] as a cumulative distributive function,
which continues everywhere and differentiable. The quantile,
q, at a confidence level, 1− a, of distribution is denoted by
[12]

q = F−1 = inf {x : F (x) ≥ 1− a} .

Definition 2.3 VaR is defined as a 1 − a quantile of
profit/loss distribution for a specified confidence level 1−a.
[12] .

VaR has been used extensively as a risk measure to manage
financial risk over a specified (commonly relatively short)
time period. VaR can be a coherent risk measure when
gains or losses (return) are normally distributed. Normal
distribution of return is difficult to be discovered in financial
and insurance data distribution, which is frequently skewed
distributed [16]. In other words, VaR provides restricted
guidance to investigate the function of the tail [17]. Due
to the VaR limitedness, we present a coherent risk measure,
namely ETL defined by Definition 2.4.

Definition 2.4 ETL at a confidence level (cl) 1− a is the
loss expectation exceeding the VaR [2]. The ETL definition
for the corresponding VaR given in Definition 2.3 is written
by the following expression [18]

ETL(X) = E (X | X ≥ V aR1−a(X)) .

ETL considers only the tail of the distribution [19]. In
addition, Klugman, Panjer, and Willmot [16] asserted that
ETL explains the distribution tail of return more than
employing only VaR in measuring risk. Hence, we proposed
CMC ETL to cope with the drawback of VaR.

Several methods to compute VaR have been
administered. Ammann and Reich [20] divided VaR
into parametric methods and nonparametric methods.
One of the nonparametric methods implemented to
calculate VaR is Monte Carlo (MC) VaR. MC VaR
is VaR examining risk based on MC simulation. MC
simulation has become a popular and flexible method
utilized in several applications such as economics and
finance ([21]; [10]). MC is regarded as a flexible and

TABLE I
ALGORITHM 1. DERIVATION OF MONTE CARLO VAR FOR THE

INDIVIDUAL ASSET

Stage Process

1 Calculating the return of an asset.
2 Determining the parameter value(s) of the return.
3 Determining confidence level(s) and time period(s).
4 Simulating return by generating individual return asset

randomly with the specified parameter provided in the third
step for N times.

5 Computing the estimation of maximum loss at a confidence
level 1 − a as an ath quantile of the empirical distribution
of return derived from step 5.

6 Counting VaR at a confidence level 1 − a over t period.
7 Repeating step 2 until step 6 for M times.
8 Computing the mean of results of step 7.

simple method to implement in many cases [10]. It does
not also require the assumption of asset distribution [22].
Although there are several algorithms in estimating
VaR based on MC simulation, this method basically
simulates data by generating independent random variables
with the same distribution based on data characteristics
([23], [24]). VaR based on MC simulation for an
individual asset can be derived using several steps
provided by Algorithm 1 [23].

III. CREDIBLE MONTE CARLO VALUE AT RISK

This section presents the derivation of CMC VaR, a
proposed method in this paper, to assess the investment
risk. Similar to Cr VaR, CMC VaR is also developed based
on the credibility theory. The theory is considered as a
remarkable method in estimating the insurance premium for a
group of insurance contracts when it possesses various claim
experiences for the group and several experiences for a larger
group of contracts that are similar but not identical [25].

Bühlmann’s credibility model focusing on VaR is
constructed by some assumptions as presented in Pitselis
[13]. Assumptions used in the proposed model (CMC VaR)
are developed by adjusting assumptions of Cr VaR in Pitselis
[25]. The assumptions for CMC VaR are given as follows
([25];[26]):

1) A portfolio comprising of m assets is given. Then, a
random vector indicating MC VaR of the jth assets at
period i = 1, 2, . . . , n where j = 1, 2, . . . ,m is denoted
by w

′

j = (N1,j, . . . , Nn,j).
2) A random variable Ni,j, . . . , Nn,j is assumed

identically distributed with mean E(Ni,j) = µ
and variance V ar(Ni,j) = σ2.

3) Each asset risk forming a portfolio is represented by
a random variable S assumed unknown distributed.
Meanwhile, a random variable N1,j, . . . , Nn,j is assumed
conditional i.i.d for a fixed S with E

(
Ni,j | S = s

)
=

µ(s) and V ar(Ni,j | S = s) = τ(s) for i = 1, 2, . . . , n.

Then, adopting Bühlmann credibility and MC simulation
to risk estimation concept, VaR based on the credibility
theory and MC simulation of the jth assets in the next period
that latter will be called as CMC VaR will be derived by
implementing Theorem 3.1 as follows
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Theorem 3.1 Under the aforementioned assumptions, the
linear estimator of CMC VaR of the jth asset can be denoted
by

ΨMC(s) = N̄jZMC + (1− ZMC)µ(s), (1)

where E
(
Nj
)

= N̄j is the mean of MC VaR for the jth asset
over the observed periods, µ(s) is the mean of E

(
Nj
)

for
j = 1, 2, . . . ,m, and ZCMCV aR is a risk factor of CMC
VaR expressed as Equation (2) as follows

ZMC =
nV ar(µ(s))

E [τ(s)] + nV ar [µ(s)]
. (2)

Proof. Performance of any estimators h(Xj) of Nj is
measured by using estimation of squared error. Firstly, given
a linear Bayes estimator of E

[
Nj
]

as follows

hj

(
gj0, g

j
l , N̂l

)
= gj0 +

m∑
l=1

gjl Ê [Nl],

where gj0 and gjl are given to minimize the expected
square error for the estimator, namely

R = E

[
µ(s)− gj0 −

m∑
l=1

gjl Ê [Nl]

]2
. (3)

After that, taken a derivative of Equation (3) which is
relative to gj0, and gj

l′
, so that it can be obtained the following

equation

Cov
[
µ(s), Ê [Nl′ ]

]
= gjl V ar

[
Ê [Nj ]

]

and

gl,j =
Cov

[
µ(s), Ê [Nj ]

]
V ar

[
Ê [Nj ]

] (4)

=
E
[
Cov

(
µ(s), Ê [Nj ] | s

)]
V ar

(
Ê [Nj ]

)
+
Cov

[
E (µ(s) | s) , E

[
Ê [Nj ] | s

]]
V ar

(
Ê [Nj ]

) (5)

(6)

which results ZMC provided in Equation (2).
Risk assessment using CMC VaR requires some

information, which are E [Nj ] , µ(s), E [V ar(Ni,j | s)] =
E [τ(s)] , and V ar [E(Ni,j | s)] = V ar [µ(s)] . In line with
the three assumptions, E [Nj ] , µ(s), E[τ(s)], and V ar [µ(s)]
are estimated using the mean sample formula of the data. The
unbiased estimator of E [Nj ] , µ(s), E [τ(s)] , and V ar [µ(s)]
are provided in Equation (7), Equation (8), Equation (9), and
Equation (10), respectively.

Ê [Nj ] =
1

n

n∑
i=1

Ni,j , (7)

TABLE II
ALGORITHM 2. RECURSIVE PROCESS OF CMC VAR DERIVATION

Stage Process

1 Fixing a number of assets constructing a portfolio,
denoted by m.

2 Fixing the observed period n, where n ≥ 2,

3 Enumerating the MC VaR for the jth asset at period
i = 1, 2, . . . , n where j = 1, 2, . . . ,m symbolized as Ni,j.

This stage comprises of several steps related to Algorithm 1
as follows:
(a) Calculating the return of the jth asset
(b) Determining the parameter value(s) of the return
of the jth asset.
(c) Determining the confidence level(s) and time period(s).
(d) Simulating the jth asset return by generating asset return
randomly with the specified parameter provided in step (b)
for N times.
(e) Computing the estimation of maximum loss at a
confidence level 1 − a as an ath quantile of the empirical
distribution of jth asset return derived from step (d).
(f) Counting MC VaR at a specified confidence level.
(g) Repeating step (b) until step (f) for M times.
(h) Computing the mean of MC VaR resulted from step (f)
and step (g).

4 Counting the estimated mean of MC VaR for the jth asset
during n observed periods,

5 Computing the estimated mean of MC VaR mean for

the m assets during n observed periods, denoted by Ê [Nj ].

6 Calculating the estimated MC VaR variance mean of assets

during observed periods, represented by Ê [τ(s)].

7 Enumerating the estimated variance of MC VaR mean
for the assets during observed periods,

symbolized as ̂V ar [µ(s)].

8 Calculating the estimated value of n ̂V ar [µ(s)] .
9 Counting the estimated ZMC for each asset.

10 Calculating the CMC VaR of the jth asset.

µ̂(s) =
1

mn

m∑
j=1

n∑
i=1

Ni,j , (8)

Ê [τ(s)] =
1

m(n− 1)

n∑
i=1

m∑
j=1

(Ni,j − N̄j)
2 (9)

̂V ar [µ(s)] =
1

m− 1

m∑
j=1

(N̄j − Ê [τ(s)])2

− Ê [τ(s)]

n
, (10)

Then, we propose Algorithm 2 provided in Table II,
consisting of a recursive process in order to derive CMC VaR.
The algorithm is developed using the Bühlmann credibility
concept and MC simulation.

IV. CREDIBLE MONTE CARLO ETL

Besides CMC VaR, we also proposed CMC ETL to
overcome the issue of subadditivity axiom that is not fulfilled
in CMC VaR. In this section, we present the derivation
of the CMC ETL formula in estimating asset risk. The
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formulation of CMC ETL will utilize the similar concept
of CMC VaR formulation elaborated in the previous section.
Several assumptions required in CMC ETL derivation are
provided as follows:

1) m assets constructing a portfolio are given. Then, a
random vector representing MC ETL of the jth assets
at period i = 1, 2, . . . , n where j = 1, 2, . . . ,m, is
expressed by w

′∗
j = (Q1,j , . . . , Qn,j).

2) A random variable Q1,j , . . . , Qn,j is assumed
identically distributed with mean E(Qi,j) = µ∗

and variance E(Qi,j) = σ∗2

3) The risk of each asset comprising a portfolio is
characterized by a random variable S which is
assumed unknown distributed while a random variable
Q1,j , . . . , Qn,j is assumed conditional i.i.d for a fixed
S with E(Qi,j | S = s) = µ∗ and V ar(Qi,j | S =
s) = τ∗(s), for i = 1, 2, . . . , n.

The assumptions will be utilized in Theorem 3.2 to formulate
CMC ETL inspired by Credible Conditional Tail Expectation
proposed by Pitselis [12].

Theorem 3.2 Due to the assumptions explained previously,
the linear estimator of CMC ETL of asset can be formulated
by [13]

ΥMC(s) = E(Qj)Z
∗
MC + (1− Z∗

MC)µ∗(s), (11)

where E(Qj) is the mean of MC ETL for the jth asset,
µ∗(s) is the mean of E(Qj) for j = 1, 2, . . . ,m, and CMC
ETL is a risk factor of CMC ETL denoted as Equation (12)
as follows

Z∗
MC =

nV ar(µ∗(s))

E [τ∗(s)] + nV ar [µ∗(s)]
. (12)

Proof. Performance of any estimators h∗(Xj) of Qj is
measured by using estimation of squared error. Firstly, given
a linear Bayes estimator of E [Qj ] as follows

h∗j

(
g∗0

j , g∗jl , Q̂l

)
= g∗j0 +

m∑
l=1

g∗jl Ê [Ql],

where g∗j0 and g∗jl are given to minimize the expected
square error for the estimator, namely

R = E

[
µ∗(s)− g∗j0 −

m∑
l=1

g∗jl Ê [Ql]

]2
. (13)

After that, take a derivative of Equation (13) which is
relative to g∗j0 and g∗j

l′
, so that it can be obtained the

following equation

Cov
[
µ∗(s), Ê [Ql′ ]

]
= g∗jl V ar

[
Ê [Qj ]

]

and

g∗l,j =
Cov

[
µ∗(s), Ê [Qj ]

]
V ar

[
Ê [Qj ]

] (14)

=
E
[
Cov

(
µ∗(s), Ê [Qj ] | s

)]
V ar

(
Ê [Qj ]

)
+
Cov

[
E (µ∗(s) | s) , E

[
Ê [Qj ] | s

]]
V ar

(
Ê [Qj ]

) (15)

(16)

which results Z∗
MC ETL provided in Equation (12).

Risk assessment using CMC ETL requires some
information, namely E(Qj), µ

∗(s), E [V ar(Qi,j | S = s)] =
E(τ∗(s)), and V ar (µ∗(s)) . In line with the three
assumptions, E(Qj), µ

∗(s), E [τ∗(s)] , and V ar(µ∗(s)) are
estimated by the mean sample formula of the data. The
unbiased estimator of E(Qj), µ

∗(s), E [τ∗(s)] , and
V ar(µ∗(s)) is presented in Equation (17), Equation (18),
Equation (19), and Equation (20), respectively.

Ê [Qj ] =
1

n

n∑
i=1

Qi,j , (17)

µ̂∗(s) =
1

mn

m∑
j=1

n∑
i=1

Qi,j , (18)

̂E [τ∗(s)] =
1

m(n− 1)

n∑
i=1

m∑
j=1

(Qi,j − Q̄j)
2 (19)

̂V ar [µ∗(s)] =
1

m− 1

m∑
j=1

(Q̄j − ̂E [τ∗(s)])2

− Ê [τ(s)]

n
, (20)

The CMC ETL for the jth asset which develops a portfolio
is obtained by completing the CMC ETL recursive process.
The recursive process is elaborated in Algorithm 3 presented
in Table III.

V. APPLICATION OF CMC VAR

This section implements theories provided in the preceding
sections to analyze the individual asset risks compiled in
a portfolio.The portfolio analyzed in this study consists of
four portfolios for a one-day holding period and a ten-
day holding period. The first portfolio was constructed by
Indonesian five stocks, namely PT. Bank Central Asia Tbk
(BBCA), PT. Telekomunikasi Indonesia Tbk (TLKM), PT.
Aneka Tambang Tbk (ANTAM), Semen Indonesia (SMGR)
Tbk, and PT. Indofood Sukses Makmur Tbk (INDF). The five
stocks were indexed by LQ 45 from February 2018 until
July 2018. The second portfolio comprised of four stocks
was indexed by New York Stock Exchange (NYSE). The
four stocks were Barrick Gold Corporation (GOLD), AT&T
Inc. (T), Unilever PLC (UL), and Newmont Corporation
(NEM). The third portfolio consisted of two stocks indexed
by NASDAQ. The two stocks were Advanced Micro Devices,
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TABLE III
ALGORITHM 3. RECURSIVE PROCESS IN CMC ETL DERIVATION

Stage Process

1 Enumerating the MC ETL corresponding with the MC VaR
of the asset at period i = 1, 2, . . . , n

where j = 1, 2, . . . ,m, symbolized as Qi,j .

2 Counting the estimated mean of MC ETL for the jth assets
during n observed periods,

3 Computing the mean of the MC ETL mean for the m assets

during n observed periods, denoted by µ̂∗(s)

4 Calculating the estimated mean of the MC ETL variance
for m assets during n observed periods,

represented by E
[
τ̂∗(s)

]
.

5 Enumerating the estimated variance of the MC ETL mean
for m assets during n observed periods,

symbolized as V ar
[
µ̂∗(s)

]
.

6 Calculating the estimated value of nV ar
[
µ̂∗(s)

]
.

7 Counting the estimated Z∗
MC .

8 Calculating the estimated CMC ETL of the jth asset.

Inc. (AMD) and eBay Inc. (EBAY). Then, the fourth portfolio
comprised of two stocks indexed by London Stock Exchange.
The two stocks were Associated British Foods plc (ABF.L)
and Antofagasta plc (ANTO.L).

The analysis was begun by breaking up the whole
daily stock price data observed over ten years, from
June 2008 to May 2018. The ten-year data accessed
from https://finance.yahoo.com/ was split into different ten
observed periods presented in Table IV.

TABLE IV
OBSERVED DATA OVER TEN PERIODS

Period (i) Duration

1 1 June 2008-31 May 2009

2 1 June 2009-31 May 2010

3 1 June 2010-31 May 2011

4 1 June 2011-31 May 2012

5 1 June 2012-31 May 2013

6 1 June 2013-31 May 2014

7 1 June 2014-31 May 2015

8 1 June 2015-31 May 2016

9 1 June 2016-31 May 2017

10 1 June 2017-31 May 2018

Then, the analysis of portfolio was continued by
computing the log return of the assets of the daily close
stock price over the ten-period data. The log return data
later was employed to quantify the MC VaR of the stocks
constructing the four portfolios for each observed
period. Table V summarizes the one-day MC VaR of each
asset constructing Portfolio I and II, at 80, 90, 95, and 99
percent of confidence level with the simulation number (M )
at 10.000 and generated data (N ) for each asset and period,
which are specified based on the number of log return data
corresponding to the number of real log return data of
each asset for every period. The one-day MC VaR for each
analyzed asset at several confidence levels joined at Portfolio
III and Portfolio IV is not presented here for brevity. Then,
the one-day MC VaR mean and the ten-day MC VaR mean

for each analyzed asset constructing Portfolio I, II, III, and
IV of the ten observed periods at several confidence levels
are tabulated in Table VI. The interpretation of the results
in this article is analog with the result interpretation in [26]
and [27] because we are also using Cr VaR framework.

Table VI reveals that the mean of maximum potential loss
with a confidence level at 90 percent within one-day holding
period over ten years of ANTM, BBCA, INDF, SMGR,
and TLKM constructing Portfolio I are 3.5486 percent,
2.2691 percent, 2.7218 percent, 2.9234 percent, and 2.3832
percent, respectively which are relative to each asset price
on a preceding day. The other values in Table VI can be
interpreted analogously.

Measuring the risk using CMC VaR requires not only the
estimated parameter provided in Table VI but also other
components derived from some steps given in Algorithm 2
(Table II). Components listed in Table V and Table VI are
required to obtain the estimated parameters of µ(s)
counted by Equation (8), E [τ(s)] calculated
by Equation (9), V ar(µ(s)) counted by
Equation (10) and the corresponding ZMC

necessitated in CMC VaR calculation for each asset
constructing Portfolio I, II, III, and IV. This process is
conducted by constructing an R Program to obtain the four
components provided in Table VII.

From Table VII, it can be implied that the mean of
maximum potential loss for one-day MC VaR mean for the
five assets constructing Portfolio I over the ten periods at a
confidence level of 90 percent for each asset which forms the
portfolio is 2.7692 percent that is relative to the asset price
at the previous one day. Furthermore, the mean of one-day
MC VaR variance at the corresponding confidence level for
each asset in the portfolio is 0.000102, and the corresponding
estimated variance of µ̂(s) that represents the variability in
the tail distribution for this case of each asset is 0.000016.
Interpretation of the other components in Table VII is not
provided for brevity.

Then, the estimators of µ(s), E (τ(s)) , and V ar(µ(s))
are employed to compute a credible risk factor of CMC VaR.
Utilizing Equation (2), we obtain the corresponding estimator
of ZMC at 0.603625 for 90 percent of confidence level. Next,
administering the precedence information in Table VI and
Table VII, the CMC Var of the jth asset is counted directly
using Equation (1), and the results are summarized in Table
VIII.

Table VIII states that the maximum potential losses
measured by CMC VaR for the holder of ANTM, BBCA,
INDF, SMGR, and TLKM constructing Portfolio I in the
next period of investment when the stock is held for one day
at a confidence level of 90 percent are 3.2397 percent, 2.4673
percent, 2.7406 percent, 2.8623 percent, and 2.5362 percent,
respectively. Furthermore, when we compared the estimation
of loss for each asset using the conventional MC VaR Mean
shown in Table VI and MC VaR Mean of the whole assets
listed in Table VII, it can be identified that the estimation of
maximum potential loss using one-day CMC VaR for the five
assets at 90 percent of confidence level is likely to approach
the mean of MC VaR for each asset. It is because of a risk
factor of one-day CMC VaR, ZCMC , at 0.603625, which
is relatively big. Hence, based on Equation (1), the weight
given to µ̂(s) is smaller than the weight given to the MC VaR
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TABLE V
ESTIMATED MC VAR

cl = 80 percent

Period (i) ̂NMC
i,ANTM

̂NMC
i,BBCA

̂NMC
i,INDF

̂NMC
i,SMGR

̂NMC
i,TLKM

̂NMC
i,GOLD

̂NMC
i,NEM N̂MC

i,T N̂MC
i,UL

1 0.047558 0.029248 0.033418 0.031253 0.027641 0.044426 0.040276 0.026544 0.024520

2 0.027074 0.018278 0.019917 0.017875 0.015216 0.020288 0.018821 0.009454 0.010976

3 0.015840 0.015480 0.015108 0.015357 0.016974 0.014704 0.014334 0.006962 0.009969

4 0.018904 0.014010 0.018974 0.018156 0.014090 0.018496 0.016780 0.008870 0.012223

5 0.016832 0.012911 0.012145 0.013266 0.013621 0.023525 0.017695 0.008087 0.006594

6 0.023935 0.016557 0.019852 0.023688 0.019106 0.023900 0.023319 0.008228 0.008428

7 0.017357 0.009149 0.010973 0.013751 0.010632 0.023700 0.018859 0.023745 0.008503

8 0.029001 0.013490 0.022299 0.024335 0.012701 0.030964 0.026493 0.007511 0.010210

9 0.021726 0.008524 0.013470 0.016282 0.012802 0.024217 0.020637 0.007807 0.012012

10 0.017241 0.008733 0.011819 0.017519 0.012746 0.013922 0.011415 0.011768 0.009213

cl = 90 percent

Period (i) ̂NMC
i,ANTM

̂NMC
i,BBCA

̂NMC
i,INDF

̂NMC
i,SMGR

̂NMC
i,TLKM

̂NMC
i,GOLD

̂NMC
i,NEM N̂MC

i,T N̂MC
i,UL

1 0.070935 0.044813 0.049799 0.047629 0.041801 0.067429 0.061387 0.039430 0.036540

2 0.040694 0.028707 0.031605 0.028293 0.023103 0.031050 0.028860 0.014338 0.016931

3 0.024304 0.024131 0.023805 0.023596 0.025880 0.022541 0.021817 0.011089 0.015492

4 0.027650 0.021351 0.028499 0.027929 0.021452 0.027725 0.021798 0.013634 0.018528

5 0.025779 0.020501 0.019382 0.021309 0.021658 0.034242 0.026096 0.012364 0.010681

6 0.036219 0.025263 0.029940 0.035581 0.029288 0.035806 0.034583 0.012538 0.012945

7 0.025482 0.014397 0.016783 0.020658 0.016399 0.035406 0.029038 0.035403 0.016472

8 0.044159 0.020328 0.033859 0.036143 0.019870 0.047774 0.040591 0.011670 0.015648

9 0.033255 0.013589 0.020977 0.024785 0.019818 0.036746 0.031455 0.011846 0.018665

10 0.026381 0.013829 0.017530 0.026414 0.019049 0.020783 0.017647 0.017474 0.013975

cl = 95 percent

Period (i) ̂NMC
i,ANTM

̂NMC
i,BBCA

̂NMC
i,INDF

̂NMC
i,SMGR

̂NMC
i,TLKM

̂NMC
i,GOLD

̂NMC
i,NEM N̂MC

i,T N̂MC
i,UL

1 0.090102 0.057486 0.063069 0.061006 0.053352 0.086093 0.078479 0.049954 0.046455

2 0.051780 0.037270 0.041179 0.036834 0.029563 0.039817 0.037030 0.018335 0.021771

3 0.031242 0.031151 0.030925 0.030374 0.033002 0.028928 0.027903 0.014466 0.0199634

4 0.034831 0.027327 0.036349 0.035804 0.027446 0.035244 0.032024 0.017507 0.023669

5 0.033001 0.026703 0.025325 0.027839 0.028177 0.043106 0.032955 0.015888 0.014039

6 0.046277 0.032449 0.038214 0.045257 0.037588 0.045396 0.043719 0.016082 0.016625

7 0.032086 0.018700 0.021555 0.045766 0.021078 0.044914 0.037276 0.044967 0.016467

8 0.056510 0.025974 0.043302 0.026327 0.025689 0.061380 0.052112 0.015066 0.020037

9 0.042689 0.017750 0.027057 0.031648 0.025467 0.046996 0.040282 0.015147 0.024032

10 0.033809 0.017965 0.022166 0.033672 0.024106 0.026355 0.022700 0.022133 0.017879

cl = 99 percent

Periode (i) ̂NMC
i,ANTM

̂NMC
i,BBCA

̂NMC
i,INDF

̂NMC
i,SMGR

̂NMC
i,TLKM

̂NMC
i,GOLD

̂NMC
i,NEM N̂MC

i,T N̂MC
i,UL

1 0.123936 0.080071 0.086711 0.084636 0.073858 0.119421 0.108887 0.068552 0.435147

2 0.071384 0.052334 0.058034 0.051936 0.040962 0.055444 0.051555 0.025398 0.476369

3 0.043456 0.043703 0.043520 0.042324 0.045825 0.040281 0.038804 0.020420 0.328491

4 0.047529 0.037932 0.050068 0.049948 0.038031 0.048545 0.044227 0.024445 0.340959

5 0.045869 0.037627 0.035766 0.039358 0.039771 0.058639 0.045044 0.022079 0.358304

6 0.064049 0.044974 0.052804 0.062295 0.052223 0.062455 0.059920 0.022265 0.511200

7 0.043834 0.026262 0.029976 0.036376 0.029472 0.061978 0.052103 0.061996 0.514470

8 0.078314 0.035914 0.059975 0.062956 0.036133 0.085818 0.072446 0.021108 0.656439

9 0.059342 0.025029 0.037887 0.043992 0.035537 0.065090 0.055944 0.020983 0.711411

10 0.047074 0.025375 0.030433 0.046570 0.033179 0.036312 0.031701 0.030413 1.364214
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TABLE VI
ESTIMATED MC VAR MEAN

Portfolio I (One-Day Holding Period) Portfolio I (Ten-Day Holding Period)

1 − α ̂E(NMC
i,ANTM ) ̂E(NMC

i,BBCA) ̂E(NMC
i,INDF ) 1 − α ̂E(NMC

i,ANTM ) ̂E(NMC
i,BBCA) ̂E(NMC

i,INDF )

0.80 0.023547 0.014638 0.017797 0.80 0.074244 0.046160 0.056488

0.90 0.035486 0.022691 0.027218 0.90 0.111937 0.071576 0.086438

0.95 0.045233 0.029277 0.034914 0.95 0.142563 0.092313 0.110839

0.99 0.062479 0.040922 0.048517 0.99 0.196935 0.129054 0.154139

1 − α ̂E(NMC
i,SMGR) ̂E(NMC

i,TLKM ) 1 − α ̂E(NMC
i,SMGR) ̂E(NMC

i,TLKM )

0.80 0.019148 0.015553 0.80 0.060432 0.049057

0.90 0.029234 0.023832 0.90 0.092234 0.075185

0.95 0.037453 0.030547 0.95 0.118170 0.096403

0.99 0.039015 0.052039 0.99 0.164092 0.123288

Portfolio II (One-Day Holding Period) Portfolio II (Ten-Day Holding Period)

1 − α ̂E(NMC
i,GOLD) ̂E(NMC

i,NEM ) ̂E(NMC
i,T ) 1 − α ̂E(NMC

i,GOLD) ̂E(NMC
i,NEM ) ̂E(NMC

i,T )

0.80 0.023814 0.020863 0.011898 0.80 0.076989 0.066025 0.032531

0.90 0.035950 0.031327 0.017979 0.90 0.113649 0.100105 0.049281

0.95 0.045823 0.040448 0.022954 0.95 0.144928 0.127898 0.06296

0.99 0.063398 0.056063 0.031766 0.99 0.170574 0.177322 0.087181

1 − α ̂E(NMC
i,UL) 1 − α ̂E(NMC

i,UL)

0.80 0.011265 0.80 0.035631

0.90 0.017587 0.90 0.054489

0.95 0.022094 0.95 0.069859

0.99 0.569700 0.99 0.097191

Portfolio III (One-Day Holding Period) Portfolio III (Ten-Day Holding Period)

1 − α ̂E(NMC
i,AMD) ̂E(NMC

i,EBAY ) 1 − α ̂E(NMC
i,AMD) ̂E(NMC

i,EBAY )

0.80 0.030878 0.016334 0.80 0.097597 0.051640

0.90 0.047087 0.025049 0.90 0.148940 0.079254

0.95 0.060328 0.032165 0.95 0.190808 0.101681

0.99 0.083758 0.044785 0.99 0.265100 0.141602

Portfolio IV (One-Day Holding Period) Portfolio IV (Ten-Day Holding Period)

1 − α ̂E(NMC
i,ABF ) ̂E(NMC

i,ANTO) 1 − α ̂E(NMC
i,ABF ) ̂E(NMC

i,ANTO)

0.80 0.011513 0.023037 0.80 0.011513 0.023037

0.90 0.017734 0.035096 0.90 0.017734 0.035096

0.95 0.022821 0.044891 0.95 0.022821 0.044891

0.99 0.031836 0.062351 0.99 0.031836 0.062351

mean for each asset over the ten periods. Furthermore, Table
VIII also implies that the higher confidence level yields the
greater CMC VaR.

We also assessed the performance of CMC VaR
using Kupiec Backtesting introduced by [28]. Kupiec
Backtesting is applied to verify the accuracy of CMC VaR
as a new risk measure. In Table IX, we show the result of
Kupiec Backtesting at the specified confidence levels for the
proposed method, in which NL abbreviates the losses number
exceeding CMC VaR and the percentage of NL is abbreviated
by PNL. NL also implies the number of tail losses (loss(es)
that occurred in the tail distribution). Meanwhile, for the ten-
day holding period of CMC VaR, based on Table IX, CMC
VaR for ten-day holding periods performs accurately at a
confidence level of 80 percent, 90 percent, and 95 percent.
The method’s effectiveness can be verified by checking the
P- Value in TableIX. A measure risk method possesses a
good performance when the P-Value of Binomial statistic is
not smaller than a. Table IX also shows that ten-day CMC
VaR for this case has performed consistently at a 99 percent

of a confidence level. This result is not in line with [12] and
CMC VaR for a one-day holding period that is inconsistent.

VI. APPLICATION OF CMC ETL

CMC ETL is computed to quantify the tail loss
information, which cannot be provided by CMC VaR. Firstly,
the MC ETL of the five log-returns is calculated and
summarized in Table X.

Table X shows that in the first period, the average
estimation of 10 percent worst lost exceeding the CMC VaR
for ANTM in Portfolio I in the next investment period when
the stock is held for one day is 6.8176 percent of the asset
price on the previous day. The other interpretations of the
other values presented in Table X are not explained for the
conciseness. Then, we calculated the mean of the estimated
MC ETL for each observed asset constructing Portfolio I,
II, III, and IV at several confidence levels. The calculation
results are summarized in Table XI.

According to the result of the analysis listed in Table
XI, it can be noticed that the estimated mean of the 10
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TABLE VII
ESTIMATION PARAMETERS OF CMC VAR

Portfolio I (One-Day Holding Period) Portfolio I (Ten-Day Holding Period)

1 − α µ̂(s) ̂E (τ(s)) ̂V ar(µ(s)) ẐMC 1 − α µ̂(s) ̂E (τ(s)) ̂V ar(µ(s)) ẐMC

0.80 0.018137 0.000046 0.000008 0.625289 0.80 0.057276 0.000480 0.000074 0.608124

0.90 0.027692 0.000102 0.000016 0.603625 0.90 0.087474 0.001013 0.000155 0.604891

0.95 0.035485 0.000165 0.000024 0.593447 0.95 0.112058 0.001629 0.000238 0.593845

0.99 0.048594 0.000321 0.000057 0.638226 0.99 0.153501 0.004772 0.000400 0.456110

Portfolio II (One Day Holding Period) Portfolio II (Ten-Day Holding Period)

1 − α µ̂(s) ̂E (τ(s)) ̂V ar(µ(s)) ẐMC 1 − α µ̂(s) ̂E (τ(s)) ̂V ar(µ(s)) ẐMC

0.80 0.016960 0.000035 0.000054 0.864245 0.80 0.052794 0.000496 0.000439 0.898427

0.90 0.025711 0.000075 0.000124 0.857636 0.90 0.079381 0.001147 0.000928 0.890042

0.95 0.032830 0.000127 0.000200 0.863327 0.95 0.101412 0.001865 0.001503 0.889638

0.99 0.180232 0.065210 0.023881 0.964672 0.99 0.133067 0.003815 0.001871 0.830650

Portfolio III (One-Day Holding Period) Portfolio III (Ten-Day Holding Period)

1 − α µ̂(s) ̂E (τ(s)) ̂V ar(µ(s)) ẐMC 1 − α µ̂(s) ̂E (τ(s)) ̂V ar(µ(s)) ẐMC

0.80 0.023606 0.000068 0.000099 0.936043 0.80 0.074619 0.000677 0.000988 0.935895

0.90 0.036068 0.000151 0.000228 0.937966 0.90 0.114097 0.001507 0.002277 0.937933

0.95 0.046247 0.000243 0.000372 0.938647 0.95 0.046247 0.000243 0.000372 0.938647

0.99 0.064272 0.000462 0.000713 0.939225 0.99 0.203351 0.004643 0.007161 0.939111

TABLE VIII
ESTIMATION OF CMC VAR FOR EACH STOCK

Portfolio I (One-Day Holding Period) Portfolio I (Ten-Day Holding Period)

CMC VaR ANTM BBCA INDF SMGR CMC VaR ANTM BBCA INDF SMG
̂ΨMC,0.99 0.057456 0.043698 0.048545 0.050793 ̂ΨMC,0.99 0.173312 0.142351 0.153792 0.158332
̂ΨMC,0.95 0.041270 0.031801 0.035146 0.036653 ̂ΨMC,0.95 0.130173 0.100332 0.111334 0.115688
̂ΨMC,0.90 0.032397 0.024673 0.027406 0.028623 ̂ΨMC,0.90 0.102272 0.077858 0.086848 0.090353
̂ΨMC,0.80 0.021520 0.015949 0.017925 0.018769 ̂ΨMC,0.80 0.067595 0.050516 0.056797 0.059195

CMC VaR TLKM CMC VaR TLKM
̂ΨMC,0.99 0.042480 ̂ΨMC,0.99 0.139721
̂ΨMC,0.95 0.032554 ̂ΨMC,0.95 0.102761
̂ΨMC,0.90 0.025362 ̂ΨMC,0.90 0.080041
̂ΨMC,0.80 0.016521 ̂ΨMC,0.80 0.052278

Portfolio II (One-Day Holding Period) Portfolio II (Ten-Day Holding Period)

CMC VaR GOLD NEM T UL CMC VaR GOLD NEM T UL
̂ΨMC,0.99 0.067526 0.060450 0.037011 0.555941 ̂ΨMC,0.99 0.164222 0.169828 0.094952 0.103267
̂ΨMC,0.95 0.044047 0.039407 0.024304 0.023561 $ ̂ΨMC,0.95 0.140126 0.124975 0.067205 0.073342
̂ΨMC,0.90 0.034492 0.030528 0.019079 0.018744 ̂ΨMC,0.90 0.109881 0.097826 0.052591 0.057226
̂ΨMC,0.80 0.022884 0.020333 0.012585 0.012038 ̂ΨMC,0.80 0.074531 0.064681 0.034590 0.037374

Portfolio III (One-Day Holding Period) Portfolio III (Ten-Day Holding Period)

CMC VaR AMD EBAY CMC VaR AMD EBAY
̂ΨMC,0.99 0.082574 0.045969 ̂ΨMC,0.99 0.261340 0.145362
̂ΨMC,0.95 0.059464 0.033029 ̂ΨMC,0.95 0.188078 0.104411
̂ΨMC,0.90 0.046404 0.025732 ̂ΨMC,0.90 0.146777 0.081416
̂ΨMC,0.80 0.030413 0.016799 ̂ΨMC,0.80 0.096124 0.053113

Portfolio IV (One-Day Holding Period Portfolio IV (Ten-Day Holding Period)

CMC VaR ABF ANTO CMC VaR ABF ANTO
̂ΨMC,0.99 0.033045 0.061141 ̂ΨMC,0.99 0.106238 0.192619
̂ΨMC,0.95 0.023706 0.044006 ̂ΨMC,0.95 0.076256 0.138800
̂ΨMC,0.90 0.018431 0.034398 ̂ΨMC,0.90 0.059313 0.108368
̂ΨMC,0.80 0.011989 0.022561 ̂ΨMC,0.80 0.038601 0.071076

IAENG International Journal of Applied Mathematics, 52:1, IJAM_52_1_31

Volume 52, Issue 1: March 2022

 
______________________________________________________________________________________ 



TABLE IX
KUPIEC BACKTESTING FOR ESTIMATED CMC VAR

1 − a j NL PNL P-Value 1 − a j NL PNL P-Value

Portfolio I 0.80 ANTM 427 16.486490 0.999997 Portfolio I 0.80 ANTM 40 1.544402 1

(One-Day 0.90 197 7.606178 0.999985 (Ten-Day 0.90 5 0.193050 1

Holding Period) 0.95 127 4.903475 0.566387 Holding Period) 0.95 2 0.077220 1

0.99 767 2.586873 0 0.99 1 0.038610 1

0.80 BBCA 350 13.513510 1 0.80 BBCA 39 1.505792 1

0.90 204 7.876448 0.999885 0.90 9 0.347490 1

0.95 118 4.555985 0.839347 0.95 1 0.038610 1

0.99 60 2.316602 0 0.99 0 0 1

0.80 INDF 385 14.864860 1 0.80 INDF 41 1.583012 1

0.90 182 7.027027 1 0.90 10 0.386100 1

0.95 114 4.401544 0.913803 0.95 2 0.077220 1

0.99 67 2.586873 0 0.99 1 0.038610 1

0.80 SMGR 389 15.019310 1 0.80 SMGR 30 1.158301 1

0.90 199 7.683398 0.999973 0.90 6 0.231660 1

0.95 149 5.752896 0.037949 0.95 3 0.115830 1

0.99 47 1.814672 0.000059 0.99 2 0.077220 1

0.80 TLKM 412 15.907340 1 0.80 TLKM 24 0.926641 1

0.90 207 7.992278 0.999743 0.90 6 0.231660 1

0.95 92 3.552124 0.999762 0.95 2 0.077220 1

0.99 70 2.702703 0 0.99 0 0 1

Portfolio II 0.80 GOLD 420 16.73307 0.999984 Portfolio II 0.80 GOLD 39 1.553785 1

(One-Day 0.90 229 9.123506 0.925108 (Ten-Day 0.95 4 0.159363 1

Holding Period) 0.95 135 5.378486 0.179248 Holding Period) 0.99 1 0.039841 1

0.99 48 1.912351 0.000014 0.99 1 0.039841 1

0.80 NEM 418 16.65339 0.999990 0.80 NEM 38 1.513944 1

0.90 215 8.565737 0.991926 0.90 9 0.358566 1

0.95 127 5.059761 0.422141 0.95 3 0.119522 1

0.99 48 1.912351 0.000014 0.99 0 0 1

0.80 T 287 11.43426 1 0.80 T 40 1.593625 1

0.90 143 5.697211 1 0.90 9 0.358566 1

0.95 91 3.625498 0.999424 0.95 5 0.199203 1

0.99 36 1.434263 0.014912 0.99 0 0 1

0.80 UL 367 14.62151 1 0.80 UL 35 1.394422 1

0.90 169 6.733068 1 0.90 11 0.438247 1

0.95 103 4.103586 0.980346 0.95 5 0.199203 1

0.99 0 0 1 0.99 0 0 1

Portfolio III 0.80 AMD 127 5.059761 1 Portfolio III 0.80 AMD 45 1.792829 1

(One-Day 0.90 45 1.792829 1 (Ten-Day 0.90 10 0.398406 1

Holding Period) 0.95 24 0.9561753 1 Holding Period) 0.95 1 0.039841 1

0.99 10 0.3984064 0.999475 0.99 1 0.039841 1

0.80 EBAY 362 14.42231 1 0.80 EBAY 33 1.314741 1

0.90 178 7.091633 1 0.90 10 0.398406 1

0.95 101 4.023904 0.987968 0.95 2 0.0793651 1

0.99 45 1.792829 0.000106 0.99 2 0.0796813 1

Portfolio IV 0.80 ANTO 418 16.5873 0.999993 Portfolio IV 0.80 ANTO 43 1.706349 1

(One-Day 0.90 234 9.285714 0.878064 (Ten-Day 0.90 5 0.1984127 1

Holding Period) 0.99 66 2.619048 0 Holding Period) 0.95 3 0.1190476 0

0.80 ABF 393 15.59524 1 0.80 ABF 22 0.8730159 1

0.90 186 7.380952 0.999997 0.90 9 0.3571429 1

0.95 108 4.285714 0.947677 0.95 3 0.1190476 1

0.99 34 1.349206 0.036393 0.99 2 0.0793651 1
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TABLE X
ESTIMATED MC ETL AT SPECIFIED CONFIDENCE LEVELS

cl = 80 percent cl = 90 percent

Period (i) ̂QMC
i,ANTM

̂QMC
i,BBCA

̂ηMC
i,INDF

̂QMC
i,SMGR

̂QMC
i,ANTM

̂QMC
i,BBCA

̂ηMC
i,INDF

̂QMC
i,SMGR

1 0.055139 0.039952 0.040528 0.0473051 0.068176 0.047162 0.053603 0.065726

2 0.039058 0.031620 0.033091 0.032594 0.048789 0.038121 0.042460 0.044905

3 0.031729 0.027375 0.032384 0.032176 0.042244 0.034744 0.045311 0.041199

4 0.034221 0.028505 0.033554 0.032887 0.059571 0.034347 0.045260 0.040470

5 0.030108 0.027748 0.024905 0.030316 0.044014 0.038861 0.043810 0.041725

6 0.038248 0.030597 0.037467 0.038247 0.051122 0.039284 0.045429 0.050699

7 0.034796 0.031012 0.025022 0.033283 0.046800 0.044416 0.061502 0.044539

8 0.041649 0.028440 0.035254 0.035801 0.054313 0.033418 0.049567 0.043732

9 0.032704 0.028190 0.028304 0.028878 0.048871 0.034237 0.039781 0.036633

10 0.031092 0.025543 0.027277 0.029576 0.040686 0.033522 0.034897 0.037738

cl = 95 percent cl = 99 percent

Period (i) ̂QMC
i,ANTM

̂QMC
i,BBCA

̂ηMC
i,INDF

̂QMC
i,SMGR

̂QMC
i,ANTM

̂QMC
i,BBCA

̂ηMC
i,INDF

̂QMC
i,SMGR

1 0.074634 0.054877 0.06689443 0.083280 0.093187 0.064538 0.079481 0.116479

2 0.061181 0.047321 0.04795885 0.053765 0.072949 0.055049 0.057339 0.061757

3 0.048310 0.045707 0.04923523 0.049059 0.072568 0.063406 0.059422 0.067900

4 0.065627 0.043791 0.05341525 0.045041 0.074360 0.055901 0.069056 0.061530

5 0.054444 0.044513 0.05341873 0.047952 0.065960 0.059499 0.060625 0.086593

6 0.059163 0.045425 0.05305398 0.047271 0.073604 0.054275 0.060868 0.068703

7 0.060381 0.048410 0.0615022 0.049730 0.069920 0.051236 0.061502 0.063982

8 0.060188 0.038380 0.05675451 0.056297 0.069849 0.055188 0.064254 0.072683

9 0.055799 0.040477 0.06435904 0.046838 0.069664 0.047695 0.064359 0.000000

10 0.048840 0.036902 0.04163014 0.041841 0.057987 0.000000 0.057377 0.051825

percent worst loss, which is larger than CMC VaR for
each asset of the ten observed periods, is between 3.7230
percent until 5.0459 percent when the assets of Portfolio I
were held for one day. The results presented in Table XI
would be utilized to count the four-parameter estimations
required in the CMC ETL computation for each asset.
The estimators of µ∗(s), E [τ∗(s)], V ar (µ∗(s)), and the
corresponding estimator of Z∗

MC for Portfolio I, II, III, and
IV are revealed in Table XII. From Table XII, it can be
interpreted that the estimated loss average, which is greater
than CMC VaR at confidence level 90 percent from the
five assets constructing Portfolio I, is about 4.3280 percent
that is relative to the close-price asset in the previous
day. Furthermore, the estimated expectation of the CMC
ETL variance from each asset is about 0.000048, and the
estimated variance of the average CMC ETL for every
asset is 0.000027. The estimators of µ∗(s), E [τ∗(s)], and
V ar (µ∗(s)) are employed to count the risk factor of CMC
ETL based on Equation (12). Then, we can obtain an
estimated risk factor of Portfolio I, Z∗

MC = 0.851777, at
a 90 percent of confidence level.

Then, using the precedence information, CMC ETL and
its risk factor of the jth asset in Portfolio I, II, III, and IV
can be calculated directly using Equation (11) and Equation
(12), and the results are shown in Table XIII. According
to the result of the analysis, for Portfolio I, it can be

concluded that the estimated mean of loss, which is bigger
than the CMC VaR of asset ANTM, BBCA, INDF, SMGR,
and TLKM, when the holding period is one day at a
confidence level of 90 percent respectively, are 4.9395
percent, 3.8622 percent, 4.5735 percent, 4.4521 percent, and
3.8127 percent. In addition, when we compared the mean
estimation of loss for each asset using the conventional MC
ETL provided in Table X, and the loss average, which is
greater than CMC VaR from each asset in Portfolio I, it can
be identified that the estimation of loss using CMC ETL
for the five assets is tended to approach the estimated mean
of MC ETL for every asset over the ten periods. It is due
to a risk factor of CMC ETL of Portfolio I, Z∗

MC , which
is relatively big. Thus, based on Equation (11), the weight
given to µ̂∗(s) is smaller than the weight granted to the mean
of MC ETL for each asset in Portfolio I over the ten periods.

VII. CONCLUSION

CMC VaR and CMC ETL proposed in this paper are
the new risk measurement methods which are designed by
combining the concept of Credible VaR and Credible ETL
with MC VaR and MC ETL. The new methods are able to
cover joint utilization of asset information and other relevant
information because of the other asset risks within a portfolio
to estimate an individual asset risk. As described in the data
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TABLE XI
THE ESTIMATED MEAN OF MC ETL FOR THE FIVE ASSETS

Portfolio I

1 − α ̂E(QMC
i,ANTM ) ̂E(QMC

i,BBCA) ̂E(QMC
i,INDF )1 − α ̂E(QMC

i,SMGR) ̂E(QMC
i,TLKM )

0.80 0.036874 0.029898 0.0317780.80 0.034106 0.029026

0.90 0.050459 0.037811 0.0461620.90 0.044737 0.037230

0.95 0.058857 0.044580 0.054822 0.053130 0.044

0.99 0.072005 0.050679 0.063428 0.065145 0.050898

Portfolio II

1 − α ̂E(QMC
i,GOLD) ̂E(QMC

i,NEM ) ̂E(QMC
i,T ) ̂E(QMC

i,UL)

0.80 0.041068 0.035745 0.020896 0.020981

0.90 0.053604 0.046662 0.027488 0.028991

0.95 0.064560 0.044805 0.032345 0.033869

0.99 0.089909 0.061548 0.023181 0.000000

Portfolio III

1 − α ̂E(QMC
i,AMD) ̂E(QMC

i,EBAY )

0.80 0.057862 0.030267

0.90 0.076279 0.040127

0.95 0.097286 0.049491

0.99 0.120257 0.063592

Portfolio IV

1 − α ̂E(QMC
i,ABF ) ̂E(QMC

i,ANTO)

0.80 0.021320 0.039952

0.90 0.029029 0.039058

0.95 0.035007 0.058480

0.99 0.047679 0.068573

TABLE XII
ESTIMATION PARAMETERS OF CMC ETL

Portfolio I

1 − α µ̂∗(s) ̂E [τ∗(s)] ̂V ar (µ∗(s)) Ẑ∗
MC

0.80 0.032337 0.000029 0.000007 0.717151

0.90 0.043280 0.000048 0.000027 0.851777

0.95 0.051118 0.000063 0.000036 0.850691

0.99 0.060431 0.000326 0.000055 0.628463

Portfolio II

0.80 0.029672 0.000103 0.000033 0.969164

0.90 0.039186 0.000164 0.000043 0.974147

0.95 0.043895 0.000202 0.000186 0.915712

0.99 0.043659 0.001548 0.000464 0.970864

Portfolio III

0.80 0.044064 0.000038 0.000377 0.990046

0.90 0.058203 0.000077 0.000646 0.988182

0.95 0.073389 0.000170 0.001125 0.985096

0.99 0.091925 0.000248 0.001581 0.984579

Portfolio IV

0.80 0.030636 0.000169 0.000042 0.976020

0.90 0.034043 0.000046 0.000047 0.907238

0.95 0.046743 0.000271 0.000049 0.982314

0.99 0.058126 0.000124 0.000939 0.569884
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TABLE XIII
ESTIMATED CMC ETL FOR EACH STOCK

Portfolio I

CMC ETL ANTM BBCA INDF SMGR TLKM

̂ΥMC,0.99 0.067705 0.054302 0.062315 0.063394 0.054440

̂ΥMC,0.95 0.057701 0.045556 0.054269 0.052830 0.045233

̂ΥMC,0.90 0.049395 0.038622 0.045735 0.044521 0.038127

̂ΥMC,0.80 0.035591 0.030588 0.031936 0.033606 0.029963

Portfolio II

CMC ETL GOLD NEM T UL

̂ΥMC,0.99 0.088562 0.061026 0.023777 0.001272

̂ΥMC,0.95 0.062818 0.044728 0.033319 0.034714

̂ΥMC,0.90 0.053231 0.046468 0.027790 0.029254

̂ΥMC,0.80 0.040717 0.035557 0.021167 0.021248

Portfolio III

CMC ETL AMD EBAY

̂ΥMC,0.99 0.119821 0.064029

̂ΥMC,0.95 0.096930 0.049847

̂ΥMC,0.90 0.076066 0.040341

̂ΥMC,0.80 0.057724 0.030404

Portfolio IV

CMC ETL ABF ANTO

̂ΥMC,0.99 0.052172 0.064079

̂ΥMC,0.95 0.035214 0.058273

̂ΥMC,0.90 0.029494 0.038593

̂ΥMC,0.80 0.021543 0.039729

analysis in Section V and VI, it can be summarized that
CMC VaR and CMC ETL are empirically effective chosen
as alternatives to risk measures. Both risk measures also
provide easiness to be implemented in the real data because
the methods do not require a specified distribution of return
assets.
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