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Abstract—We derive basic statistics for the least squares
piecewise monotonic approximation to noisy data. It is known
that this approximation is the solution of a combinatorial
problem, which is decomposed quite efficiently into separate
monotonic approximation problems. Each monotonic section
consists of disjoint intervals of adjacent equal components.
We provide a B-spline representation of the solution and state
the associated linear regression model. It is shown that the
dispersion matrix of the model estimated coefficients is a
positive definite diagonal matrix. Hence, confidence intervals
and tests for the coefficients of the linear model are derived
immediately and stably. A numerical example illustrates some
technical aspects of an optimal fit, and demonstrates the
estimation capability of the linear model. Our results suggest
some subjects for future work.

Index Terms—approximation, B-spline, data fitting, first di-
vided difference, least squares, linear regression model, piece-
wise monotonic constraints

I. INTRODUCTION

THE purpose of this paper is to examine some basic
statistics for the regression coefficients of the least

squares piecewise monotonic fit to discrete data. Piecewise
monotonicity enters in terms of sign changes in the first
divided differences of the data.

Let {φi : i = 1, 2, . . . , n} be measurements of the real
function values {f(xi) : i=1, 2, . . . , n}, where the abscissae
{xi : i = 1, 2, . . . , n} are in the strictly ascending order
x1 < x2 < · · · < xn. Demetriou and Powell [8] take the
view that there are errors in the data that require corrections
if the number of sign changes in the sequence {φi+1 − φi :
i = 1, 2, . . . , n − 1} is much greater than the number in
the sequence {f(xi+1) − f(xi) : i = 1, 2, . . . , n − 1}.
Specifically, given a positive integer k, they seek numbers
{yi : i = 1, 2, . . . , n} that minimize the objective function

Φ(y1, y2, . . . , yn) =
n∑
i=1

(yi − φi)2 (1)

subject to the constraints that there exist integers {tj : j =
0, 1, . . . , k} satisfying the conditions

1 = t0 ≤ t1 ≤ · · · ≤ tk = n, (2)

such that the inequalities

ytj−1
≤ ytj−1+1 ≤ · · · ≤ ytj , if j is odd

ytj−1 ≥ ytj−1+1 ≥ · · · ≥ ytj , if j is even

}
(3)

hold.
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The integers {tj : j = 1, 2, . . . , k − 1} are also variables
of the optimization calculation. We regard the data {φi : i =
1, 2, . . . , n} and the smoothed values {yi : i = 1, 2, . . . , n}
as components of the vectors φ and y in Rn, and we denote
by yT = (y1, y2, . . . , yn) the transpose of vector y. We call
vector y an optimal piecewise monotonic approximation to
φ.

This is a challenging optimization problem that requires
O(nk−1) combinations of integers in order to find an opti-
mal combination. However, Demetriou and Powell [8] have
developed a dynamic programming method that generates
the solution in only O(n2 + kn log2 n) computer operations
when k ≥ 3 and in O(n) when k = 1 or 2. For a
detailed presentation of the method, the reader may consult
the reference. In order to consider the test statistics of the
piecewise monotonic fit to the data, as stated at the beginning
of the section, we give the following properties.

The important property of the least squares piecewise
monotonic approximation problem is that it is decomposed
into monotonic approximation problems (case k = 1) to
disjoint sets of adjacent data. Now, we have yt=φt, where
t is any element of the set {t1, t2, . . . , tk−1}. It follows
from the decomposition statement of Demetriou [6] that the
particular monotonic problem on [xtj−1

, xtj ] requires the
minimization of the sum of squares

tj∑
i=tj−1

(yi − φi)2 (4)

subject to the monotonicity constraints (3). Therefore, the
components of y are defined by a separate quadratic pro-
gramming calculation for each section. Further, the optimal
values {yi : i = tj−1, . . . , tj} consist of ranges of equal
components. We consider these ranges by adopting the
definition by Cullinan and Powell [2]. Specifically, if j is odd
and, s and t are integers such that tj−1 ≤ s < t ≤ tj + 1,
then η̂ is defined to be the real number

∑t−1
i=s φi/(t−s) that

minimizes the expression
t−1∑
i=s

(η − φi)2. (5)

Now, if ys = ys+1 = · · · = yt−1, if s = tj−1 or ys−1 < ys,
and if t = tj + 1 or yt−1 < yt, then

ys = ys+1 = · · · = yt−1 = η̂. (6)

Analogously, we may consider the case when j is even.
The analysis of the statistics is addressed in Sections II

and III. Section II gives the B-spline representation of the
solution of the optimization problem, namely the optimal
piecewise monotonic approximation to the data. This repre-
sentation is an equivalent formulation of the solution by a
constant spline with certain knots. Here we take advantage
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of the fact that the coefficients of the B-spline representation
of the constant spline consist of ranges of equal components
and can be derived from a system of normal equations that
has a positive definite diagonal coefficient matrix.

Section III states the linear regression model that is
associated with the B-spline representation of the solution,
and considers some common test statistics and confidence
intervals for the model coefficients. Now the matrix structure
obtained by the B-spline form of the solution gives immedi-
ately and stably these statistics.

Section IV presents numerical results obtained by fitting
measurements of a known function contaminated by random
errors. We apply the method to the data for certain values
of k, provide some technical aspects of each fit, discuss on
the spline representation of the optimal fit, and derive some
statistics for the coefficients of the associated linear model.
With the aim of guiding the use of the method, the results
are instructively analyzed. Hence, the advantages derived by
the spline representation of the optimal fit and the estimation
capability of the linear regression model are demonstrated.

Section V reviews the results and discusses on future
directions of this research.

All the experiments were run by L2WPMA, the Fortran
program of Demetriou [5], which implements the method of
[4].

The piecewise monotonic approximation problem arises
in many important applications such as medical practices,
spectroscopy, cancer research, and energy (references are
included in Demetriou [7]). We emphasize the work that
made by Lazaropoulos [10] on smart grid and renewable
energy topologies.

II. THE SPLINE REPRESENTATION OF THE OPTIMAL FIT

In this section, we state a spline representation of the op-
timal fit, which we next employ in Section III for estimating
purposes concerning the associated linear model.

The user provides the data φ ∈ Rn and the integer k, and
the method at the end of the calculation, supplies the optimal
integers {tj : j = 1, 2, . . . , k−1} and the associated optimal
components {yi : i = 1, 2, . . . , n}. As noted already, these
components are calculated by independent monotonic ap-
proximation calculations between successive tj . Specifically,
they are monotonic increasing on [1, t1] and on [tj−1, tj ] for
odd j in [2, k] and monotonic decreasing on [tj−1, tj ] for
even j in [2, k].

We recall from the paragraph that includes relations (6)
that the optimal fit {yi : i = 1, 2, . . . , n} consists of intervals
of equal components, let Ij be the subset of indices of the
constraints (3) such that

Ij =

{
{i : yi−1 < yi, i = tj−1 + 1, . . . , tj}, if j is odd

{i : yi−1 > yi, i = tj−1 + 1, . . . , tj}, if j is even,

and let I be the union of the subsets

I = {t0} ∪ I1 ∪ I2 ∪ · · · ∪ Ik.

We denote by {s(x) : x1 ≤ x ≤ xn} the piecewise
interpolating function to the optimal values. It follows that
s(x) is a constant spline whose knots are all in the set {xi :
i ∈ I}. Further, we set κ = |I|, where |I| is the number of
elements of I, and let S be the space of all constant splines

defined on the points {ξi : i = 1, 2, . . . , κ}, the points being
the set {xi : i ∈ I}.

Provided that the knots {ξi} are given, the calculation of
y is equivalent to finding the function s that minimizes the
sum of squares

n∑
i=1

[s(xi)− φi]2, s ∈ S. (7)

Then the components of y have the values {yi = s(xi) : i =
1, 2, . . . , n}. We express s in the form

s(xi) =
κ∑
j=1

cjBj(xi), i = 1, 2, . . . , n, (8)

where {Bj : j = 1, 2, . . . , κ} is the first-order B-spline basis
(see, for example, de Boor [1]: p.89) of the space S of all
constant splines, with

Bj(x) =

{
1, ξj ≤ x < ξj+1

0, otherwise,
(9)

except that when j = κ we define ξκ+1 = xn and replace
the inequalities in formula (9) by ξκ ≤ x ≤ ξκ+1.

Based upon expression (8), we represent the optimal fit y
by the triple (κ, ω, c). Here, κ is a positive integer, and ω and
c are vectors in Rκ, where the components of ω are positive
integers whose sum is n, and the components of c are the
coefficients of the spline expression (8). This triple denotes
the vector y = y(κ, ω, c) ∈ Rn that has ω1 components
equal to c1, ω2 components equal to c2 and so on up to ωκ
components equal to cκ. Hence we define the knots ξ1 =
x1, ξ2 = xω1+1, ξ3 = xω1+ω2+1 and so on up to ξκ =
xω1+ω2+···+ωκ−1+1, and we let c1 = y1, c2 = yω1+1, c3 =
yω1+ω2+1 and so on up to cκ = yω1+ω2+···+ωκ−1+1.

As noted above, we use the L2WPMA software [5] for
the calculation of the optimal piecewise monotonic approxi-
mation. By design, L2WPMA, at the end of the calculation,
delivers the data indices of the knots, and the components
of the optimal fit y that define the triple y(κ, ω, c). So, in
view of set I, we may immediately obtain the sequences
{ξj : j = 1, 2, . . . , κ} and {cj : j = 1, 2, . . . , κ}. It follows
that the components of y between two successive interior
knots, say ξj and ξj+1, are

yi = cj , ω1 + ω2 + · · ·+ ωj−1 + 1 ≤ i
≤ ω1 + ω2 + · · ·+ ωj ,

and similarly for the other cases.
Of course, given the knots, the coefficients satisfy the

normal equations associated with the minimization of the
objective function (1),

κ∑
j=1

[ n∑
i=1

B`(xi)Bj(xi)
]
cj =

n∑
i=1

B`(xi)φi, ` = 1, 2, . . . , κ,

(10)
which is a crucial part of our analysis. Indeed, since

n∑
i=1

B`(xi)Bj(xi) = 0, for |`− j| > 0, (11)

system (10) simplifies to the diagonal system of equations
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
e1

e2
. . .

eκ



c1
c2
...
cκ

 =


b1
b2
...
bκ

 , (12)

where for j = 1, 2, . . . , κ

ej =
∑

xi∈[ξj ,ξj+1)

[Bj(xi)]
2 = ωj , (13)

and
bj =

∑
xi∈[ξj ,ξj+1)

Bj(xi)φi =
∑

xi∈[ξj ,ξj+1)

φi.

Besides that the coefficient matrix of system (12) is diagonal,
is positive definite as well. Thus, not only it is straightforward
to solve for {cj : j = 1, 2, . . . , κ}, but also to stably obtain
the test statistics of the linear model.

III. THE LINEAR MODEL

We now turn to the discussion of expressing function (8)
as a linear regression model in order to derive some statistics
that are useful in the practical application of the piecewise
monotonic data approximation method. We shall see that
our particular problem has some computational advantages
over the well known general linear regression problem. Here,
presentation and notation follows Kendall and Stuart [9],
but the subject of linear regression is treated in almost any
textbook of statistics (see, for instance, [3] for an exposition
from the point of view of econometrics).

The linear model behind equation (8) in matrix notation
is

φ = Xc+ ε, (14)

where X is an n × κ matrix with elements {Bj(xi) : i =
1, 2, . . . , n} for j = 1, 2, . . . , κ, vector c has the components
{cj : j = 1, 2, . . . , κ}, and ε is an n-vector of “error”
random variables εi with zero mean and variance σ2. For
example, if n = 8, κ = 3 and ξ1 = 1, ξ2 = 5 and ξ3 = 8,
then matrix X of system (14) is

X =



1
1
1
1

1
1
1

1


. (15)

The usual results of regression analysis apply. The least
squares method requires the unconstrained minimization of
the sum of squares

S(c) = (φ− Xc)T (φ− Xc) (16)

in the components of c. Differentiating gives

2XT (φ− Xc) = 0, (17)

which is equivalent to the normal equations (10). Solving
(17) gives the least squares estimator of c

ĉ = (XTX)−1XTφ, (18)

because, in view of elements (13), matrix (XTX) is the κ×κ
diagonal and positive definite coefficient matrix that occurs
at system (12), thus invertible.

Since X is constant, expression (18) is written as

ĉ = (XTX)−1XT (Xc+ ε) = c+ (XTX)−1XT ε. (19)

In addition, we take into account the expected value E(ε) =
0, and obtain E(ĉ) = c. Further, by assumption, the disper-
sion matrix is

V(ε) = E(εεT ) = σ2I, (20)

where I is the n × n identity matrix. Hence, the dispersion
matrix of ĉ is

V(ĉ) = E{(ĉ− c)(ĉ− c)T },

and, after some algebra that takes into account expression
(19), becomes

V(ĉ) = σ2(XTX)−1. (21)

Now we remember the definitions of matrix X and elements
{ej : j = 1, 2, . . . , κ}, and obtain

V(ĉ) = σ2

 1/e1
. . .

1/eκ

 . (22)

Although expression (18) has only theoretical value, because
the estimated coefficients are derived by the piecewise mono-
tonic approximation method mentioned in Section II, we see
that the inversion of matrix (XTX) is straightforward. Hence,
we obtain a highly useful structure for deriving the following
statistics.

To start with, since

E{(φ− Xĉ)T (φ− Xĉ)} = σ2(n− κ),

we have the unbiased estimator of σ2

s2 =
1

n− κ
(φ− Xĉ)T (φ− Xĉ). (23)

Further, we assume that ε is a vector of normal error
variables and we may set confidence intervals and test
hypothesis for any component of the parameter vector c (see,
for example, [9]: p. 377).

Any estimator ĉj is a linear function of the data compo-
nents and is therefore normally distributed with mean cj and
variance, from (22),

var(ĉj) = σ2[(XTX)−1]jj = σ2e−1j . (24)

As s2 is distributed independently of ĉ and hence of any
component of ĉ, the distribution of (n − κ)s2/σ2 is of the
χ2 form with ν = n− κ degrees of freedom. It follows that
the statistic

t = (ĉj−c)/{s2[(XTX)−1]jj}
1
2 = (ĉj−c)/(s2e−1j )

1
2 , (25)

which is the ratio of a standardized normal variate to the
square root of an independent χ2/ν variate, has a Student’s
t-distribution with ν = n − κ degrees of freedom. Hence,
we may set confidence intervals for cj or to test hypotheses
concerning its value. We denote by α the confidence level,
and the central confidence interval with coefficient 1− α is

ĉj ± t1− 1
2α
{s2[(XTX)−1]jj}

1
2 ,
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or
ĉj ± t1− 1

2α
{s2e−1j }

1
2 , (26)

where t1− 1
2α

is a value of Student’s t for ν degrees of
freedom.

As was pointed out already, the diagonal matrix (XTX)
in our problem is self-solving, so in practice we would not
expect any computational errors, due to rounding-off of the
elements of (XTX). On the other hand, in general least
squares calculations, the numerical calculation of the inverse
of this matrix can become highly ill-conditioned. However, in
the least squares estimation problem, the entries of (XTX)−1

give information about the kinds and sizes of errors in the
data. Therefore, the inverse (XTX)−1 is needed for obtaining
some useful statistics. Fortunately, in our case, (XTX) has
the highly helpful diagonal structure that is defined in Section
II and matrix (22) is particularly simple.

IV. AN EXAMPLE ON SIMULATED DATA

This section presents some numerical results on simulated
data to demonstrate the advantages gained by the spline
representation of the optimal piecewise monotonic fit in
obtaining and using the statistics of Section III. We let,

f(x) = sin(4x) + 0.5x2, 0 ≤ x ≤ 2π, (27)

n = 75 and the abscissae be the equally spaced values
xi = 2π

n−1 , i = 1, 2, . . . , n. Each of the components
{φi : i = 1, 2, . . . , n} was generated by adding to f(xi) a
random number from the uniform distribution on [−0.5, 0.5].
We have chosen the magnitude of the added error to be as
large as needed in order that the reader may easily follow
the presentation of the results. By using the sine function,
we know the number of underlying monotonic sections and
therefore we can judge whether the obtained fit is suitable
to the data. We see that function (27) has five monotonic
sections.

We fed the data to L2WPMA and we let the number
of monotonic sections take the values k = 1, 2, 3, 4 and
5. The corresponding optimal piecewise monotonic fits are
presented in Figs. 1, 2 and 3. We note that the optimal
approximations for k = 1 and k = 2 coincide, where in the
case k = 2 the monotonic decreasing section degenerates to
the n-th data point. The same holds when k = 3 and k = 4.
By comparing the fits in these three figures, we see that
the optimal approximation with k = 5 monotonic sections
reveals well the underlying trends of the data. Thus, it is
considered to be an appropriate approximation.

Some calculated results are presented in Table I. Table
I consists of a triplex of columns for the cases k = 1,
k = 3 and k = 5. Each triplex gives the components
of ω and c of the triple y(κ, ω, c), one column for each
vector, and two more columns for the components of ξ
and the corresponding data indices. The sum of squares
of residuals and the maximum absolute residual of the fits
associated with these cases are added at the bottom of Table
I. The optimal fit with k = 1 monotonic section consists
of κ = 14 different intervals of equal components where
the j-th interval contains ωj components equal to cj for
j = 1, 2, . . . , 14. Increasing k should increase the number
of intervals of equal components at the solution as well,
otherwise a contradiction would be obtained. At the same

time, it is expected that the number of equal components
within each interval should be decreasing on average as
they are distributed across the range of data. In fact, the
optimal fit with k = 3 monotonic sections consists of 29
different intervals of equal components, and the optimal
fit with k = 5 monotonic sections consists of 39 such
intervals. It is worth noticing that as k increases and the
components of y are distributed across more intervals, their
values are modified and the optimal fit comes closer to the
measurements. Certainly, this is indicated from the reduction
of the sum of squares of residuals and the decrease of the
maximum absolute residual of the associated fits.

Further, the spline representation of the solution, which is
presented in Table I, is provided by the L2WPMA output.
The indices of the knots (see column “knot index”) corre-
spond to the sequence of the knots (see column “ξj”) and
therefore the values of first order B-splines in expression (9)
are calculated accordingly. Furthermore, having available the
first order B-splines, they can then be utilized as explanatory
variables in the linear regression model (14). Hence, the
coefficients cj may be derived from formula (18). The
main advantage of this consideration is that the estimated
regression coefficients ĉj inherit some statistical properties
due to the estimation process. Thus, both the derivation of
some basic statistics and the implementation of statistical
inferences are allowed. It is worthy of attention that the
linear regression formulation (14) would not be possible,
if the optimal piecewise monotonic approximation was not
available. Indeed, the optimal approximation is the solution
of a highly nonlinear combinatorial problem, while linear
regression is the representation of this solution. Thus, the
data analysis of this paper follows the use of the piecewise
approximation to the data.

We illustrate the data analysis output by presenting in
Table II the results of the linear model (14) that was derived
by the optimal piecewise monotonic fit with k = 5 monotonic
sections. A multiple linear regression was performed ab initio
to predict the true values {yi : i = 1, 2, . . . , 75} given the
measurements {φi : i = 1, 2, . . . , 75} and the regressors
{Bj(xi), j = 1, 2, . . . , 39}. The overall regression was sta-
tistically significant with F (39, 36) = 194 (p-value = 0.00),
and coefficient of determination R2 equal to 0.9953. Of
course, the estimated coefficients {ĉj : j = 1, 2, . . . , 39} are
identical to the components {cj : j = 1, 2, . . . , 39} provided
by the L2WPMA software (see the rightmost column of
Table I).

However, apart from the point estimation of the coeffi-
cients, a number of additional statistics are produced for
the model coefficients that take advantage of the constant
spline representation (8) of the optimal fit. The standard
error of the estimated coefficients, the 95% confidence in-
terval of the coefficients and the t-statistic for the statistical
significance of each coefficient are presented in Table II.
If we take a significance level α = 0.05, then we see
that all the coefficients are significantly different from zero,
except c1, c11, c16 and c17. The knots ξ1 = 0, ξ11 = 0.93,
ξ16 = 1.27 and ξ17 = 1.40, which are associated with the
non significant coefficients, are located in the neighborhood
of the points where the function intersects the horizontal axis.
Now, the 95% confidence interval of the model coefficients
indicates that there is 95% probability for the true value
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TABLE I
EXAMPLE OF SECTION IV: COMPONENTS OF ω AND c OF THE TRIPLE y(κ, ω, c) FOR THE OPTIMAL FIT WITH k = 1, 3 AND 5 MONOTONIC SECTIONS,

AND COMPONENTS OF ξ WITH THE CORRESPONDING DATA INDICES (“KNOT INDEX”) OF EXPRESSION (8)

k = 1 k = 3 k = 5
j ωj knot index ξj cj j ωj knot index ξj cj j ωj knot index ξj cj
1 1 1 0.00 −0.25 1 1 1 0.00 −0.25 1 1 1 0.00 −0.25
2 33 2 0.04 0.32 2 3 2 0.04 0.37 2 3 2 0.04 0.37
3 2 35 1.44 0.40 3 1 5 0.17 0.49 3 1 5 0.17 0.49
4 3 37 1.53 1.42 4 3 6 0.21 0.71 4 3 6 0.21 0.71
5 2 40 1.66 2.01 5 1 9 0.34 1.09 5 1 9 0.34 1.09
6 3 42 1.74 2.27 6 1 10 0.38 1.55 6 1 10 0.38 1.55
7 2 45 1.87 2.81 7 1 11 0.42 1.22 7 1 11 0.42 1.22
8 22 47 1.95 2.83 8 5 12 0.47 0.74 8 5 12 0.47 0.74
9 1 69 2.89 2.93 9 2 17 0.68 0.68 9 2 17 0.68 0.68

10 1 70 2.93 3.20 10 4 19 0.76 0.20 10 4 19 0.76 0.20
11 1 71 2.97 4.21 11 1 23 0.93 −0.04 11 1 23 0.93 −0.04
12 1 72 3.01 4.24 12 2 24 0.98 −0.46 12 2 24 0.98 −0.46
13 2 73 3.06 4.39 13 1 26 1.06 −0.47 13 1 26 1.06 −0.47
14 1 75 3.14 5.42 14 1 27 1.10 −0.75 14 1 27 1.10 −0.75∑

1≤i≤75(yi − φi)2 = 11.9935 15 3 28 1.15 −0.25 15 3 28 1.15 −0.25
16 3 31 1.27 −0.01 16 3 31 1.27 −0.01

max1≤i≤75 |yi − φi| = 1.2273 17 1 34 1.40 0.14 17 1 34 1.40 0.14
18 2 35 1.44 0.40 18 2 35 1.44 0.40
19 3 37 1.53 1.42 19 3 37 1.53 1.42
20 2 40 1.66 2.01 20 2 40 1.66 2.01
21 3 42 1.74 2.27 21 3 42 1.74 2.27
22 2 45 1.87 2.81 22 2 45 1.87 2.81
23 22 47 1.95 2.83 23 2 47 1.95 3.00
24 1 69 2.89 2.93 24 1 49 2.04 3.31
25 1 70 2.93 3.20 25 1 50 2.08 3.20
26 1 71 2.97 4.21 26 1 51 2.12 3.03
27 1 72 3.01 4.24 27 5 52 2.17 2.97
28 2 73 3.06 4.39 28 2 57 2.38 2.71
29 1 75 3.14 5.42 29 1 59 2.46 2.18∑

1≤i≤75(yi − φi)2 = 2.9266 30 2 60 2.5 2.59
31 4 62 2.59 2.68

max1≤i≤75 |yi − φi| = 0.6450 32 2 66 2.76 2.75
33 1 68 2.84 2.81
34 1 69 2.89 2.93
35 1 70 2.93 3.20
36 1 71 2.97 4.21
37 1 72 3.01 4.24
38 2 73 3.06 4.39
39 1 75 3.14 5.42∑

1≤i≤75(yi − φi)2 = 1.6976

max1≤i≤75 |yi − φi| = 0.3637

to lie between the given lower and upper limits, which
are shown in Fig 3. Furthermore, we present in Fig. 4
this 95% confidence interval together with the true function
values {f(xi) : i = 1, 2, . . . , 75}. We see that five times
(namely at the points x10 = 0.38, x12 = 0.47, x13 =
0.51, x14 = 0.55, x36 = 1.49) the true values violate the
upper confidence interval limit and three times (namely at
the points x10 = 0.38, x37 = 1.53, x75 = 3.14) violate the
lower limit by a negligible amount. Of note is that because
we know the underlying function, we can immediately see
the accuracy of our best approximation. Thus, this example
illustrates the predictive ability of the piecewise monotonic
approximation method.

V. CONCLUSION

In this paper we examined some basic statistics for the
least squares piecewise monotonic fit to n discrete data
contaminated by random errors, where k monotonic sections
are desired.

For this analysis, the authors employed L2WPMA soft-
ware, which is a Fortran package that solves the piecewise
monotonic approximation problem. It is designed to provide

also the knots for the constant spline representation of the
solution. Having had this representation we proceeded to the
definition of the associated linear model, and to the derivation
of the t-statistics and relevant confidence intervals for the
model coefficients.

We illustrated the estimation capability of the method by
an example with simulated data, and we presented the results
in a way that is instructive to the use of the method and the
derivation of the statistics. The advantage of having a known
underlying function, as in this example, is that we can have
error estimates of the fit and therefore we can check the accu-
racy of the obtained approximation. The authors are going to
consider the arduous problem of investigating the accuracy
of the fit to the data and relating statistics when no more
knowledge of the underlying function than providing integer
k is required. For this case, only a-posteriori estimators like
the sum of squares of residuals and the maximum distortion
between fit and data are available.

Besides the standard output of the linear regression model
that is presented in Table II, the spline representation of the
piecewise monotonic approximation allows a number of ad-
ditional statistical tests to be developed for the investigation
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Fig. 1. Best piecewise monotonic approximation (◦) with k = 1 to 75 data (+) from f(x) = sin(4x) + 0.5x2, x ∈ [0, 2π], contaminated by numbers
uniformly distributed in [−0.5, 0.5]. The piecewise linear interpolant illustrates the best fit.
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Fig. 2. As in Fig. 1, but k = 3.
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Fig. 3. As in Fig. 1, but k = 5. In addition, the 95% confidence interval of the piecewise linear interpolant is illustrated with the dot lines.
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Fig. 4. Piecewise linear interpolant to the 75 data points (◦) of f(x) = sin(4x) + 0.5x2, x ∈ [0, 2π]. In addition, the 95% confidence interval that
occurs in Fig 3 is illustrated with the dot lines.

TABLE II
EXAMPLE OF SECTION IV: OUTPUT FROM LINEAR MODEL OF SECTION III FOR THE OPTIMAL PIECEWISE MONOTONIC APPROXIMATION WITH k = 5

Est. Coef Confidence Interval (95%)
j B-Spline Basis ĉj Std. Error Lower Limit Upper Limit t-statistic p-value
1 B1 −0.25 0.22 −0.69 0.19 1.33 0.26
2 B2 0.37 0.13 0.12 0.62 8.70 0.01
3 B3 0.49 0.22 0.05 0.93 5.10 0.03
4 B4 0.71 0.13 0.46 0.97 32.36 0.00
5 B5 1.09 0.22 0.65 1.53 25.12 0.00
6 B6 1.55 0.22 1.11 1.99 50.79 0.00
7 B7 1.22 0.22 0.78 1.66 31.47 0.00
8 B8 0.74 0.10 0.54 0.94 58.14 0.00
9 B9 0.68 0.15 0.37 0.99 19.52 0.00

10 B10 0.20 0.11 −0.02 0.42 3.28 0.08
11 B11 −0.04 0.22 −0.48 0.40 0.04 0.85
12 B12 −0.46 0.15 −0.77 −0.14 8.81 0.01
13 B13 −0.47 0.22 −0.91 −0.03 4.71 0.04
14 B14 −0.75 0.22 −1.19 −0.31 11.89 0.00
15 B15 −0.25 0.13 −0.50 0.01 3.94 0.05
16 B16 −0.01 0.13 −0.26 0.25 0.00 0.95
17 B17 0.14 0.22 −0.30 0.58 0.42 0.52
18 B18 0.40 0.15 0.09 0.71 6.80 0.01
19 B19 1.42 0.13 1.17 1.68 128.49 0.00
20 B20 2.01 0.15 1.70 2.32 170.83 0.00
21 B21 2.27 0.13 2.02 2.52 326.83 0.00
22 B22 2.81 0.15 2.50 3.12 333.88 0.00
23 B23 3.00 0.15 2.69 3.32 381.83 0.00
24 B24 3.31 0.22 2.87 3.75 231.63 0.00
25 B25 3.20 0.22 2.76 3.64 216.49 0.00
26 B26 3.03 0.22 2.59 3.47 194.10 0.00
27 B27 2.97 0.10 2.77 3.17 931.2 0.00
28 B28 2.71 0.15 2.40 3.03 311.68 0.00
29 B29 2.18 0.22 1.74 2.62 100.48 0.00
30 B30 2.59 0.15 2.28 2.90 283.64 0.00
31 B31 2.68 0.11 2.46 2.90 606.27 0.00
32 B32 2.75 0.15 2.43 3.06 318.61 0.00
33 B33 2.81 0.22 2.37 3.25 166.94 0.00
34 B34 2.93 0.22 2.49 3.37 181.50 0.00
35 B35 3.20 0.22 2.76 3.64 216.49 0.00
36 B36 4.21 0.22 3.77 4.65 374.72 0.00
37 B37 4.24 0.22 3.80 4.68 380.08 0.00
38 B38 4.39 0.15 4.08 4.71 816.76 0.00
39 B39 5.42 0.22 4.98 5.86 621.08 0.00

F -statistic: 194.00 R-squared: 0.9953
p-value (F -statistic): 0.00 Adjusted R-squared: 0.9901

df numerator (F -statistic): 39 No. observations: 75
df denominator (F -statistic): 36
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of some interesting questions related to the tuning of the
parameters of the piecewise monotonic fit. For example, one
such question is whether an optimal piecewise monotonic
fit with k monotonic sections may be further smoothed by
concatenating successive intervals of equal components that
do not differ significantly.

Another question is whether a piecewise monotonic fit
with more monotonic sections explains significantly better
the variability of the data compared with an optimal fit with
fewer monotonic sections. We have already developed some
statistical tests (see [11] and [12]) that consider this question,
while the analysis we presented in this paper shows that there
is room for improvement.

These questions and more results on hypothesis testing,
as well as the investigation of a parsimonious version of the
linear model of Section III will be published separately from
the authors.
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