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Abstract—This paper introduces a new backstepping-based
sliding mode control strategy to realize the stabilization of a
class of fractional-order system. The system is perturbed by
unknown bounded unmodeled dynamics and external distur-
bances, meanwhile, the system parameters are unknown in
advance. The effect of saturated input is considered to design
the robust adaptive controller. For handling these unknown
parameters, the proper sliding mode surface is constructed and
some adaptive estimation laws can be assigned. The frequency
distributed model is used so that the indirect Lyapunov theory is
available in analyzing the stability of every subsystem. Finally,
simulation results are presented to verify the effectiveness and
feasibility of the proposed control strategy.

Index Terms—Backstepping-based sliding mode control,
Fractional-order system, Input nonlinearity, Backstepping
method.

I. INTRODUCTION

THE history of fractional calculus is more than three
centuries, which can be traced back to the contribution

by Leibniz, Riemann, Liouville, Grunwald and Letnikov [1].
Fractional calculus particularly suitable for describing the
viscoelastic system [2], and the memory and hereditary prop-
erties of various materials and processes. Recently, studying
fractional-order system has become an active research area.
There are two main reasons for this tendency, on one hand,
many physical system cannot be described accurately without
the introduction of fractional order calculus, on the other
hand, it has been demonstrated by some previous researchers
that fractional-order controllers have more potential superi-
orities than integer-order controllers [3].

In fractional-order nonlinear system, fractional-order
chaotic system is a distinguished phenomenon that is char-
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acterized with some special features. Recently, control and
synchronization of the fractional-order chaotic systems have
attracted much attention from various scientific fields. Some
methods have been proposed to achieve chaos synchroniza-
tion in fractional-order chaotic systems. Such as nonlinear
feedback control [4], a nonlinear state observer [5], active
control [6], adaptive control [7-9], etc.

The backstepping method is a recursive approach for
controller design, through designing virtual controllers and
partial Lyapunov functions step by step, a common Lyapunov
function of the whole system can be deduced from the above
operations. This method can guarantee the global stability,
tracking, and transient performance of nonlinear systems
[10]. In view of the excellent performance of backstepping,
an increasing number of researchers pay their attentions to
this potential problem. Many preeminent literatures for the
backstepping-based control or synchronization of fractional-
order chaotic system have been reported. For example, Luo
[11] researched the robust control and synchronization of
fractional-order system by adding one power integrator.
Shukla [12, 13] realized the stabilization and synchronization
of fractional-order chaotic system by using backstepping
method. Wei [14, 15] investigated the stability of fractional-
order nonlinear system via adaptive backstepping technique.

However, in most of the above mentioned methods for
control or stabilizing of fractional-order system, the system
parameters are know in advance. In fact, the influence of
unknown parameters maybe destroy the system’s behavior
and even cause unbounded outputs, so it is urgent to design
an adaptive controller to deal with this problem. Meanwhile,
when the system is in work, the external disturbance is
unavoidable, so, it should be considered in design robust
controller. Besides, nonlinearity in control input also is
often encountered in various systems and can be a cause
of instability. Thus, it is obvious that the effects of input
nonlinearity must be taken into account when analyzing and
implementing a control scheme.

Motivated by the above discussions, it is still very chal-
lenging and essential to research the stabilization for a class
of fractional-order system with input nonlinearity by using
adaptive backstepping-based sliding mode control technique.
For compensation the nonlinear input, a fractional-order
auxiliary system is constructed to generate necessary signal.
Some appropriate estimation rules are given to deal with
the system parameters and the unknown upper bound of
uncertainties. The frequency distributed model is used to
establish an indirect Lyapunov function to verify the stability
and design virtual controller for every subsystem. Through
design virtual controller step by step, a comprehensive actual
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controller is determined.
The remaining part of this paper is organized as follows:

Section 2 introduces the relevant definitions, lemmas, and
frequency distributed model. Main results are presented in
Section 3. Some numerical simulations are provided in
Section 4 to show the effectiveness of the proposed method.
Finally, conclusions are given in Section 5.

II. PRELIMINARIES

The Caputo definition is the most commonly used defini-
tion of fractional calculus.

Definition 1. The Caputo fractional derivative of order α
is defined as

t0D
α
t f(t)=

{
1

Γ(m−α)

∫ t

t0

f(m)(τ)

(t−τ)α−m+1 dτ, m− 1<α<m
dm

dtm f(t), α = m
(1)

where m is the smallest integer number, larger than α. In
the rest of this paper, we will use Dα instead of 0D

α
t .

Lemma 1 (see [16]). Let x = 0 be an equilibrium point
for either Caputo or RL fractional nonautonomous system:

Dqx(t) = f(x, t) (2)

where q ∈ (0, 1) and f(x, t) satisfies the Lipschitz condition
with Lipschitz constant l > 0. Assume that there exists a
Lyapunov function V (t, x(t)) satisfying{

α1||x||a ≤ V (t, x(t)) ≤ α2||x||
V̇ (t, x(t)) ≤ −α3||x||

(3)

where α1, α2, α3 and a are positive constants and || · ||
denotes an arbitrary norm. Then the equilibrium point of
system (2) is asymptotically stable.

Lemma 2 (see [17]). Consider a nonlinear fractional-order
system

Dαx(t) = f(x(t)) (4)

where α ∈ (0, 1). Then the system can be equivalently
converted to the following continuous frequency distributed
model {

∂z(ω,t)
∂t = −ωz(ω, t) + f(x(t))
x(t) =

∫∞
0

µα(ω)z(ω, t)dω
(5)

where µα(ω) =
sin(απ)
πωα , and z(ω, t) is the true state of the

system.

III. MAIN RESULTS

Backstepping technique is suitable for research strict feed-
back system, which can be described as follows

Dαx1 = g1(x1, t)x2+δT1 F1(x1, t) + f1(x1, t)

Dαx2 = g2(x1, x2, t)x3+δT2 F2(x1, x2, t)+f2(x1, x2, t)

...
Dαxn−1 = gn−1(x1, x2, ..., xn−1, t)xn + δTn−1Fn−1(x1,

x2, ..., xn−1, t) + fn−1(x1, x2, ..., xn−1, t)

Dαxn = gn(x1, x2, ..., xn, t)u+ δTnFn(x1, x2, ..., xn, t)

+fn(x1, x2, ..., xn, t) (6)

where δi is the system parameters vector of the i-th state
equation, gi(·), Fi(·), fi(·) for i = 1, 2, ..., n are known,
smooth nonlinear functions. This paper investigates a class

of typical fractional-order strict feedback system, it has the
following form

Dαx1 = x2+δT1 F1(x1)+f1(x1)+∆f1(X)+d1(t)

Dαx2 = x3+δT2 F2(x1, x2)+f2(x1, x2)+∆f2(X) + d2(t)

...
Dαxn = kΨ(u(t))+δTnFn(X) + fn(X)+∆fn(X)+dn(t)

(7)

where α ∈ (0, 1), X = [x1, x2, ..., xn]
T is state variables

vector, k is non-zero constant, δi is unknown system pa-
rameters vector, Fi(·) and fi(·) are system nonlinear parts,
∆fi(X) and di(t) for i = 1, 2, ..., n respectively are unmod-
eled dynamics and external disturbance. Ψ(u(t)) is saturated
input.

Assumption 1. The nonlinear saturation function is de-
fined as follows:

Ψ(u(t)) =

 uH , u(t) ≥ uh

θu(t), ul ≤ u(t) ≤ uh

uL, u(t) ≤ ul
(8)

where uH , uh ∈ R+, and uL, ul ∈ R− are bounds of
the saturation function and θ ∈ R is the saturation slope.
Subsequently, the above saturation function can be rewritten
as

Ψ(u(t)) = u(t) + ∆u(t) (9)

and ∆u(t) is satisfied as

∆u(t) =

 uH − u(t), u(t) ≥ uh

(θ − 1)u(t), ul ≤ u(t) ≤ uh

uL − u(t), u(t) ≤ ul
(10)

A typical nonlinear saturation function is described in
Figure 1.
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Figure 1. A typical nonlinear saturation function

Remark 1. Many fractional-order systems can be de-
scribed as equation (7), such as, fractional-order gyro sys-
tem, fractional-order Genesio-Tesi system, fractional-order
Arneodo system, and so on. For using backstepping-based
sliding mode control strategy, transformation variables are
firstly assigned as{

ξ1 = x1 − σ1

ξi = xi − ϑi−1 − σi, i = 2, 3, ..., n.
(11)

where ϑj(j = 1, 2, ..., n − 1) is virtual controller to be
determined later. σj(j = 1, 2, ..., n) is the virtual signal
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generated by the following auxiliary fractional-order system
to compensate the nonlinear input{

Dασi = σi+1 − ci|σi|γ , i = 1, 2, ..., n− 1.
Dασn = k∆u(t)− cn|σn|γ

(12)

where γ ∈ (0, 1), ci > 0, cn > 0.
For handling the unknown bounded uncertainties, the

following assumption is given.
Assumption 2. The unmodeled dynamics and external dis-

turbance are unknown bounded, which satisfy the following
conditions {

|∆fi(X)| ≤ βi1|ξi|
|di(t)| ≤ βi2

(13)

where βi1 and βi2 are unknown positive constants. In this
paper, the sliding mode surface can be constructed as

sp = Dα−1ξp+

∫ t

0

[
− ξp+1+hp1ξp+hp2|ξp|γsgn(ξp)

]
dτ

sn = Dα−1ξn+

∫ t

0

[
hn1ξn+hn2|ξn|γsgn(ξn)

]
dτ (14)

in which p = 1, 2, ..., n−1. h11 > 1
2 , hn1 > 1

2 , hq1 > 1 (q =
2, 3, ..., n− 1), hp2 > 0, hn2 > 0. Taking the derivative of s
with respect time, we have{

ṡp = Dαξp − ξp+1 +
[
hp1ξp + hp2|ξp|γsgn(ξp)

]
ṡn = Dαξn +

[
hn1ξn + hn2|ξn|γsgn(ξn)

] (15)

when system trajectories arrived at the sliding mode surface,
we have ṡ = 0, that is{

Dαξp = ξp+1 −
[
hp1ξp + hp2|ξp|γsgn(ξp)

]
Dαξn = −

[
hn1ξn + hn2|ξn|γsgn(ξn)

] (16)

according the sliding mode dynamics, the virtual controller
can be determined as

ϑ1 = −m1s1 − δ̂T1 F1 − f1 − (β̂11|ξ1|+ β̂12)sgn(s1)

−c1|σ1|γ −
[
h11ξ1 + h12|ξ1|γsgn(ξ1)

]
ϑj = −mjsj − δ̂Tj Fj − fj − (β̂j1|ξj |+ β̂j2)sgn(sj)

+Dαϑj−1−cj |σj |γ−
[
hj1ξj+hj2|ξj |γsgn(ξj)

]
(17)

where j = 2, 3, ..., n − 1. mi > 0, Fi and fi are the abbre-
viations of Fi(·) and fi(·). δ̂i, β̂i1 and β̂i2 are estimations
of δi, βi1 and βi2 for i = 1, 2, ..., n, respectively. Denote
δ̃i = δ̂i − δi, β̃i1 = β̂i1 − βi1, β̃i2 = β̂i2 − βi2 as parameters
estimation errors, which adaptive update laws are designed
as 

Dαδ̃i = Dαδ̂i = Fisi
Dαβ̃i1 = Dαβ̂i1 = ηi1|ξi||si|, ηi1 > 0

Dαβ̃i2 = Dαβ̂i2 = ηi2|si|, ηi2 > 0

(18)

Theorem 1. Consider the system (7) with saturated non-
linear input, if the system is controlled by the following
controller

u(t) =
1

k

{
−mnsn − δ̂TnFn − fn − (β̂n1|ξn|+ β̂n2)sgn(sn)

+Dαϑn−1−cn|σn|γ−
[
hn1ξn+hn2|ξn|γsgn(ξn)

]}
(19)

then the system trajectories can converge to the sliding
surface si(i = 1, 2, ..., n) = 0 asymptotically.

Proof. Step 1: The first new subsystem can be obtain
according to equations (7), (11) and (12)

Dαξ1 = Dαx1−Dασ1

= x2+δT1 F1+f1+∆f1(X)+d1(t)−σ2+c1|σ1|γ

= ξ2+ϑ1+δT1 F1+f1+∆f1(X)+d1(t)+c1|σ1|γ (20)

according to Lemma 2, the parameters adaptation laws (18)
can transform into the frequency distributed model, that is

∂z
δ̃1

(ω,t)

∂t = −ωz
δ̃1
(ω, t) + F1s1

δ̃1 =
∫∞
0

µα(ω)zδ̃1
(ω, t)dω

∂z
β̃11

(ω,t)

∂t =−ωz
β̃11

(ω, t) + η11|ξ1||s1|
β̃11 =

∫∞
0

µα(ω)zβ̃11
(ω, t)dω

∂z
β̃12

(ω,t)

∂t =−ωz
β̃12

(ω, t) + η12|s1|
β̃12 =

∫∞
0

µα(ω)zβ̃12
(ω, t)dω

(21)

selecting the Lyapunov function as

V1 =
1

2
s21 +

1

2

∫ ∞

0

µα(ω)z
T

δ̃1
(ω, t)z

δ̃1
(ω, t)dω

+
1

2η11

∫ ∞

0

µα(ω)z
2

β̃11

(ω, t)dω

+
1

2η12

∫ ∞

0

µα(ω)z
2

β̃12
(ω, t)dω (22)

taking the derivative of V1 with respect to time, it yields

V̇1 = s1ṡ1 −
∫ ∞

0

ωµα(ω)z
T

δ̃1
(ω, t)z

δ̃1
(ω, t)dω + δ̃T1 F1s1

− 1

η11

∫ ∞

0

ωµα(ω)z
2

β̃11

(ω, t)dω + β̃11|ξ1||s1|

− 1

η12

∫ ∞

0

ωµα(ω)z
2

β̃12
(ω, t)dω + β̃12|s1| (23)

substituting ṡ1 from equation (15) into equation (23), one
has

V̇1 = s1

{
Dαξ1 − ξ2 +

[
h11ξ1 + h12|ξ1|γsgn(ξ1)

]}
−
∫ ∞

0

ωµα(ω)z
T

δ̃1
(ω, t)z

δ̃1
(ω, t)dω + δ̃T1 F1s1

− 1

η11

∫ ∞

0

ωµα(ω)z
2

β̃11
(ω, t)dω + β̃11|ξ1||s1|

− 1

η12

∫ ∞

0

ωµα(ω)z
2

β̃12

(ω, t)dω + β̃12|s1| (24)

substituting the new subsystem (20) into the above equation

V̇1 = s1

{
ξ2 + ϑ1 + δT1 F1 + f1 +∆f1(X) + d1(t)

+c1|σ1|γ − ξ2 +
[
h11ξ1 + h12|ξ1|γsgn(ξ1)

]}
−
∫ ∞

0

ωµα(ω)z
T

δ̃1
(ω, t)z

δ̃1
(ω, t)dω + δ̃T1 F1s1

− 1

η11

∫ ∞

0

ωµα(ω)z
2

β̃11

(ω, t)dω + β̃11|ξ1||s1|

− 1

η12

∫ ∞

0

ωµα(ω)z
2

β̃12
(ω, t)dω + β̃12|s1| (25)
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replacing ϑ1 from equation (17) into equation (25) and using
Assumption 2, we have

V̇1 ≤ s1
[
−m1s1−δ̃T1 F1− (β̂11|ξ1|+β̂12)sgn(s1)

]
+β11 ×

|ξ1||s1|+ β12|s1|−
∫ ∞

0

ωµα(ω)z
T

δ̃1
(ω, t)z

δ̃1
(ω, t)dω

+δ̃T1 F1s1−
1

η11

∫ ∞

0

ωµα(ω)z
2

β̃11
(ω, t)dω + β̃11 ×

|ξ1||s1| −
1

η12

∫ ∞

0

ωµα(ω)z
2

β̃12

(ω, t)dω + β̃12|s1|

= −
∫ ∞

0

ωµα(ω)z
T

δ̃1
(ω, t)z

δ̃1
(ω, t)dω

− 1

η11

∫ ∞

0

ωµα(ω)z
2

β̃11

(ω, t)dω

− 1

η12

∫ ∞

0

ωµα(ω)z
2

β̃12
(ω, t)dω −m1s

2
1 < 0 (26)

because of V̇1 < 0, then s1, δ̃1, β̃11, β̃12 are all asymptoti-
cally converge to zero.

Step 2: The second subsystem about ξ2 can be established
as

Dαξ2 = Dαx2 −Dαϑ1 −Dασ2

= x3 + δT2 F2 + f2 +∆f2(X) + d2(t)−Dαϑ1

−σ3 + c2|σ2|γ

= ξ3 + ϑ2 + δT2 F2 + f2 +∆f2(X) + d2(t)

−Dαϑ1 + c2|σ2|γ (27)

similar to the step 1, the frequency distributed model of
adaptive estimation laws can be constructed as

∂z
δ̃2

(ω,t)

∂t =−ωz
δ̃2
(ω, t) + F2s2

δ̃2 =
∫∞
0

µα(ω)zδ̃2
(ω, t)dω

∂z
β̃21

(ω,t)

∂t =−ωz
β̃21

(ω, t) + η21|ξ2||s2|
β̃21 =

∫∞
0

µα(ω)zβ̃21
(ω, t)dω

∂z
β̃22

(ω,t)

∂t =−ωz
β̃22

(ω, t) + η22|s2|
β̃22 =

∫∞
0

µα(ω)zβ̃22
(ω, t)dω

(28)

selecting the Lyapunov function as

V2 = V1 +
1

2
s22 +

1

2

∫ ∞

0

µα(ω)z
T

δ̃2
(ω, t)z

δ̃2
(ω, t)dω

+
1

2η21

∫ ∞

0

µα(ω)z
2

β̃21
(ω, t)dω

+
1

2η22

∫ ∞

0

µα(ω)z
2

β̃22

(ω, t)dω (29)

thus its derivative can be described as

V̇2 ≤ −
2∑

j=1

∫ ∞

0

ωµα(ω)z
T

δ̃j
(ω, t)z

δ̃j
(ω, t)dω

−
2∑

j=1

1

ηj1

∫ ∞

0

ωµα(ω)z
2

β̃j1
(ω, t)dω

−
2∑

j=1

1

ηj2

∫ ∞

0

ωµα(ω)z
2

β̃j2
(ω, t)dω −m1s

2
1

+s2ṡ2 + δ̃T2 F2s2 + β̃21|ξ2||s2|+ β̃22|s2| (30)

substituting ṡ2 from equation (15) into (30) and according
to equation (27), one obtains

V̇2 ≤ −
2∑

j=1

∫ ∞

0

ωµα(ω)z
T

δ̃j
(ω, t)z

δ̃j
(ω, t)dω

−
2∑

j=1

1

ηj1

∫ ∞

0

ωµα(ω)z
2

β̃j1

(ω, t)dω

−
2∑

j=1

1

ηj2

∫ ∞

0

ωµα(ω)z
2

β̃j2

(ω, t)dω −m1s
2
1

+s2

{
Dαξ2 − ξ3 +

[
h21ξ2 + h22|ξ2|γsgn(ξ2)

]}
+δ̃T2 F2s2 + β̃21|ξ2||s2|+ β̃22|s2|

= −
2∑

j=1

∫ ∞

0

ωµα(ω)z
T

δ̃j
(ω, t)z

δ̃j
(ω, t)dω

−
2∑

j=1

1

ηj1

∫ ∞

0

ωµα(ω)z
2

β̃j1
(ω, t)dω

−
2∑

j=1

1

ηj2

∫ ∞

0

ωµα(ω)z
2

β̃j2
(ω, t)dω −m1s

2
1

+s2

{
ξ3 + ϑ2 + δT2 F2 + f2 +∆f2(X) + d2(t)

−Dαϑ1+c2|σ2|γ−ξ3 +
[
h21ξ2+h22|ξ2|γsgn(ξ2)

]}
+δ̃T2 F2s2 + β̃21|ξ2||s2|+ β̃22|s2| (31)

replace ϑ2 from equation (17) into the above equation, we
have

V̇2 ≤ −
2∑

j=1

∫ ∞

0

ωµα(ω)z
T

δ̃j
(ω, t)z

δ̃j
(ω, t)dω

−
2∑

j=1

1

ηj1

∫ ∞

0

ωµα(ω)z
2

β̃j1

(ω, t)dω

−
2∑

j=1

1

ηj2

∫ ∞

0

ωµα(ω)z
2

β̃j2

(ω, t)dω −m1s
2
1

+s2

[
−m2s2 − δ̃T2 F2 − (β̂21|ξ2|+ β̂22)sgn(s2)

]
+β21|ξ2||s2|+ β22|s2|+ δ̃T2 F2s2+β̃21|ξ2||s2|+β̃22|s2|

≤ −
2∑

j=1

∫ ∞

0

ωµα(ω)z
T

δ̃j
(ω, t)z

δ̃j
(ω, t)dω

−
2∑

j=1

1

ηj1

∫ ∞

0

ωµα(ω)z
2

β̃j1
(ω, t)dω

−
2∑

j=1

1

ηj2

∫ ∞

0

ωµα(ω)z
2

β̃j2
(ω, t)dω−m1s

2
1−m2s

2
2 (32)

since V̇2 < 0, then s2, δ̃2, β̃21, β̃22 are all asymptotically
converge to zero.

Step i: We continue to investigate the i-th new subsystem
with transformation variables, that is

Dαξi = Dαxi −Dαϑi−1 −Dασi

= xi+1 + δTi Fi + fi +∆fi(X) + di(t)−Dαϑi−1

−σi+1 + ci|σi|γ

= ξi+1 + ϑi + δTi Fi + fi +∆fi(X) + di(t)

IAENG International Journal of Applied Mathematics, 52:1, IJAM_52_1_33

Volume 52, Issue 1: March 2022

 
______________________________________________________________________________________ 



−Dαϑi−1 + ci|σi|γ (33)

similar to the above steps, the frequency distributed model
of adaptive estimation laws can be constructed as

∂z
δ̃i

(ω,t)

∂t = −ωz
δ̃i
(ω, t) + Fisi

δ̃i =
∫∞
0

µα(ω)zδ̃i
(ω, t)dω

∂z
β̃i1

(ω,t)

∂t = −ωz
β̃i1

(ω, t) + ηi1|ξi||si|
β̃i1 =

∫∞
0

µα(ω)zβ̃i1
(ω, t)dω

∂z
β̃i2

(ω,t)

∂t = −ωz
β̃i2

(ω, t) + ηi2|si|
β̃i2 =

∫∞
0

µα(ω)zβ̃i2
(ω, t)dω

(34)

selecting the Lyapunov function as

Vi = Vi−1 +
1

2
s2i +

1

2

∫ ∞

0

µα(ω)z
T

δ̃i
(ω, t)z

δ̃i
(ω, t)dω

+
1

2ηi1

∫ ∞

0

µα(ω)z
2

β̃i1

(ω, t)dω

+
1

2ηi2

∫ ∞

0

µα(ω)z
2

β̃i2
(ω, t)dω (35)

taking the derivative of Vi, and using the deduce results of
the above steps, one has

V̇i ≤ −
i∑

j=1

∫ ∞

0

ωµα(ω)z
T

δ̃j
(ω, t)z

δ̃j
(ω, t)dω

−
i∑

j=1

1

ηj1

∫ ∞

0

ωµα(ω)z
2

β̃j1
(ω, t)dω

−
i∑

j=1

1

ηj2

∫ ∞

0

ωµα(ω)z
2

β̃j2
(ω, t)dω

−
i−1∑
j=1

mjs
2
j + siṡi + δ̃Ti Fisi + β̃i1|ξi||si|+ β̃i2|si|

(36)

substituting ṡi from equation (15) into (36), and considering
equations (13), (17) and (33), it yields

V̇i ≤ −
i∑

j=1

∫ ∞

0

ωµα(ω)z
T

δ̃j
(ω, t)z

δ̃j
(ω, t)dω

−
i∑

j=1

1

ηj1

∫ ∞

0

ωµα(ω)z
2

β̃j1

(ω, t)dω

−
i∑

j=1

1

ηj2

∫ ∞

0

ωµα(ω)z
2

β̃j2

(ω, t)dω

−
i−1∑
j=1

mjs
2
j + si

{
Dαξi − ξi+1 +

[
hi1ξi + hi2 ×

|ξi|γsgn(ξi)
]}

+ δ̃Ti Fisi + β̃i1|ξi||si|+ β̃i2|si|

≤ −
i∑

j=1

∫ ∞

0

ωµα(ω)z
T

δ̃j
(ω, t)z

δ̃j
(ω, t)dω

−
i∑

j=1

1

ηj1

∫ ∞

0

ωµα(ω)z
2

β̃j1
(ω, t)dω

−
i∑

j=1

1

ηj2

∫ ∞

0

ωµα(ω)z
2

β̃j2
(ω, t)dω

−
i−1∑
j=1

mjs
2
j + si

[
−misi − δ̃Ti Fi − (β̂i1|ξi|

+β̂i2)sgn(si)
]
+ βi1|ξi||si|+ βi2|si|+ δ̃Ti Fisi

+β̃i1|ξi||si|+ β̃i2|si|

≤ −
i∑

j=1

∫ ∞

0

ωµα(ω)z
T

δ̃j
(ω, t)z

δ̃j
(ω, t)dω

−
i∑

j=1

1

ηj1

∫ ∞

0

ωµα(ω)z
2

β̃j1
(ω, t)dω

−
i∑

j=1

1

ηj2

∫ ∞

0

ωµα(ω)z
2

β̃j2
(ω, t)dω −

i∑
j=1

mjs
2
j

(37)

because of V̇i < 0, then si, δ̃i, β̃i1, β̃i2 can converge to zero
asymptotically.

Step n: In the last step, the actual controller is designed.
Similar to the above steps, the last subsystem with transfor-
mation variable ξn is determined as

Dαξn = Dαxn −Dαϑn−1 −Dασn

= kΨ(u(t)) + δTnFn + fn +∆fn(X) + dn(t)

−Dαϑn−1 − k∆u(t) + cn|σn|γ

= ku(t) + δTnFn + fn +∆fn(X) + dn(t)

−Dαϑn−1 + cn|σn|γ (38)

the frequency distributed model of adaptive parameters esti-
mation law is

∂z
δ̃n

(ω,t)

∂t =−ωz
δ̃n
(ω, t) + Fnsn

δ̃n =
∫∞
0

µα(ω)zδ̃n
(ω, t)dω

∂z
β̃n1

(ω,t)

∂t =−ωz
β̃n1

(ω, t) + ηn1|ξn||sn|
β̃n1 =

∫∞
0

µα(ω)zβ̃n1
(ω, t)dω

∂z
β̃n2

(ω,t)

∂t =−ωz
β̃n2

(ω, t) + ηn2|sn|
β̃n2 =

∫∞
0

µα(ω)zβ̃n2
(ω, t)dω

(39)

selecting the Lyapunov function as

Vn = Vn−1 +
1

2
s2n +

1

2

∫ ∞

0

µα(ω)z
T

δ̃n
(ω, t)z

δ̃n
(ω, t)dω

+
1

2ηn1

∫ ∞

0

µα(ω)z
2

β̃n1

(ω, t)dω

+
1

2ηn2

∫ ∞

0

µα(ω)z
2

β̃n2
(ω, t)dω (40)

taking the derivative of Vn with respect time, and using the
deduce results of the above steps, one has

V̇n ≤ −
n∑

j=1

∫ ∞

0

ωµα(ω)z
T

δ̃j
(ω, t)z

δ̃j
(ω, t)dω

−
n∑

j=1

1

ηj1

∫ ∞

0

ωµα(ω)z
2

β̃j1
(ω, t)dω

−
n∑

j=1

1

ηj2

∫ ∞

0

ωµα(ω)z
2

β̃j2
(ω, t)dω

−
n−1∑
j=1

mjs
2
j + sn

[
Dαξn + (hn1ξn + hn2|ξn|γ ×
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sgn(ξn))
]
+ δ̃TnFnsn + β̃n1|ξn||sn|+ β̃n2|sn|

= −
n∑

j=1

∫ ∞

0

ωµα(ω)z
T

δ̃j
(ω, t)z

δ̃j
(ω, t)dω

−
n∑

j=1

1

ηj1

∫ ∞

0

ωµα(ω)z
2

β̃j1
(ω, t)dω

−
n∑

j=1

1

ηj2

∫ ∞

0

ωµα(ω)z
2

β̃j2
(ω, t)dω −

n−1∑
j=1

mjs
2
j

+sn

{
ku(t) + δTnFn + fn +∆fn(X) + dn(t)

−Dαϑn−1 + cn|σn|γ +
[
hn1ξn + hn2|ξn|γ ×

sgn(ξn)
]}

+δ̃TnFnsn+β̃n1|ξn||sn|+β̃n2|sn| (41)

substituting u(t) from equation (19) into equation (41), we
have

V̇n ≤ −
n∑

j=1

∫ ∞

0

ωµα(ω)z
T

δ̃j
(ω, t)z

δ̃j
(ω, t)dω

−
n∑

j=1

1

ηj1

∫ ∞

0

ωµα(ω)z
2

β̃j1

(ω, t)dω

−
n∑

j=1

1

ηj2

∫ ∞

0

ωµα(ω)z
2

β̃j2

(ω, t)dω −
n−1∑
j=1

mjs
2
j

+sn

[
−mnsn − δ̃TnFn − (β̂n1|ξn|

+β̂n2)sgn(sn)
]
+ βn1|ξn||sn|+βn2|sn|+δ̃TnFnsn

+β̃n1|ξn||sn|+ β̃n2|sn|

≤ −
n∑

j=1

∫ ∞

0

ωµα(ω)z
T

δ̃j
(ω, t)z

δ̃j
(ω, t)dω

−
n∑

j=1

1

ηj1

∫ ∞

0

ωµα(ω)z
2

β̃j1

(ω, t)dω

−
n∑

j=1

1

ηj2

∫ ∞

0

ωµα(ω)z
2

β̃j2

(ω, t)dω −
n∑

j=1

mjs
2
j (42)

because of V̇n < 0, so sn, δ̃n, β̃n1, β̃n2 will converge to
zero asymptotically, that is the system trajectories can reach
to sliding mode surface gradually, therefore the proof is
completed.

Theorem 2. Consider the sliding mode dynamics (16), the
system is stable and its state trajectories converge to zero
asymptotically.

Proof. Step 1: For the first sliding mode dynamic, the
corresponding frequency distributed model is

∂zξ1(ω, t)

∂t
= −ωzξ1(ω, t)+ξ2−

[
h11ξ1+h12|ξ1|γsgn(ξ1)

]
ξ1 =

∫ ∞

0

µα(ω)zξ1(ω, t)dω (43)

selecting the following Lyapunov function

W1 =
1

2

∫ ∞

0

µα(ω)z
2
ξ1(ω, t)dω (44)

taking the derivation of W1 with respect time, one has

Ẇ1 = −
∫ ∞

0

ωµα(ω)z
2
ξ1(ω, t)dω + ξ1

{
ξ2 −

[
h11ξ1

+h12|ξ1|γsgn(ξ1)
]}

= −
∫ ∞

0

ωµα(ω)z
2
ξ1(ω, t)dω + ξ1ξ2 − h11ξ

2
1

−h12|ξ1|γ+1 (45)

according to ξ1ξ2 ≤ 1
2ξ

2
1 +

1
2ξ

2
2 , then the above equation can

be rewritten as

Ẇ1 ≤ −
∫ ∞

0

ωµα(ω)z
2
ξ1(ω, t)dω − (h11 −

1

2
)ξ21

+
1

2
ξ22 − h12|ξ1|γ+1 (46)

obviously, if ξ2 = 0, then Ẇ1 < 0, according to Lemma 1,
the first sliding mode dynamics is asymptotical stable, that
is ξ1 → 0 as t → ∞.

Step 2: According to the second sliding mode dynamics in
equation (16), its frequency distributed model can be written
as

∂zξ2(ω, t)

∂t
= −ωzξ2(ω, t)+ξ3−

[
h21ξ2+h22|ξ2|γsgn(ξ2)

]
ξ2 =

∫ ∞

0

µα(ω)zξ2(ω, t)dω (47)

selecting the following Lyapunov candidate function for

W2 = W1 +
1

2

∫ ∞

0

µα(ω)z
2
ξ2(ω, t)dω (48)

taking the derivation of W2, and according to the above
deduced results, we have

Ẇ2 ≤ −
2∑

j=1

∫ ∞

0

ωµα(ω)z
2
ξj (ω, t)dω − (h11 −

1

2
)ξ21

−(h21 − 1)ξ22 −
2∑

j=1

hj2|ξj |γ+1 +
1

2
ξ23 (49)

similarly, if ξ3 = 0, then Ẇ2 < 0, according to Lemma 1, the
second sliding mode dynamics is asymptotical stable, that is
ξ2 → 0 as t → ∞.

Step i: We continue to investigate the stability of the i-th
sliding mode dynamics, which frequency distributed model
is

∂zξi(ω, t)

∂t
= −ωzξi(ω, t) + ξi+1−

[
hi1ξi+hi2|ξi|γsgn(ξi)

]
ξi =

∫ ∞

0

µα(ω)zξi(ω, t)dω (50)

choosing the following form Lyapunov function

Wi = Wi−1 +
1

2

∫ ∞

0

µα(ω)z
2
ξi(ω, t)dω (51)

taking the time derivation of Wi, one has

Ẇi ≤ −
i∑

j=1

∫ ∞

0

ωµα(ω)z
2
ξj (ω, t)dω − (h11 −

1

2
)ξ21

−
i∑

j=2

(hj1 − 1)ξ2j −
i∑

j=1

hj2|ξj |γ+1+
1

2
ξ2i+1 (52)
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indeed, when ξi+1 = 0, then ξi is asymptotically converge
to zero, which returns to step i-1.

Step n: In the last step, the stability of the whole sliding
mode dynamics is demonstrated, the corresponding frequen-
cy distributed model is

∂zξn(ω, t)

∂t
= −ωzξn(ω, t)−

[
hn1ξn+hn2|ξn|γsgn(ξn)

]
ξn =

∫ ∞

0

µα(ω)zξn(ω, t)dω (53)

we select the following Lyapunov function

Wn = Wn−1 +
1

2

∫ ∞

0

µα(ω)z
2
ξn(ω, t)dω (54)

its fractional order derivation is satisfying

Ẇn ≤ −
n∑

j=1

∫ ∞

0

ωµα(ω)z
2
ξj (ω, t)dω − (h11−

1

2
)ξ21

−(hn1−
1

2
)ξ2n−

n−1∑
j=2

(hj1−1)ξ2j −
n∑

j=1

hj2|ξj |γ+1(55)

therefore Ẇn < 0, the whole sliding mode dynamics (16) is
asymptotically stale. This completes the proof.

IV. SIMULATION RESULTS

In this section, simulation results are given to demonstrate
the effectiveness and feasibility of the proposed control
strategy. Consider the fractional-order Arneodo system with
nonlinear input, which is described as

Dαx1 = x2

Dαx2 = x3

Dαx3 = Ψ(u(t)) + a1x1 + a2x2 + a3x3

+x3
1 +∆f(X) + d(t) (56)

where a1 = −5.5, a2 = −3.5, a3 = −1, δ3 = [a1, a2, a3]
T ,

F3 = [x1, x2, x3]
T , f3 = x3

1, ∆f(X) = −0.02cos(2t)x3 and
d(t) = 0.015sin(3t) are unmodeled dynamics and external
disturbance, respectively. Considering Ψ(u(t)) as saturated
input in this example

Ψ(u(t)) =

 4, u(t) ≥ 2
2u(t), −2 ≤ u(t) ≤ 2
−4, u(t) ≤ −2

(57)

the parameters m1 = m2 = m3 = 15, c1 = c2 = c3 = 2,
η31 = 10, η32 = 5, γ = 0.2, h11 = h21 = h31 = 5, h12 =
h22 = h32 = 2, the initial conditions are chosen as x1(0) =
0.3, x2(0) = 0.5, x3(0) = 0.1, δ̂3(0) = [0.1, 0.1, 0.1]T ,
β̂31(0) = 0, β̂32(0) = 0. When α = 0.98, the uncontrolled
system (56) can behave chaotically, the strange attractors are
shown in Figure 2.
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Figure 2. Strange attractors of fractional-order Arneodo
system (56)

When activated the controller u(t), the time response of
subsystem with transformation variables are displayed in
Figure 3, it is obviously that all trajectories converge to zero
asymptotically, which implies that under the control of the
proposed control strategy, the adaptive stabilization of the
controlled system with saturated nonlinear input is realized.
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Figure 3. Time response of transformation system
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All above simulation results sufficiently demonstrate that
the proposed control scheme is effective in stabilizing this
kinds of uncertain fractional-order nonlinear systems with
unknown parameters and nonlinear inputs.

V. CONCLUSIONS

In this paper, a backstepping-based sliding mode control
scheme for adaptive stabilization of a class of fractional-
order system is investigated. The system is perturbed by un-
known bounded external disturbance, and system parameters
are unknown in advance. The effect of saturated nonlinear
input is considered in the design of actual controller. For
compensation the influence of nonlinear input, an auxiliary
fractional-order system is construct to generate the necessary
virtual signal. To deal with the unknown parameters and
unknown uncertainties, a proper sliding mode surface is
established to determine the adaptive estimation laws. In
order to verify the stability of the controlled system, the
frequency distributed model is used so that indirect Lyapunov
function can be applied. Simulation results demonstrated the
feasibility and effectiveness of the proposed control scheme.
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