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Backstepping-based Sliding Mode Adaptive
Control for Fractional-order System Considering
Saturation Phenomenon

Xiaomin Tian, Guoshu Zhao, Zhong Yang, Jiaqi Ge, Hui Xie

Abstract—This paper introduces a new backstepping-based
sliding mode control strategy to realize the stabilization of a
class of fractional-order system. The system is perturbed by
unknown bounded unmodeled dynamics and external distur-
bances, meanwhile, the system parameters are unknown in
advance. The effect of saturated input is considered to design
the robust adaptive controller. For handling these unknown
parameters, the proper sliding mode surface is constructed and
some adaptive estimation laws can be assigned. The frequency
distributed model is used so that the indirect Lyapunov theory is
available in analyzing the stability of every subsystem. Finally,
simulation results are presented to verify the effectiveness and
feasibility of the proposed control strategy.

Index Terms—Backstepping-based sliding mode control,
Fractional-order system, Input nonlinearity, Backstepping
method.

I. INTRODUCTION

HE history of fractional calculus is more than three
centuries, which can be traced back to the contribution
by Leibniz, Riemann, Liouville, Grunwald and Letnikov [1].
Fractional calculus particularly suitable for describing the
viscoelastic system [2], and the memory and hereditary prop-
erties of various materials and processes. Recently, studying
fractional-order system has become an active research area.
There are two main reasons for this tendency, on one hand,
many physical system cannot be described accurately without
the introduction of fractional order calculus, on the other
hand, it has been demonstrated by some previous researchers
that fractional-order controllers have more potential superi-
orities than integer-order controllers [3].
In fractional-order nonlinear system, fractional-order
chaotic system is a distinguished phenomenon that is char-

This work is supported by the Foundation of Jinling Institute of Tech-
nology (Grant No: jit-thxm-2003 and jit-b-201706), the Natural Science
Foundation of Jiangsu Province University (Grant No: 17KJB120003), the
Foundation of Jiangsu Province Modern Education Research (Grant No:
2019-R-80918), the Education Reform Project of Jinling Institute of Tech-
nology (Grant No: KCSZ2019-5), and the University-industry Collaboration
Education Foundation of Ministry of Education (Grant No: 202002192004).

X. M. Tian is a teacher of College of Intelligent Science and Control
Engineering, Jinling Institute of Technology, Nanjing 211169, P.R. China,
email: tianxiaomin100@ 163.com;

G. S. Zhao is an associate professor of College of Intelligent Science and
Control Engineering, Jinling Institute of Technology, Nanjing 211169, P.R.
China, email: zhaoguoshu@jit.edu.cn;

Z. Yang is a professor of College of Intelligent Science and Control
Engineering, Jinling Institute of Technology, Nanjing 211169, P.R. China,
email: yz@jit.edu.cn;

J. Q. Ge is a teacher of College of Intelligent Science and Control
Engineering, Jinling Institute of Technology, Nanjing 211169, P.R. China,
email: jessicage@jit.edu.cn;

H. Xie is a teacher of College of Intelligent Science and Control
Engineering, Jinling Institute of Technology, Nanjing 211169, P.R. China,
email: xiehui@jie.du.cn.

acterized with some special features. Recently, control and
synchronization of the fractional-order chaotic systems have
attracted much attention from various scientific fields. Some
methods have been proposed to achieve chaos synchroniza-
tion in fractional-order chaotic systems. Such as nonlinear
feedback control [4], a nonlinear state observer [5], active
control [6], adaptive control [7-9], etc.

The backstepping method is a recursive approach for
controller design, through designing virtual controllers and
partial Lyapunov functions step by step, a common Lyapunov
function of the whole system can be deduced from the above
operations. This method can guarantee the global stability,
tracking, and transient performance of nonlinear systems
[10]. In view of the excellent performance of backstepping,
an increasing number of researchers pay their attentions to
this potential problem. Many preeminent literatures for the
backstepping-based control or synchronization of fractional-
order chaotic system have been reported. For example, Luo
[11] researched the robust control and synchronization of
fractional-order system by adding one power integrator.
Shukla [12, 13] realized the stabilization and synchronization
of fractional-order chaotic system by using backstepping
method. Wei [14, 15] investigated the stability of fractional-
order nonlinear system via adaptive backstepping technique.

However, in most of the above mentioned methods for
control or stabilizing of fractional-order system, the system
parameters are know in advance. In fact, the influence of
unknown parameters maybe destroy the system’s behavior
and even cause unbounded outputs, so it is urgent to design
an adaptive controller to deal with this problem. Meanwhile,
when the system is in work, the external disturbance is
unavoidable, so, it should be considered in design robust
controller. Besides, nonlinearity in control input also is
often encountered in various systems and can be a cause
of instability. Thus, it is obvious that the effects of input
nonlinearity must be taken into account when analyzing and
implementing a control scheme.

Motivated by the above discussions, it is still very chal-
lenging and essential to research the stabilization for a class
of fractional-order system with input nonlinearity by using
adaptive backstepping-based sliding mode control technique.
For compensation the nonlinear input, a fractional-order
auxiliary system is constructed to generate necessary signal.
Some appropriate estimation rules are given to deal with
the system parameters and the unknown upper bound of
uncertainties. The frequency distributed model is used to
establish an indirect Lyapunov function to verify the stability
and design virtual controller for every subsystem. Through
design virtual controller step by step, a comprehensive actual
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controller is determined.

The remaining part of this paper is organized as follows:
Section 2 introduces the relevant definitions, lemmas, and
frequency distributed model. Main results are presented in
Section 3. Some numerical simulations are provided in
Section 4 to show the effectiveness of the proposed method.
Finally, conclusions are given in Section 5.

II. PRELIMINARIES

The Caputo definition is the most commonly used defini-
tion of fractional calculus.

Definition 1. The Caputo fractional derivative of order «
is defined as

f(m)( B
to Dy f(t)= {F(m @) fto (t ) T"+1d7— m—1<a<m )
df’"f( )7 =m

where m is the smallest integer number, larger than «. In

the rest of this paper, we will use D® instead of oDy*.
Lemma 1 (see [16]). Let x = 0 be an equilibrium point

for either Caputo or RL fractional nonautonomous system:

Dix(t) = f(x,t) 2

where ¢ € (0,1) and f(z,t) satisfies the Lipschitz condition
with Lipschitz constant [ > 0. Assume that there exists a
Lyapunov function V (¢, z(t)) satisfying

{ arllz]|* < V(¢ x(t) < as||z|

V(t,x(t) < —as|lz|]
where a1, a9, a3 and a are positive constants and || - ||
denotes an arbitrary norm. Then the equilibrium point of
system (2) is asymptotically stable.
Lemma 2 (see [17]). Consider a nonlinear fractional-order
system

3)

D%(t) = f(x(t)) )

where @ € (0,1). Then the system can be equivalently
converted to the following continuous frequency distributed
model

Pt = —wa(w, ) + f(a(t))
’ 5
U T ©
where p14(w) = % nd z(w,t) is the true state of the

system.

III. MAIN RESULTS

Backstepping technique is suitable for research strict feed-
back system, which can be described as follows

D%y = gi(x1,t)xa+6] Fi(w1,t) + fi(ze,t)
D%zy = ga(w1, 22, t)x3+03 Fo(x1, 2, )+ fo(w1, 22, 1)
Dazn_l = gn_l(l‘l,l’g,...,In,_l,t)l‘n+5Z;_1Fn_1(581,
xg,...,xn_l,t)—|—fn_1(x1,x2,...,xn_1,t)
D%, = gn(xh:rg,...,xmt)u—l—52Fn(x17x2,...,xn,t)
F (@1, 29, 0y Ty, t) (6)

where 0; is the system parameters vector of the i-th state
equation, g¢;(-), F;(-), fi(-) for i = 1,2,...,n are known,
smooth nonlinear functions. This paper investigates a class

of typical fractional-order strict feedback system, it has the
following form

D%zy = wo+0] Fi(z1)+ fi(z1) +Af(X)+da(t)
D%zy = w3403 Fa(w1, m2)+ fo(ar, 22) + A fa(X) + da(t)
D%z, = k‘I’(U(t))+5an(X) +fn(X)+Afn(X)+dn(t)

(M

where « € (0,1), X = [z1,22,...,2,]7 is state variables
vector, k is non-zero constant, J; is unknown system pa-
rameters vector, F;(-) and f;(-) are system nonlinear parts,
Afi(X) and d;(t) for i = 1,2, ..., n respectively are unmod-
eled dynamics and external disturbance. W(u(t)) is saturated
input.

Assumption 1. The nonlinear saturation function is de-
fined as follows:

ug, u(t) > ul
W) = { Oult), u' <ult) < ®)
ur, u(t) < ul

where uy, u® € RT, and uy, u! € R~ are bounds of
the saturation function and # € R is the saturation slope.
Subsequently, the above saturation function can be rewritten
as

W(u(t)) = ult) + Au(t) ©)
and Au(t) is satisfied as
ug — u(t), u(t) > uh
Au(t) =< (0 —Du(t), u <u(t) <ul (10)
ug, — u(t), u(t) < ul

A typical nonlinear saturation function is described in
Figure 1.

P(u(®) 4

>u(t)

& u

Figure 1. A typical nonlinear saturation function

Remark 1. Many fractional-order systems can be de-
scribed as equation (7), such as, fractional-order gyro sys-
tem, fractional-order Genesio-Tesi system, fractional-order
Arneodo system, and so on. For using backstepping-based
sliding mode control strategy, transformation variables are
firstly assigned as

{

where ¥;(j = 1,2,...,n — 1) is virtual controller to be
determined later. o;(j = 1,2,...,n) is the virtual signal

§1=mx1 — 01
fz’ =T; — 191'_1 — 05, 1= 2,3, N

Y
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generated by the following auxiliary fractional-order system
to compensate the nonlinear input

{ DQUZ‘:O'i+1*C1;|O'i|’Y, 7::].,2,...,7171.

D%, = kAu(t) — cnlon]? (12)

where v € (0,1), ¢; > 0, ¢, > 0.

For handling the unknown bounded uncertainties, the
following assumption is given.

Assumption 2. The unmodeled dynamics and external dis-
turbance are unknown bounded, which satisfy the following
conditions

IAfi(X)] < Binl&i]

13

{ di(8)] < B (1

where ;1 and (;o are unknown positive constants. In this
paper, the sliding mode surface can be constructed as

t
Sp = Da71§p+/0 [ = &1t hp&pthp|&p| sgn(y) ] dr

t
0

inwhichp=1,2,....n—1. hy; > %, hpni > %, hql >1 (q =
2,3,..,n—1), hpa > 0, hypz > 0. Taking the derivative of s
with respect time, we have

Sp =D%p —Ep1 + [hplgp + hp2|€p|’Y59n(€p)]
when system trajectories arrived at the sliding mode surface,
we have § = 0, that is

{ D& = &py1 — [hp1&p + hp2|&plTsgn(ép)]
D¢, = — [hnlgn + hn2‘§n|759”(£n)]
according the sliding mode dynamics, the virtual controller

can be determined as

Y = —mys] — SlTF1 - fi— (Bl1|§1| + 312)59”(31)
—c1lor|" = [hi& + hai2l& | sgn(&)]
0j = —mys; — 0] Fj — fi — (Bl&;] + Bj2)sgn(s)
D01 —cjloj" = [hy1€+hjal€5] sgn(€;)] (A7)
where j =2,3,...,n— 1. m; >0, F; and f; are the abbre-
viations of F;(-) and f;(-). d;, Bi1 and f3;2 are estimations
of d;, Bi1 and Bip for i = 1,2,...,n, respectively. Denote
0; = 0; — 0;, Bi1 = Bi1 — Bi1, Biz = Biz — Bz as parameters
estimation errors, which adaptive update laws are designed
as

(15)

(16)

Dagi = DQSZ‘ = FiSi
DBy = D*Bir = nal&illsil, min >0
D®Biz = D*Bio = nia|ss|, M2 >0
Theorem 1. Consider the system (7) with saturated non-

linear input, if the system is controlled by the following
controller

(18)

U(t) = %{ — MpSp — S;I;Fn - fn - (Bnl|€n| + Bn2)89n(5n)
+Da19n—1 *Cn‘gnpf [hn1€n+hn2|§n|’ysgn(§n)] }

19)

then the system trajectories can converge to the sliding
surface s;(i = 1,2,...,n) = 0 asymptotically.

Proof. Step 1: The first new subsystem can be obtain
according to equations (7), (11) and (12)

Dafl = Dal‘l—Da(fl
= 2o+0; Fi+ fi+ Af1(X)+di(t)—0o2+c1]on|”
= &+01+61 Fi+ fi+Afi(X)+di(t)+cr]or|7(20)

according to Lemma 2, the parameters adaptation laws (18)
can transform into the frequency distributed model, that is

Bz; (w,t)
o = Wz (W) + Fisy
o = [ fo ()25, (w, t)dw
Oz~ (w,t)
= w2y (w,1) + s

B11 = fooo ,ua(w)zz;ll(w,t)dw
Bzgm(w,t)

—or = Wi, (w, t) + m2ls1]
Bro = f0°° “a(w)zﬁm (w, t)dw

2y

selecting the Lyapunov function as

St g [ el @tz e e
0 ! !

o (W)2% (w,t)dw

+
2111 0 B11
1 o0

+— 22)
2n12 Jo

pa(w)2% (w,t)dw
B2
taking the derivative of V; with respect to time, it yields

Vv, = slél—/ wua(w)zg(w,t)z:; (w,t)dw + 67 Fys1
0 ! !
1 oo
M1 Jo
1 oo

wua(w)z%n (w,t)dw + B 1€1]]51]

wua(w)z%l (w,t)dw + 512|31\ (23)

M2 Jo 2
substituting $; from equation (15) into equation (23), one
has

o= Sl{Dafl — &+ [hu& + h12\51|759”(51)]}

_/ wua(w)zg(%t)zgl (w,t)dw + 67 Fy s
0

1 > ~

—— [ wpa(w)ZE (W, t)dw + Bu1|&1]]s1]
7’]11 0 Bll

1 > ~

Wite, (w)z%12 (w,t)dw + B1a]s1]

M2 Jo

(24)
substituting the new subsystem (20) into the above equation

o= si{&+ 0+ Fi+ i+ ARX) +du(t)
+eilo|” — & + [hn& + h12|§1|759ﬂ(§1)]}

—/ wua(w)zg (w,t)z5 (w, t)dw + 6Ty s
0 ! !

1 o0
M1 Jo
1 o0

w#a(w)zgvu (w, t)dw + B €1 ]]s1]

wua(w)z%1 (w,t)dw + E12|81\ (25)

mz2 Jo 2
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replacing 97 from equation (17) into equation (25) and using
Assumption 2, we have
Vl S S1 [ mi181 —gTFl

(311|§1|+312)59n(31)}+ﬁ11 X

&1]ls1] + Baz|si] / Wta (w (w t)25 (w, t)dw
1 ~

+6T sy —— wua(w)z3 (w,t)dw + P11 ¥
11 Jo B11

1 *° ~
llsl = = [ wna(w)a, (w.)dw + Bralsi
7’]12 0 612

- —AWMMWVth)(Wﬂd

1 e 9
o w,ua(w)zgu(w,t)dw
I 2 2
- Wl (W)z% (w,t)dw —mys] <0 (26)
M2 B2

because of V1 < 0, then s1, 51, 511, 512 are all asymptoti-
cally converge to zero.

Step 2: The second subsystem about &5 can be established
as

D% = D%y — D% — D%
= 23+ 01 P+ o+ Af(X
—03 + ca|oa|”
= &+V2+0; Fo+ fot Afo(X) +da(t)
—D*Y + co|oa|”

)+ do(t) — D*V

(27
similar to the step 1, the frequency distributed model of
adaptive estimation laws can be constructed as

Oz~ (w,t)
Lp]
Bt

L (w t) + Foso
f() ﬂa ) (w t)d
Oz~ (w t)
B21 Wz~

b = —wzg, (W, 1) + 02|52
Bor = [° ua(w)zgzl(w,t)dw
az;: (w,t)
22 el
ot Y%,

§22 = fooo o (w)

selecting the Lyapunov function as

35345 [ ()L w0, )

oo

ua(W)Zf; (w, t)dw

(28)

(w, ) + n22|s2|
z3. (w, t)dw

Vo = Wi+

. 1
2n21

L[ @) (@ t)dw

29
+2’I722 0 Ba2 (29)

thus its derivative can be described as

Z/WM L (w,0)2 (@, )

2 1 )

Wit (W) 22 (w,t)dw

njl 0 ﬁjl

2
—E Wite (W)2% (w, t)dw — my s>
77]2/ N )ﬁ( ) 11

+5250 + (52 Fysy + 521|§2H82| + 522|82| (30)

substituting $o from equation (15) into (30) and according
to equation (27), one obtains

Va <

—Z/wm L (w,0)75 (w, )

2 1 00

wua(w)zz (w, t)dw

7]j1 Bj1

7]]2 /

+82{D fo — &+ [har&o + h22|§2\789n(§2)]}
+52TF282 + 521|§2H82\ + 522\82|

—Z/u% o (w,0)75; (w, )
-—j{thl | ) (@0

2 1 00

j 1

z~ (w, t)dw — mys3

(w, t)dw — my 53

=1 a2
Hﬂ@+%+£g+ﬁ+Aﬁm+@@

—DV1+caloa]” —&s + [ha1&a+hao|Ea] sgn(&2)] }
+03 Faso + Boi|€]|52] + Baz]s2] (€)9)

wua(w)zéﬂ

replace 2 from equation (17) into the above equation, we

have

Vs

IN

IN

—Z/a% L (w,0)7; (w,
—-§jqblt/' wtia(@)2 (@, )

2 2
— Wit (W)z% (w,t)dw —mys
};m/ o) () = s}

459 { — M98y — (52 Fy — (ﬂ21\§2| + 322 sgn(82)
+B21|&2||s2| + Bazls2| + SQTF282+521|52\|82|+§22|82|

—Z/a% o (w,0)7; (w, )

2 1 >

2

— Wit (W)z5 (w, t)dw
< Jo Ma( )le( )

—Z / Whta(W)Z2 (W, t)dw—mys? —mass (32)
1 52 Bz

since Vo < 0, then s, 62, 621, 522 are all asymptotically
converge to zero.

Step i: We continue to investigate the i-th new subsystem
with transformation variables, that is

D¢,

= D%; — D“Y;_1 — D%0;

= @i+ 6] Fi+ fi + Afi(X) + di(t) —
—0it1 + ciloil”

= &1+ 0+ 0] Fi+ fi + Afi(X) + da(t)

DY,
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—DYY;_1 + cilog|” (33)

similar to the above steps, the frequency distributed model
of adaptive estimation laws can be constructed as

823 (w,t)
o = wzy zr (w,t) + Fis;

5 = fO Mo w)z(; (w, t)dw
Oz~ (w,t) '
51:# — —wz (w,t) + 77i1\§z‘|\3i|

B = [~ ua w)zz, (w,t)dw

z;‘ (w,t)
1{2)71& OO—wZE2(oJ,t) +77i2|5i|
Biz = [, ua(w)z%(w,t)dw

selecting the Lyapunov function as

1 [ T
Vi = Vit gty [ @) w0z
0

(34)

55 5 (w t)dw

oo
/ o (W)Z2 (w,t)dw
0 B'il
1

(oo}
+ a(W)22 (w,t)dw
5 | ()22, .0

taking the derivative of V;, and using the deduce results of
the above steps one has

z / e
—Znﬂ [ a2 ot
—ZW / (@) (@, 0)d

i—1
= mys? + sisi + 6] Fisi + B l&l|sil + Bial i

Jj=1

<

+
2

(35)

(w t)z?;vj (w, t)dw

(36)

substituting $; from equation (15) into (36), and considering
equations (13), (17) and (33), it yields

s =Y [ w0z,

=170

_Znﬂ/ Wit )z% (w,t)dw
_277]2/0 Wit )ZE (w, t)dw

i—1
- ijS? + Si{Da& — &1+ [hin&i + hi2 X
j=1

& sgn(&)] } + 67 Fisi + Bur|&il|ss] + Bizlsil

2/ wtta (@) (w,6)75, (0, )

7

(w t)dw

1 oo

-y — Wite (W)z% (w, t)dw
=1 i1 Jo
iy oo

=D — | wpa(w)eE (w,t)d
= Mz Jo Biz

— m;S; —

i—1
2
— E m;s; —|—si[
J=1

+Bi2)59n(5¢)] + Biil&illsi| + Bizlsi| + 5~ZTF151
+Bi11&si] + Bizl sl

*Z/ Whta(W)2E (w,t)z5
—Znﬂ | o) (w0
£ s

IN

(w t)dw

(w t)dw — Zmﬁ?

j=1

(37

because of V; < 0, then s;, gi, @1, Eig can converge to zero
asymptotically.

Step n: In the last step, the actual controller is designed.
Similar to the above steps, the last subsystem with transfor-
mation variable &, is determined as

D¢, = D%, — D%,_1 — D%,
= kU(u(t)) + 065 F, + fr + Afa(X
=D 1 — kAu(t) + culon|”
= ku(t) + 6L Fy + fo + Afa(X) + dn(t)
—D%9p_1 + culon]”

)+ dn(t)

(38)

the frequency distributed model of adaptive parameters esti-
mation law is

82;/ (w,t)

at —wzy (w t)+ Fnsp
fo fo(w ) 5 (w,t)d

82}; (w t)

e, W

ﬁnl

= fooo fro (W)

Oz~ (w,t)

Bn2 —
—Bn2 5o
ot Bn2

6n2 = fooo ua(w)
selecting the Lyapunov function as

15”3/000%( W)L (w,8)25 (w0, )de

7t) + nn1|§n‘|5n|

39
Z 1(o.), t)dw &

(Wv t) + nn2|5n|
73 (w, t)dw

V., = Vn_1+2 n
1

o0
2
+277n1/0 ua(w)zgnl(w,t)dw

1 e 9
+277n2 /0 /La(w)zgn2 (w, t)dw

taking the derivative of V,, with respect time, and using the
deduce results of the above steps, one has

Z/ wha ()7L (W, 1)z5
—iml [ omat) iyt

_Znﬂ/ Wit )z% (w, t)dw

n—1

j=1

(40)

(w t)dw
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sgn(€,))] + 0L Fysy, + Bn1\§n||sn| + Bnalsn|

= —zn:/ wha(w)zs (w,t)z5

n 1 o0

(w t)dw

2
wite(W)z% (w,t)dw
j= 1771'1 0 TS

772/ Wt (w zz wtdw—ij?
j=1 "

s {Ru(t) + 05 By + fu + Afa(X) + du(1)
_Daﬁn—l + Cn|0-n|ﬁy + [hnlgn + th‘gnI’Y X

substituting u(t) from equation (19) into equation (41), we
have

Z/ wtta() 7L (1) (@, )

n

1 oo
-y — Wita (W)22 (w,t)dw
j=1 it Jo o
n—1
2 2
Wit z~ (w t)dw — m;ss
77]2/ a 2; .
J
+5n |: — MpSn — n Fn - (5n1|§n|

+Bn2)sgn(sn):| + Bnl |£n”5n‘+ﬁn2|3n| +SZ;Fn3n

z/ e

(w, t)dw

(w t)z~

because of Vn < 0, so sp, 5~n, Enl, EnZ will converge to
zero asymptotically, that is the system trajectories can reach
to sliding mode surface gradually, therefore the proof is
completed.

Theorem 2. Consider the sliding mode dynamics (16), the Jz¢, (w,t)

system is stable and its state trajectories converge to zero
asymptotically.

Proof. Step 1: For the first sliding mode dynamic, the
corresponding frequency distributed model is

0z, (w,t
% = —wzg, (w, 1) +&—[h11& + 12| & sgn(&1)]

&= / Po(w)ze, (w, t)dw (43)

0
selecting the following Lyapunov function
1 [ 9
Wy = 3 o (w)z&1 (w, t)dw (44)
0

0z¢, (w, t)

taking the derivation of W, with respect time, one has

W, = 7/ wua(w)zgl(w,t)der&{Ez* [h11&
0
+hi2|é1 |739”(§1)] }
= —/ whte (W) 2¢, (w, t)dw + £1& — h11 &
0
—h12|§1|7+1 (45)

according to &€ < $£7 + 1£3, then the above equation can

be rewritten as
_ oo 1
W, < _/ wpa(w)zgl(w,t)dw— (hi1 — 5)5%
0

588~ husfer ] (46)
obviously, if £&; = 0, then W1 < 0, according to Lemma 1,
the first sliding mode dynamics is asymptotical stable, that
isé& —0ast— oo

Step 2: According to the second sliding mode dynamics in
equation (16), its frequency distributed model can be written

as
= —wzg, (w, t)+E&3— [h21fg+h22|§2 "YSQTL(&)}

| pe)z o
0

selecting the following Lyapunov candidate function for

ot
&2

(47)

1 o0
Wy =W, + 5/ uoé(w)zg2 (w, t)dw (48)
0

taking the derivation of W5, and according to the above
deduced results, we have

2 0 1
_ ;/0 wta(w)2E, (W, t)dw — (h1y — §)€%

—(ha1 — 1)& Zhgz\ggpﬂ + 53

Jj=1

(49)

similarly, if £&3 = 0, then W2 < 0, according to Lemma 1, the
second sliding mode dynamics is asymptotical stable, that is
& — 0ast — oo.

Step i: We continue to investigate the stability of the i-th
sliding mode dynamics, which frequency distributed model
is

= —wzg, (W, t) 4 &ip1— [har&i+haol&] sgn(&)]

ot
& = / Pa(w)ze, (w, t)dw (50)
0
choosing the following form Lyapunov function
1 o0
W, = Wi + 5/0 ua(w)zgi (w, t)dw (51

taking the time derivation of W;, one has

Z/ Wite (W zg w,t)dw — (h11 — *)51

hjr — 1) Zhﬂ|£]|”+1+ &1 (52)

j=1
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indeed, when ;1 = 0, then ¢; is asymptotically converge
to zero, which returns to step i-1.

Step n: In the last step, the stability of the whole sliding
mode dynamics is demonstrated, the corresponding frequen-
cy distributed model is

0z, (w,t
% = Wz, (w7 t) - [hnlgn +hn2 ‘€n|’ysgn(£n)]
& = / ta(w)ze, (w, t)dw (53)
0
we select the following Lyapunov function
1 [ 9
Wa=Waor 45 [ ()2, (@ 1)d (54)
0
its fractional order derivation is satisfying
. LIS 1
W< =3 [ wnalw)s? (@ o = (- e}
j=170 '
1 n—1 n
~(h = )&= (hj1=1)& =D hpl&7(59)
j=2 j=1

therefore W,, < 0, the whole sliding mode dynamics (16) is
asymptotically stale. This completes the proof.

IV. SIMULATION RESULTS

In this section, simulation results are given to demonstrate
the effectiveness and feasibility of the proposed control
strategy. Consider the fractional-order Arneodo system with
nonlinear input, which is described as

DaLEl = X2
Dafﬁz = I3
D%3 = U(u(t)) + a121 + asxs + asxs
23+ Af(X) +d(t) (56)
where a; = —5.5, a9 = —3.5, as = —1, (53 = [a17a27a3]T,

F3 = [x1, 79, 23]7, f3 = 23, Af(X) = —0.02cos(2t)z3 and
d(t) = 0.015sin(3t) are unmodeled dynamics and external
disturbance, respectively. Considering ¥(u(t)) as saturated
input in this example

4, u(t) > 2
U(u(t)) =1 2u(t), —2<u(t) <2 (57)
—4, u(t) < —2

the parameters m; = mg = m3g = 15, ¢y = c3 = ¢c3 = 2,
n31 = 10, m32 = 5, v = 0.2, hyy = hoy = h31 =5, hi2 =
hog = h3o = 2, the initial condition§ are chosen as z1(0) =
0.3, 72(0) = 0.5, x3(0) = 0.1, d3(0) = [0.1,0.1,0.1]T,
B51(0) = 0, B32(0) = 0. When o = 0.98, the uncontrolled
system (56) can behave chaotically, the strange attractors are
shown in Figure 2.

4 5
2
<0 <7 0
-2
-4 -5
-2 -1 0 1 2 -2 -1 0 1 2
Xl Xl
5
5
X7 0 X7 0 \
3
2
-5
4 -2 0 2 4 x. 52
X, 2 1

Figure 2. Strange attractors of fractional-order Arneodo
system (56)

When activated the controller u(t), the time response of
subsystem with transformation variables are displayed in
Figure 3, it is obviously that all trajectories converge to zero
asymptotically, which implies that under the control of the
proposed control strategy, the adaptive stabilization of the
controlled system with saturated nonlinear input is realized.
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Figure 3. Time response of transformation system
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All above simulation results sufficiently demonstrate that
the proposed control scheme is effective in stabilizing this
kinds of uncertain fractional-order nonlinear systems with
unknown parameters and nonlinear inputs.

V. CONCLUSIONS

In this paper, a backstepping-based sliding mode control
scheme for adaptive stabilization of a class of fractional-
order system is investigated. The system is perturbed by un-
known bounded external disturbance, and system parameters
are unknown in advance. The effect of saturated nonlinear
input is considered in the design of actual controller. For
compensation the influence of nonlinear input, an auxiliary
fractional-order system is construct to generate the necessary
virtual signal. To deal with the unknown parameters and
unknown uncertainties, a proper sliding mode surface is
established to determine the adaptive estimation laws. In
order to verify the stability of the controlled system, the
frequency distributed model is used so that indirect Lyapunov
function can be applied. Simulation results demonstrated the
feasibility and effectiveness of the proposed control scheme.
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