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An Interval for the Sum of the Expected Absolute
Difference between Distinct Poisson Processes

Adolfo M. D. Silva and Cira E. G. Otiniano

Abstract—In this work, a closed analytical formula for the
expected absolute difference between two independent Poisson
processes with arrival rates A\; > 0 and )\ > 0 and respective
arrival times X;, X5, --- and Y7, Y52, .- is determined. When
considering that a pair of two-color sensors {X},Y;} are ini-
tially placed according to the processes described, the transport
cost that minimizes the energy consumption is given by the sum
of the expected absolute differences between the two processes.
Here, an exact interval for the transport cost is obtained. In
addition, we show that the sample cost is a strongly consistent
and unbiased estimator of the theoretical transport cost. The
consistency of the sample cost is illustrated with Monte Carlo
simulation experiments and with some graphic illustrations.

Index Terms—Transport cost, Expected distance, Poisson
process, Sensors.

I. INTRODUCTION

OBILE sensors are used for data monitoring and

communication for various purposes, such as oceano-
graphic research [[15], tropical air analysis [4], robotics [17],
and security monitoring [14], among others.

One of the main research topics in this area is the
determination of an optimal allocation of the sensors in order
to generate good coverage at a minimum cost [3].

Through mobile sensor technology, good coverage can be
achieved by placing the sensors in the desired positions.
However, mobile sensors are generally equipped with a
battery and the energy expenditure is much greater during the
movement of the sensor than during its detection function.
Therefore, it is important to minimize the movements of the
sensor to increase its useful life and maintain the reliability
of the network to which it belongs.

There are two approaches to studying the minimum
expected cost of transport: the sum or maximum of the
movements of the sensors from their initial positions to
the destination. With respect to the sum, Huesmann and
Sturm [10] given a mathematical approach to the optimal
transport from Lebesgue to Poisson process. An empirical
approach to the cost of optimal incomplete transportation can
be found in [6]]. For an unified approach of a series of papers
about behaviour asymptotic of a binomial and a Poisson sum
which arose as (average) displacement costs when moving
randomly placed sensors to anchor positions, see [8].

Ajtai and Komlés [1] considered 2n sensors, n blue
X1,Xo,---X,, and n red Y7,Ys, - Y, distributed inde-
pendently and uniformly in a unit square, and proved that
the expected minimum cost of transportation, denoted by
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T, and defined by T, := minZd(Xﬁ(,;),Y;), belong
=1

©(v/n log n). Kranakis [13], when assuming that the sen-
sors move randomly on a line according to two independent
and identically distributed Poisson processes with arrival rate
A and respective arrival times X;, X5,--- and Y7,Y5---
determined an interval for the gxpected minimum cost of

transport, defined by Cr = ZE [| Xk — Yi|]. Kapelko

k=1
[12] generalized the result of Kranakis [[13]. He considered
the same hypotheses as [13]] and determined an asymptotic
expression for the expected minimum cost at power a > 0,

C4 = ZE“Xk — Ykm. Recently, Kapelko [11], when

considerkiﬁé two identical and independent general random
processes, determined asymptotic expressions for the ex-
pected minimum transport cost at power b > 0, C%. A more
general transportation cost problem than that addressed in the
articles cited above occurs when it is assumed that the sensors
move according to two independent stochastic processes, that
do not necessarily have the same distribution. In this paper,
we study this more general problem. Our results generalize
Kranakis’s results [13].

We obtain the transport cost C,,s = Cp for a particular
case and an exact interval for C,, by considering a network
of two sensors {X;,Y;}, where X;, X5, -- are blue and
Y1,Ys,--- are red, which are initially randomly allocated
according to a Poisson process with arrival rates A\; > 0
and Ay > 0, respectively. Note that A\; can be different from
A2, so the sensors {X;} and {Y;} follow a different law. In
addition to obtaining an interval for the expected transport
cost, here we carry out a statistical inference study and verify
that the sample transport cost is a consistent estimator of the
theoretical transport cost found.

Kranakis [13]], Kapelko [12]] and Kapelko [[11]] based their
results on combinatorial theory, but for the proof of our
results we also use results of the following special func-
tions: gamma function, upper and lower incomplete gamma
functions, beta function, and incomplete beta function. These
functions are defined, respectively, by:

I'(a) ::/tafle*fdt, (1)
0
I'(a,x) ::/ t~te~tdt, 2)
v(a,x) := /m tete7tdt 3)
0
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B(a,b) := [ t* (1 —t)* 'dt,and (4)

o—__

and

B.(a,b) == [ t*~ Y1 —t)*"Ldt. (5)

Ot~

The following identities (see [9] ) are also used:

I'(a) = v(a,z) + '(a,z), (6)
e T
I(n+1,z)=nle Z? (7)
r=0
n xr
— m! _ e T -
*y(n—&—l,x)-n.(l e 2_:07"!)7 )
and
r h
M =™ . Pochhammer polynomial

=z(z+1)(z+2)---(x+h-1),if h>1.

)

The rest of the paper is organized as follows: Section 2
describes our main results; Section 3, presents the statistical
inference results about transport cost and illustrations of the
results generated from Monte Carlo simulation experiments;
and Section 4 concludes.

II. EXPECTED DISTANCE

In this section we present Theorem [I] in which we deter-
mine a closed analytic expression for E[| X, — Y;|]. Let X;
and Yj, be random variables that represent the i-th and k-th
arrival times of two independent Poisson processes with rates
A1 and A;. Then, X; and Y; have gamma distribution. With
the notation

X; ~ Gama(i, 1) e Y~ Gama(k,\2),

the random variables X; and Y, have probability density
functions (pdfs)
z >0

fxi (@) = (10)

and
Ak B _
2 k—1 e )\2 Yy

Frw) = £2) = 555

respectively. The shape parameters are ¢ and k£ and the scale
parameters are A\; > 0 and Ay > 0. The particular cases
of our results are in Corollaries [I and These results
correspond to the main results of [13].

y >0, an

Theorem 1: Consider two independent Poisson processes
with arrival times X1, Xo,--- and Y7,Ys,--- and arrival
rates A\; > 0 and Ay > 0, respectively; A1 # Ay or A\; = Ag.
Then

k+r k

B Xt N N

_Yk|:

+2k(k+7) (2]‘“ N ’") AB,,
(12)

for non-negative integers > 0 and k£ > 1, where

Bp(k+rk+1) By(k+r+1k)

AB, = )\2 N

Proof: By using the conditional expectation property,
we have:

E|X; — Y| = E[E(|X; — Ya| | Y&)]
- [BX sl pwdy a3)
0
To find the the expected value of (I3)), consider:
E\X;—yl=I1+ I, with (14)
Yy o]
L=[-(z-yfiz)dr and L= [(z-y)fi(z)dz
0 y

By combining (I0), /; and I, we deduce that:

)\z e : )\z Y
I = 7)\19:d _L Y / i—1 7)\1zd )
1 F(z)/ze X )\1+l"() x e x
Y 0
(15)
and
i T YA
I, — 1 i, — AT I i—1 —>\1’E 1
2 F(i)/me dr — T / dr. (16)
y y

Now (I3) and (16) are replaced in equation (14). The
expected value result in terms of the incomplete gamma
functions (3) and @) is:

2 )
'(z+1, )\ - —
N G LA =

+ % (v(i, Ay) — (4, /\1y))-

Now by substituting (T7) in (I3) we obtain an expression
composed of the following three new integrals:

1 2 1 1

E|lX; —yl=

a7

E|IX; = Y| = N T NTG )J1+ G )J - sz,
(18)
where -
Ji = /F(i+ 1L, \y) fa(y) dy,
0
Jo = /yv(i,hy)fz(y) dy
0
and o
Jy = /yF(Mly)fg(y) d
0

These integrals are calculated using the series representation
of the incomplete gamma functions (7), (8) and the density
(TT). After algebraic manipulations, we deduce that:

2—1—1 s+k
ot |tz

19)
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J2:F(i)k_ z' '““Z[ s+k+1)} 0

21

i kHZ[ s+k+1)].

with p = A1 /(A1 +A2) and g =1—p

By combining integrals (I9), (20) and (ZI)) in (I8), we get:
ki 2igh N T(s+k)
E*Af*AF(/@)Z%p !

= .T s+k—|—1)

i =P

s=0 s!

_ﬁ_i’_’_%q s+k—-1\
T u T a =l s )

E|X; —Y| =

2k gkt1 stk
- s 22
N 2_:0( . )p : (22)
where p=A1/(A\1 +X2) and g=1—p
Finally, we update equation (22)), to obtain:
E|X; - Y| =
i+k
1-— 1 B,(i+ 1,k
IR T ) il O G
a /\2 )\1 /\1 (1 — IIJ)k
i+ k )
qukJrl 1_7’< k >Bp(zvk+1)
Ao P
zi—ﬁﬁ—?ik‘ i+ k\ (Bpli,k+1) By(i+1k) ’
)\1 )\2 k >\2 )\1
(23)

by using the identity (see [7]),

L+n+1
1—(L+1 B,(L+1 1
. @ (“ T By )
=\ s P= (1—p)n+t
(24)
Replacing ¢ by k + r in (23) finishes the proof. ]

An expression equivalent to (I2), in terms of the regular-
ized incomplete beta function, is provided below. To obtain
this result, just replace the expressions

1
Bk+rk+l)= ————— 25
(k+r ) (k_'_,r_)(2kk+r) (25)
and
1
Bk+r+1,k)= — s (26)
k()

in the regularized incomplete beta function

__ By(a,b)
»(a,b) = Blab)

Then
k+r k 2k, (k+rk+1)
Bl Xppr — V| =t - 2y 20 ’
X ¢l A1 A2 A2
2 I 1
(k+7r) p§k+r+ k) 27
1

is equivalent to (12).
Corollary 1: Consider two independent Poisson processes
with arrival times X1, Xo,--- and Y7,Ys,--- and arrival

rates Ay > 0 and Ap > 0, respectively. If » = 0, k € Z>,

and Ay = Ao = A > 0, then
k2—2k+1 2%k
=0

Proof: From Theorem [1} for r = 0 and p = A1 /(A1 +
A2) = 1/2, we have

E\ X, — Y| = (28)

E| Xy — (k+1,k)].

(29)

1
2

K (2k
Yil = /\(k>[Bé(k,kz+1) B

The identity

n

Bufain+1-a) = Blan+1-0) Y (?)m e

(30)

(see [7]), allows rewriting the difference in equation (29) as:

B(k,k+1) (2K
Bé(k,kJrl)Bé(kJrl,k)Q%(k)
1
= 31)
by using the identity
1 /2k—1\"" 1/2k\ "

Bk,k+1)=— = 2
(k. k+1) 2k<k—1> k<k) 52)

The result (28) is obtained by replacing (31) by (29). m

Corollary 2: Consider two independent Poisson processes
with arrival times X7, Xo,--- and Y7,Ys,--- and arrival
rates Ay > 0 and Ap > 0, respectively. If » > 0, k € Z>,
and Ay = Ay = A > 0, then

k2261 (9, 1+§ r—s  (2k+1)©
A k —(2k+s)2¢ (k+1)® )7

0
(33)

Sk,r =

where Sk, = E| X1, — Yil.

Proof: For \; = Ay = X and r > 0, from Theorem
we have:

r o 2k(k+r) (Qk +r (34)

Sk,r = X + Y k )Q(k’,’l’)

with Q(k,r) = [By(k+rk+1) = By(k+7+1,k)].

1
2

Equation is updated by rewriting B (k+rk+1)
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and By (k + 7+ 1, k) with identity as

k+r

= 2(k+) s+k—1\1
St = 3 T TGk z_%( s )2
ok MU sk 1
2K+ Zo s Jos
1
o k—i—r
SRS B DU
where
k+r
(k—D!/s+k-1
H:
0 sg() 28 s
(s=ki=t) . I'(k) [le 2kz<t+2k—1)2 t}
(36)
and
k+r—1
1 k' [(s+k
H, = - —
=X () (L)
k! 2k
_ ok _ 9~k
<k+r>[ (kz) ’
2k +t 2k +t—1
P P 27t .
R SE e G E R

t=0
By replacing Hy and H; in (33), we get:

k2-2k /9 o—2k+1 1L %+t —1
= I — 2t
Sk \ <k>+ 3 ;(r t)( b1 )

22k " (2%k+t—
[ " (2k+r) Ol 1+Z< * )2—?

(38)

+

Now, the identity

z’": . <2k +t—1
— k—1
valid for k£ > 1, is applied in (38)), so:

T(2k+r)0§,€__&r_1,
k2-2F (o)\ 2-2k+1 4 2k +t—1
.= _ 2—75
N K272k 19k — 1
A k-1

k2 2k+1 (of\ 272+ ] 2% +t—1
—_ _ 2—t.
) (k)+ Iy t)< k-1 )

_ k—1 _
)2 t=2kCht 2

t=0

t=0
(39)
Finally, by replacing the binomial identity
2k +s—1 2K\ 1 (2k+ 1))
LR (2k+1) (40)
k-1 k)2k+s (k+1)®
in (39), the result (33) is obtained. |

III. MINIMUM EXPECTED TRANSPORT COST

In this section, we present an interval for the expected
transport cost of a pair {X;,Yj} of sensors placed randomly
in the interval [0, c0). The position of the i-th sensor (blue)

and the k-th (red) are determined by the arrival times
X; and Y}, according to two Poisson process with arrival
rates A; and \g, respectively. This expected transport cost
corresponds to:

n) = E[|X: - Yil].

k=1

C(opt ()\17 A27

In Theorem [2| we obtain a closed formula in terms of incom-
plete gamma function for Cfpi (A1, A2, 1) and in Theorem
we obtain an exact interval for Cope (A1, A2, ).

Theorem 2: Consider two independent Poisson processes
with arrival rate A\; > 0 and Ay > 0 and respectives arrival

times X7, X5,--- and Y7,Ys,---. If £ > 1 is integer and
Ao > Aq, then:
2)\1 6)\1>\2/(/\1+)\2) ( Al )\2 )
Copt (A ,/\ ,n) = IR n, .
pt(A1; Az, ) X2 (A1 + A2)T(n) AL+ A
41)

Lemma 1: Let f1(-) and f5(-) be densities of the random
variables X; ~ Gamma(i, A1) and Y;, ~ Gamma(k, X2),
respectively, with A\; > 0 and A2 > 0. Then, for y > 0, the
double integral

oo Yy
// t—y) f1(t)f2(y) dt dy (42)
0 0
is given by
AN A\

when Ay > Aq.

Proof: From (10) and (TI),

- fie

0oy
)\Z )\k - )
= //(t —y) ti e Mty lem A2 gt gy
00

(44)

f2(y) dt dy

By performing the substitution ¢ = uy, we update (@4) and
get

—)\1/\
A S /yz+1e—)\2yl21dy7

0

(45)

where 121 = fui_l(l _ ’U,) e—(kly)u du.
0
The integral representation of the confluent hypergeomet-

ric function (see [S] p. 185)
1
/ Tt td 1
0
(46)

valid for c € C, d € C, R(¢) > R(d) > 0, and = € C,
allows us to rewrite I5; as
I'(4)
Iy = ————1F1(351+2; =X
21 = F( _|_2)1 1( 12/)

where d =i, c =i+2 e x = —\1y. Replacing in @3),

11 (d; ¢2) = )i,

I‘c—

(47)
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we have that

o0
12 = _)\Z Ak /yl+1 7A2y1F1(Z i+ 2 —Aly) d
'+ 2
0
(48)
When A\ > Ay > 0, we use the identity (see [5] p. 187)
o0 —d
[ e R st de = T (1 - q) ,
T
0

(49)

with z = Ao, ¢ = —A1, d =14, and pu =1+ 2, for rewrite
the integral in (@8). Then

Iy = /yi+1€_k2y1F1(i;i+2;—/\1y) dy
0
. —(i+2) A
= D(i + 2)\, 1+24) (50)
A2
Finally, the result is obtained by replacing (50) in (@8).
|

Proof: (Theorem With the notation of Lemma
E[|Xk - YkH = 7212|i:k. So, the expected transport cost
is given by

Copt = ZE“Xk - Yk”
k=1

2 z": 1 ( Ao )’“
By applying the identity (7) in (51, with z = A Aa/(A1 +

Az2), we conclude that
2 \p eMAz/(atAz) A1 Ao
( DYDY >
|
Theorem 3: Consider two independent Poisson processes

)\2 ()\1 + )\2) F(n)
with arrival times X1, Xo,--- and Y7,Ys,--- and arrival
rates A\; > 0 and Ay > 0, respectively; A\; > Ao. Then

(51

Copt =

Copt(/\17>\27n) € [ln y Sn ]7 (52)
where
nin+1) /1 1 2
ln=—F5— T ;
) 5 <)\1 )\2> + e X S(Tl A1 /\2) (53)
_n(n+1)/1 1 1 1
Sp = 5 <A2—)\1>+<>\2+)\1>XS(TL,)\l,)\g)
(54)
and
N~ ()"
S(n, A1, A2) —; Bkt 1E) (55)
Proof: For r = 0, from we have:
kook Lkk+1)  I(k+1k)
E|X,—-Y,| = —— —+2k| 22 S . .
X =Yl A1 A2 - { A2 A1
(56)
By applying identity
a—1_,b
_ _ b q
I(a,b) =I(a—1,b+1) bB(a.b)’

in (36), for a = k + 1 and b = k, this results in:

11 2 (pg)F

ElXy—Yi| > k| ——— )+ =20
Xk = Vil = ()\1 A2)+)\2B(k+1,k)

So, the lower bound of the sum is:

nn+1) /1
ZS’“O— 2 ()\1 ) AQZBka

where Sy o := E| X} — Y.

To obtain the upper limit of the sum, we replace the
identities

p°q°
Ip(@,b) = Ip(a’ab + 1) - bB(a,b)
and
pq"
I,(a,b) = Ip(a+1,b) + aB(a.b)

in (56). Then, for a = b = k, we get:

Lk, k+1) L(k+1k) (1 - 1)1p(k,k)

A2 ¥ PYEEW
(L,

Xo M) kB k)

(53)

The upper limit of the sum is obtained from (56), (58) and
the fact that
I(k,k) <1, ¥k eZ". Thatis:

(pq)*

1 1 1Y\ (pg)*
_ < L S 1
Fie k(z >\1>+2(>\2+>\1>B(k,k)
(59)
and
3 nntl) (11 1 1\¢_ (pg)*
< Lt 1 1 _
kZ:lSk,Oi 2 (A2 A1)+<A2+A1>,€z_:1B(’fﬂ,k)
(60)

Finally, the proof finishes by combining inequalities
and (60). |

Corollary 3: Consider two independent Poisson processes
with arrival times X7, X5,--- and Yi,Y5,--- and arrival

rates Ay = Ao = A\. Then
2n 1
A\ n /)

Proof: From (52), in Theorem [2} we have

Copt (A A, n) = (61)

2 = 2
3 X 8,2 < ;E[\Xk—YkH < T xS8mA).

That is

- 2
S E[|Xp - Yi|] = 3 xS0, (62)
k=1
The proof of (61) follows directly from(62) and (26)), because
p=q=1/2and S(n,\) = ZkQ 2k (2R, [

Equation (61) is one of the mam results of Kranakis [[13]].
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A. Graphic illustrations of Copy

In order to illustrate our results regarding C,p:, here we
show some graphs of the interval of C,,;. These graphs were
generated by considering some fixed values of the parameters
A1 and A, through simulation. First, Figure |1| contains the
graph of the Poisson process {N1(¢)}i>1, {Na(t)}i>1 with
rates A1 = 0.8, Ao = 0.6, respectively. For these processes,
the respective arrival times X; and Y; with distributions
Gamma(i, A\;) and Gamma(j, A\2) are illustrated in Figure
I Next, the interval [ln , Sn } defined in 1} is illustrated
in Figure 3]

Poisson process

20-

=
ol

N(t) : Number of events by Time t
=
o

5-
— A =08
— A,=06
10 20 30
t: Time
Fig. 1. Poisson processes {N1(t)};>1 and {N2(t)};>1 with A\; = 0.8
and Ao = 0.6.
Arrival Time in Poisson process
30-
9 20-
£
'_
IS
2
<
10-
—— X;~GAMMA(j, A\; =0.8)
—— Y;~GAMMA(i, \,=0.6)
5 10 15 20
i (order of arrival times)
Fig. 2. Arrival time of the Poisson process with rates A1 = 0.8 and
A2 = 0.6.

1=0.8andA,=0.6 A1 =0.95and A, =0.9

2000- 900,
. 1000- »
@ @ 600-
o 0- o
300-
—-1000-
25 50 75 100 25 50 75 100
n n
A1=0.95 and A, =0.93 A1=0.95 and A, =0.95
800-
750-
600-
2 500- j
8 § 400
250- 200-
0 0-
25 50 75 100 25 50 75 100
n n
— Copt — Iy — Sn
Fig. 3. Minimum expected cost intervals of transport: C'op¢ (Exact Cost),

sn (upper bound) and I, (lower bound) as in ([53) and (43).

IV. STATISTICAL INFERENCE OF Copy

A. Estimation

Let Xl = (Xila Xig, . aXim) and )/z =
(Yi1,Yio,...,Yim); @ € {1,2,--- ,n} be random samples
from the Poisson processes with arrival rates A; and Ay and
respective arrival times X1, X2,... and Y7, Y5,.... Then:

X;j ~ Gamma(i, A1) and Y;; ~ Gammal(i, \2)
for all (i,7) € {1,...,n} x {1,...,m}.

Consider the sample minimum cost

Coplnm) =33 L

i=1 j= 1

Here, we prove that (63) a good estimator of
Copt(A1, A2, n) obtained in (27). In addition, we prove the
asymptotic normality of (63) and then define a confidence
interval of C'Opt(/\l, A2, ).

Since { Z | Xi; —

=1

1ndependent and identically distributed (i.i.d.) terms with
expected value

E [C’opt (n, m)] = Oopt(/\h >\27 TL),

—|Xi; — Y- (63)

Y”’} > 18 an infinite sequence of

(64)

by the strong law of large numbers, (see[2]) we have that
Copt(n,m) converges almost surely to the expected value
Copt (A1, A2, ), that is:

Copt(n,m) 25 Copy(A1, Ag,n), m — 00 (65)
P ( lgn éopt(n7m) = Copt(AhAZan) ) =1

Therefore, from and , C’Opt(n,m) is an unbiased
estimator of C,,; (A1, A2, ). On the other hand, since the
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variance

Var(é’opt) =

JE— + J—
AN
then as m approaches infinity, the sample minimum
cost  Cop(n,m) converges, in distribution, to
N(E( Copt ) Var(é'opt)>. That is:

- d n(n—l—l)(l 1))
Copt(n,m) ~N|Copt, ———| 5+ —= ] ), m — occ.
pt (1,11) ( PO om \ A2 T A2
(67)

From (63) and (67), we define the confidence interval for
Copt (A1, A2, m), with confidence level of 1 — a, by:

IlOO(lfa)%(Copt) = [‘Cna U, }a

Ln = Aopt — Za/g \/ Var(é’opt) and

un = Aopt + Za/? Var( Aopt)

) <oo  (66)

(68)

where

B. Numerical illustrations

The performance of statistic was tested by Monte
Carlo simulation with 10 combinations of A\; and g, as
defined in Table 1. We use Algorithm [T] implemented in the
computational software [16]].

Algorithm 1: Monte Carlo Simulation for Sample

m = le6. In this last case the bias and the MSE are small,
80 Copt(n,m) is a consistent estimator of Copi (A1, A2, n).

TABLE I R
Copt (A1, A2, n), MEAN ESTIMATES, MSE AND BIAS OF Copt(n, m)
WITH n = 50 AND m = 500 .

)\1 )\2 Copt(>\la )\2, n) Copt (TL m) MSE bias
0.55 0.92 951.65 950.02 14.10 -1.63
0.87 042 1578.21 1581.17 26.58 2.96
0.59 0.93 816.06 818.44 1598 2.39
0.70  0.66 404.71 408.61 26.34 3091
0.86 0.70 451.87 451.46 8.82 -041
097 047 1405.62 1406.26 14.66 0.64
043 093 1600.54 1598.93 19.33  -1.61
0.87 0.56 841.31 839.06 16.59 -2.26
0.74 0.79 361.95 359.99 12.58 -1.96
0.53 0.90 1007.33 1005.11 17.19 -2.23

TABLE II

Copt(A1;A2,1) , MEAN ESTIMATES , MSE AND BIAS OF Copt(n, m)
WITH n = 50 AND m = 1000 .

Minimum Cost A1 Ao Copt(A1,A2,n)  Copt(n,m) MSE  bias
Input: Rates: A and o 0.55 0.92 951.65 954.80 15.63 3.15
Number of Replications: m 0.87 042 1578.21 1579.04 9.60 0.83
Sizes of Sample (vector): n 0.59 0.93 816.06 819.84 19.49 3.79
Output: Sample Minimum Cost (Oopt (n,m)) 0.70 0.66 404.71 408.16 17.46 3.45
1 Function generate.Sample.Cost 0.86 0.70 451.87 449.20 1145 -2.67
B e e g
y for - zollf:‘ij'(gi do 0.87 056 84131 837.15  23.09 -4.16
s Py Generate Random Sample (size=m) 0.74 0.79 361.95 360.87 554 -1.08
of Gamma(i, Ay ): 0.53 0.90 1007.33 1007.90 644  0.57
6
7 P,: Generate Random Sample (size=m)
of Gamma(i, \2).
8
9 Dif.Abs:= Determine the absolute values of
(P y — P 1);
10 TABLE III X
11 Mean.Dif := Calculate the means of Dif-Abs; Copt(A,22,m), o QSIZSI\J’DMWSLE:AII\IEZF 18 OF Copelrm)
12
13 | Sum.Mean:= Add the values of Mean.Dif. A\ Ao Copr(A1, Ao, 1) C*Opt (n,m) MSE bias
14 éopt -— Sum.Mean. 0.55 0.92 951.65 951.03 0.95 -0.62
Is return C'opt 0.87 042 1578.21 1577.51 1.38 -0.70
— 0.59 0.93 816.06 814.87 1.92 -1.19
0.70 0.66 404.71 404.87 0.58 0.16
Tables [i[V] report the results of the mean estimates of 0.86  0.70 451.87 451.19 0.90  -0.69
the sample minimum cost C‘Opt(n, m) as Ii the values 0.97 047 1405.62 1406.41 134 0.79
of the theoretical cost Cypt (A1, A2, 1) as (52), the bias, and 0.43 093 1600.54 1601.29 140 0.75
the mean square error (MSE) of C’Opt(n,m). The bias and 0.87 0.56 841.31 841.84 0.85 052
MSE of C,,:(n,m) decrease as m grows. Tablereports the 074 079 361.95 361.81 046 -0.13
0.53 0.90 1007.33 1007.02 0.71 -0.31

results for m = 500, Table [II] for m = 1000 and Table [V] for
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TABLE IV R
Copt(A1, A2,m) , MEAN ESTIMATES , MSE AND BIAS OF Copt(n, m)
WITH n = 50 AND m = 1E5.

A1 A2 Copt(Ai,A2,n)  Cope(n,m) MSE  bias
0.55 0.92 951.65 951.47 0.09 -0.18
0.87 042 1578.21 1578.34 0.11 0.14
0.59 0.93 816.06 816.00 0.05 -0.06
0.70 0.66 404.71 404.65 0.06 -0.06
0.86 0.70 451.87 451.57 0.14 -0.30
097 047 1405.62 1405.99 021 037
043 0.93 1600.54 1601.10 040 0.56
0.87 0.56 841.31 841.78 027 046
0.74 0.79 361.95 361.93 0.04 -0.02
0.53 0.90 1007.33 1007.48 0.08 0.15

TABLE V

Copt(A1, A2, 1), MEAN ESTIMATES , MSE AND BIAS OF Copt (1, m)
WITH n = 50 AND m = 1E6 .

/\1 )\2 Copt(/\la )\2, n) Oopt (n, m) MSE bias
0.55 0.92 951.65 951.62 0.01 -0.02
0.87 042 1578.21 1578.16 0.01 -0.05
0.59 0.93 816.06 816.10 0.01 0.04
0.70  0.66 404.71 404.71 0.01  0.00
0.86 0.70 451.87 451.85 0.00 -0.02
0.97 047 1405.62 1405.64 0.01 0.02
043 0.93 1600.54 1600.55 0.01 0.01
0.87 0.56 841.31 841.14 0.04 -0.17
0.74 0.79 361.95 361.91 0.01 -0.04
0.53 0.90 1007.33 1007.34 0.01 0.01

The results of the corresponding confidence interval
Ios% (Copt) = [ Ln, U, ], obtained in , are shown
in Table [VI} The results are satisfactory.

TABLE VI
CONFIDENCE INTERVAL FOR Copt (A1, A2, n), WITH 95% OF
CONFIDENCE .

A A2 Copt(n,m)  Copt(A1, A2, 1) [LQS%(COPt>7 Ugs% (Copt)]
0.26 0.25 3065.70 3065.53 [3062.16, 3077.46]
0.55 0.28 8801.69 8802.98 [8797.76, 8808.89]
091 0.30 11188.47 11188.42 [11184.60, 11194.31]
0.22 0.04 93329.40 93341.57 [93297.73, 93363.09]
0.46 0.90 5389.82 5391.14 [5384.39, 5391.20]
0.78 0.99 1479.48 1478.87 [1477.50, 1482.05]
0.61 0.60 1243.93 1244.34 [1241.60, 1248.07]
0.20 0.56 15906.65 15905.23 [15895.58, 15910.23]
0.20 0.11 20375.64 20375.64 [20366.78, 20395.68]
041 0.07 57903.33 57913.29 [57896.82, 57936.20]

Graphically, the convergence of Cop(n,m) to

Copt(A1, A2,n) is illustrated well in Figures and
The confidence interval g5y (C’Opt) = [En, U, } shown
in Figure [6] indicates that with 95% confidence, the cost
Copt(A1, A2,n) is well estimated by Copt(n m). Finally,
the asymptotic normality of C’Opt(n m), proved in ,
is illustrated in Figure [/| The four graphs show the good
adjustment of the theoretical cost by the sample cost.

Expected Cost X Sample Cost

1200 -

1100 -

Cost

1000 =

Expected Cost

900 -
o Sample Cost

1 1 1
110 120 130

n (m=100)

Fig. 4. Graph of C’opt (n,m) versus Copt (A1, A2, n), for A1 = 0.95 and
A2 = 0.90.
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—— Expected Cost

46-

500 750 1000
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Fig. 5. Graph of C'opt(n,m) varying m (black) and Copt (A1, A2, n)
(red), for A1 = 0.55 and Ao = 0.95.
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Fig. 6. [Illustration of the confidence interval for Copt(A1, A2, n), with
95% confidence, for A1 = 0.95 and A2 = 0.90.
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Fig. 7.  Asymptotic normality of Copt(n,m) as l| histogram of

C’opt (n, m) versus normal density (top left), Q-Q plot (top right), empirical
versus theoretical cumulative distributions (bottom left), and P-P plots
(bottom right).

V. CONCLUSION

In this article, we derived an exact expression and an
interval for the sum of the expected absolute difference
between two Poisson processes that can have different rates.
Our results generalize those of [13], and to apply our results
we calculated the minimum transport cost of a random two-
color combination when two sensors are initially placed
according to two Poisson process with different or equal
laws. We performed a complete statistical inference study,
proved asymptotic normality of the cost estimator, and per-
formed a simulation study to show the consistency of the
cost estimator.
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