
 

  

Abstract—Aiming at a class of nonaffine stochastic nonlinear 

systems with external disturbances and quantized input, this 

paper studies the quantized adaptive robust H∞ tracking 

control problem. A novel quantized adaptive robust 

bounded-H∞ tracking controller is proposed under the 

condition that the system is bounded stable. This control 

strategy ensures all the signals are bounded in probability. 

Meanwhile, the system has a good tracking performance and an 

H∞ disturbance attenuation performance. To demonstrate the 

effectiveness and superiority of the designed controller, the 

simulation results for a Brusselator model are given. 
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I. INTRODUCTION 

n our practical life, there exist a great deal of dynamic 

systems with nonaffine structure [1]–[2], such as some 

multi-agent systems, networked manipulator systems, etc. In 

order to save precious communication resources, a quantized 

control is introduced. Simultaneously, compared with 

strict-feedback nonlinear systems, nonaffine pure-feedback 

systems are evidently more universal and representative in 

real life. Because the mathematical models of nonaffine 

pure-feedback systems does not have affine appearance of 

variables, it is hard to directly obtain the virtual control and 

actual control inputs. Because nonaffine pure-feedback 

systems have such problems, it leads to more difficulty in 

control design process and stability analysis. At present, there 

are many researches considering the control problem for this 

kind of systems [3]–[4]. To transform the original system into 

affine form, an auxiliary subsystem was introduced in the 

reference [3]. But the disadvantage of this method is that the 

system order and the computational burden were increased. 

 
Manuscript received June 01, 2021; revised September 24, 2021. This 

work was supported by the Natural Science Foundation of Liaoning Province 
(Grant No.20180550319), the Foundation of Liaoning Province Educational 

Administration (Grant No.2019 LNJC09) and Science Technology 

Innovation for Graduate Students of University of Science and Technology 
Liaoning (Grant No. LKDYC202008).  

Xiaoyu Qu is a Postgraduate of School of Electronic and Information 
Engineering, University of Science and Technology Liaoning, Anshan, TX 

114051, China (e-mail: 1584653247@qq.com).  

Xiaohua Li is a Professor of School of Electronic and Information 
Engineering, University of Science and Technology Liaoning, Anshan, TX 

114051, China (phone: 13081206677; e-mail: lixiaohua6412@163.com). 
Xiaojie Cao is a Postgraduate of School of Electronic and Information 

Engineering, University of Science and Technology Liaoning, Anshan, TX 

114051, China (e-mail: 1085515524@qq.com). 
 

Consequently, in order to avoid the disadvantage, reference 

[4] focused on the control problem of the pure-feedback 

systems. To solve the problem about affine appearance of 

variables, this paper firstly uses the implicit function theorem. 

Moreover, this method has become the primary method to 

solve the controller design problem of nonaffine systems in 

the control field. 

Because there are various uncertainties in practical 

systems, the robust control problem for nonaffine nonlinear 

systems is studied. Recently, there have been many research 

results in this field [5]–[7]. However, because of the constant 

terms appearing in control design process using the 

backstepping technique, the H∞ performance criterion cannot 

be satisfied. Therefore, this technique has been rarely used in 

this situation.  

In recent years, with the development of stochastic 

nonlinear system theory, its control problem has been studied 

widely, a lot of control schemes have been presented [8]–[10]. 

However, in the research papers using backstepping 

technique, H∞ control problem is rarely considered because 

of the above reason. Up to now, there has been no literature 

studying H∞ robust control problem for nonaffine stochastic 

nonlinear systems by means of backstepping technique.  

At the meanwhile, with the wide application of network 

control, quantitative control has achieved a great deal of 

research results in the nonlinear systems [11]–[13]. However, 

as far as the author knows, there is no paper on quantized 

control for stochastic nonaffine systems.  

According to the above discussion, the H∞ robust adaptive 

tracking control problem is researched for a class of 

nonaffine stochastic nonlinear systems with external 

disturbances and quantized input in this paper. The control 

strategy can ensure that the signals are bounded in probability. 

Meanwhile, the proposed controller has a good tracking 

performance and an H∞ disturbance attenuation performance. 

In addition, a concept on bounded-H∞ is introduced to solve 

the H∞ control problem for the stochastic systems which can 

only be designed to be bounded in probability. Here, the 

principal advantages are listed. 

(1) This paper, for the first time, focuses on the quantized 

adaptive bounded-H∞ tracking control problem for a class of 

stochastic nonaffine nonlinear systems with external 

disturbances and quantized input. Thereby, a novel control 

strategy is proposed, and a quantized adaptive bounded-H∞ 

tracking controller is obtained. (2) Due to the introduction of 

bounded-H∞ control, the influences of external disturbances 

are able to be attenuated by the designed controller. (3) The 

control strategy designed only needs to estimate an adaptive 
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parameter online. A great deal of calculations is avoided. 

Thus, the computational burden is greatly reduced. 

II. PROBLEM FORMULATION AND PRELIMINARIES 

A. Problem Formulation  

Consider the following system. 
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where 
T

1 2[ , , , ] Rn

nx x x x=   is the state variable, 

T

1 2[ , , , ] Ri

i ix x x x=  ( 1, 2, , )i n= , Ry   denotes the 

output;   refers to an r − dimensional standard Brownian 

motion which is defined on the complete probability space 

( , , )F P .   , F and P  represent a sample space, a  −  

field, and a probability measure, respectively.  At the same 

time, ( ) : R Ri

if  →  is unknown smooth and nonaffine 

functions, ( ) : R Ri

i  → , ( ) : R Ri r

i  →  denote unknown 

smooth nonlinear functions and satisfy 

(0) (0) (0) 0i i if  = = = . At the meanwhile,  ( )i t denotes 

unknown external disturbances with 
2( ) ([0, ],R)Ft L T  .  

The quantized input ( )Q u  can be able to be defined like [12]. 
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where
1

min ( 1, 2, )i

ku u k −= = and (1 ) / (1 )  = − + , 

0 1   can be viewed as the measure of the quantization 

density, the range of the dead-zone of ( )Q u can be 

represented as min 0u  . At the same time, ( ( ))Q u t−
 is able 

to be regarded as the status prior of ( )Q u . Then, in the 

hysteresis quantizer (2), ( ) {0, , (1 ),i iQ u U u u  =   +  

1, 2, }i = . Furthermore, the quantized input ( )Q u   can be 

decomposed as follow. 

( ) ( ) ( ) ( ),Q u J u u t L t= +  

where 1 ( ) 1J u −   +  , min( )L t u .   

Our control target is to design a controller so that the 

system (1) has an H∞ disturbance attenuation performance 

and a reference signal dy  can be followed by the output y . 

Concurrently, the signals remain bounded in probability. 

For the convenience of the following design, we define 
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with 1 ( )nx Q u+ = . 

B. Preliminaries 

For the sake of the main results, we give the following 

assumptions, definitions, and lemmas. 

Assumption 1 The signs of function 1( , )i i ig x x +  are 

known, and there are two constants Mb and mb such that 

1 10 ( , ) , ( , ) R R.i

m i i i M i ib g x x b x x+ +          (4)  

Remark 1 Those two constants are only used for stability 

analysis, and the controller design does not need them, so 

there's no need to know their true value. 

Assumption 2 The desired reference signal dy  and 
( )i

dy  

are continuous and bounded. Here, 
( )i

dy  are time 

derivatives， ( 1, 2, , )i n= . 

Firstly, we consider the following system 

( ) ( ) ,dx f x dt h x d= +                         
 
(5) 

where ( ) : R Rn nf x →  and  ( ) : R Rn n rh x →  are locally 

Lipschitz functions satisfying (0) 0f =  and (0) 0h = . 

Corollary 1 [16] For the system (5), if there exists a 

positive definite, radially unbounded, twice continuously 

differentiable function V V m= + , 0m  , and the constants 

1 0a  , 1 0b   such that 

1 1( ) ,LV x aV b − +  

subsequently, 1) the system has a unique solution almost 

surely; 2) the system is bounded in probability. 

Definition 1[17] For the system (1), if there exists a finite 

T  and a continuous differentiable function ( )V x  satisfying 

0 0( ) ( )LV x a V x b − +  in reference [15] with ( (0)) 0V x  , 

we can get  

 
2 22

1
0 0

( ) ( ) ( (0)) ,
T T

E z s ds E s ds E V x     +
          

where 1 1 dz x y= − stands for the tracking error, 

( )  2L 0,t T   is the bounded external disturbance. 

Meanwhile,   is a disturbance attenuation coefficient, then 

the stochastic system (1) has H∞ performance against external 

disturbance for all 0T  . 

An RBF neural network (RBFNN), in this paper, is 

introduced to model an unknown continuous function ( )f Z . 

*T( ) ( ) ( ), Rq

Zf Z W S Z Z Z= +                (6) 

where *W  represents an optimal weight value vector, and 
T

1 2( ) [ ( ), ( ), , ( ),]lS Z s Z s Z s Z=  can be represented as the 

basis function vector. Here, ( )is Z  is selected as 

T

2

( ) ( )
( ) exp[ ], (1 ),i i

i

i

Z u Z u
s Z i l

r

− −
= −  

        

(7) 

where T

1 2[ , , , ]i i i iqu u u u=   and ir  are the center and the 

width of ( )is Z . It should be noted that ( )Z  is the 

approximation error, and it meets such conditions that 

max  . Here, max  is a bounded positive number. 
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Lemma 1 [20] Consider the equations (7), 

let
1

min
2

i j
i j

u u


= − , afterwards, an upper bound of ( )S Z  

is defined as 

1 2 2 22 /

0

( ) 3 ( 2) :
q k r

k

S Z q k e s−


−

=

 + =           (8) 

with s  being a limited value. And it should be noted that s  is 

irrelevant to the input variable and the node numbers of the 

RBFNN. 

III. MAIN RESULTS 

In this section, based on the above lemmas, corollaries, etc. 

the quantized adaptive bounded-H∞ tracking controller will 

be designed for the stochastic system (1). Moreover, for 

convenience of description, ix and t  are omitted in the 

following functions. In addition, let ( )i i iS Z S= . The design 

scheme bases on the following coordinate transformation, it 

can be defined as 
( 1)

1 1
ˆ( , , ), 1,2, ,i

i i i i dz x x y i n −

− −= − =          (9) 

with 0 dy = ,
T

( 1) ( 1), , ,i i

d d d dy y y y− − =   . Here, ˆ=  −  is 

the estimation of  . The estimation error of   is expressed 

as  .   can be specified as 

 2
2 *= max , 1,2, , .M ib W i n =            (10) 

Next, the quantized adaptive bounded-H∞ neural tracking 

controller and adaptive laws will be established as follows. 

2 3 T1 ˆ( ) ( ) ( ),
2

i i i i i i i i

i

k h z z S Z S Z
a

 = − + −          (11) 

2

3 T( ) 1 ˆ ( ) ( ),
(1 ) 2 (1 )

n

n n n n n n

n

k h
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+
= − −
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6 T

0

1

ˆ ˆ( ) ( ) ,
2

n

i i i i i

i i

z S Z S Z m
a


 

=

= −               (13) 

where 1 1i n  − , ia , ik , 0m and   are positive design 

parameters, 2/ 1h n = + ,   denotes a positive disturbance 

attenuation parameter, and ( )i iS Z is the basis function vector 

of NNs with
1

T 3

1 1[ , , ] Rd d ZZ x y y=   , ( )T Tˆ[ , , ]T i

i i dZ x y=  

2 1R (2 )i

Zi i n+    . Particularly, when i n= , n  is the 

actual control input ( )u t . 

The design procedure is as follows. 

Step 1: Consider the stochastic system (1), from the 

coordinate transformation with 1i = , the following equation 

can be obtained.  
T

1 1 1 2 1 1 1( ( , ) ) .ddz f x x y dt d  = + − +           (14) 

Select a Lyapunov function candidate as 
2

4 2

1 1

1
= .

4 2

m

m

hb
V hb z 


+                         (15) 

According to the definition of infinity differential operator 

in [14], the infinity differential operator of (15) can be written 

as 
3

1 1 1 1 2 1 1

22 1 2

1 1

( ( , ) )

3 ˆ         .
2

m d

m m

LV hb z f x x y

hb z hb



  −

= + −

+ −
              (16) 

By utilizing Young’s Inequality in [18], we can get (17) 

and (18) 

3 2 6 2 2

1 1 1 1 1 1

1
,

4
m mhb z hb z h   +                 (17) 

2 42 2 2 4

1 1 1 1 1

1

3 9 1

2 16
m mhb z l h b z

l
  +  

83 2 4 2 4

1 1 1 12

1

9 1
.

16 4
m ml h b z hb z

l
 + +       (18) 

Remark 2 In (18), 1 0l   is chosen as an arbitrarily small 

constant. The actual value of 1l  does not need to be known 

because it is not used to construct the controller. 

Substituting (17) and (18) into (16) results in 

83 3 2

1 1 1 1 2 1 1 1 12

1

1 1
( ( , )

4 4
m m d mLV hb z f x x b z y b z

l
  + − + ) 

3 2 4 2 1 2

1 1 1

9 ˆ+ .
16

m mh b z l h hb  −+ + −                       (19) 

To prove the system (1) to satisfy bounded-H∞ 

performance index, define an auxiliary function as 
2 22 2 2 2 2 2

1 1 1 1 1 1 1= ( )= ( )H LV h z LV h z   + − + − .  (20) 

By employing Young’s Inequality, it follows that 

2 2 4 3

1 1 1

1

1
+

4
h z hz l h

l
 .                         (21) 

Substituting (19) and (21) into (20) produces 
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Define a new function 
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b
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Then (22) can be converted into 
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Due to 1 2/ 0x  = , according to Assumption 1, we can get 

 1 1 2 1

1 1 2

2

( , )
( , ) 0.m

f x x
g x x b

x

 +
=  


            (24) 

According to [21], on the basis of the implicit function 

theorem, for every value of 1x  and 1 , there exists a smooth 

ideal control input 
2 1 1 1( , )x x =  , it can make (25) holds 

1 1 1 1( , ) 0.f x   + =                           (25) 

Next, making use of the mean-value theorem, like [21], there 

exists 1 1(0 1)   , it can make the following inequality 

holds 

11 1 2 1 1 1 1 2 1( , )= ( , ) ( ),f x x f x g x  + −             (26) 

where 
1 1 11 1 1 2 2 1 2 1 1: ( , ),  (1 )g g x x x x      = = + − .  It should 

be noted that Assumption 1 is also valid for 
11g  .  

Therefore, according to the formula (25), substituting (26) 

into (23) leads to  
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Since 
1   contains the unknown function 1 , we make use of 

an RBFNN *T

1 1 1( )W S Z  to approximate 
1  . Utilizing 

Young’s Inequality and (10), it can make the following 

inequality holds 
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Substituting i in (11) with 1i = , if ˆ(0) 0  , according to 

Assumption 1, we can get 
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Remark 3 If ˆ(0) 0   for all 0t  , We can easily obtain 

the conclusion that ˆ( ) 0t  . Due to ˆ( ) 0t  , the formula 

(29) can hold. Moreover, the condition of ˆ(0) 0   will be 

adopted in each design steps. 

Utilizing Young’s Inequality, here, we choose 

4 / 3,  4p q= = , it yields 
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1 1 0mc k hb=  . 
 

Step (2 1)i i n  − : The derivative of 1i i iz x  −= −  is   

( )1 1

1
T1

1

( , )

        ( ) ,

i i i i i i i

i
i

i j

j j

dz f x x L dt

d
x

 


  

+ −

−
−

=

= + −


+ −


         

      (32) 

where 
1

1 1

1 1

1

ˆ ,
ˆ

i
i i

i i j j

j j

L
x

 
    



−
− −

− −

=

 
= + +


  

1 1
( 1)1 1

1 1 ( )
1 0

21
T1

, 1

( , )

1
        .

2

i i
ji i

i j j j dj
j jj d

i
i

p q

p q p q

f x x y
x y

x x

 



 

− −
+− −

− +

= =

−
−

=

 
= +

 


+

 

 



(33)
                                                          

 

A stochastic Lyapunov functional candidate is chosen as 

41
= .

4
i m iV hb z                              (34) 

According to the definition of infinity differential operator in 

[14] and (34), one has 

1
3 1

1 1
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Remark 4 Here, ( )i iZ is a smooth function, which is 

adopted for the following proof. It will appear in the next 

each step. The functions ( ) ( 2, , )i iZ i n =  will be deduced 

later. 

By making use of Young’s Inequality, it can make (36) ~ (38) 

hold 
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Substituting (36) ~ (38) into (35) yields 
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Define an auxiliary function 
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According to (39), (40) can be rewritten as 
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Subsequently, repeating (24) ~ (26), (41) can be rewritten as. 
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     (43) 

Here, an RBFNN can be utilized to approximate 
i  , and 

making use of Young’s Inequality, it can make (44) holds 
3 3 T

2 2 2

6 T 6 2

max

2 2

6 T 6 2 2

max

( )

1
                   

2 2 2 2

1
                    = ( ).

2 2 2
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m m M
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i
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hb hb hb
z S S a h z

a
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 − = − +

 + + +

+ + +

(44) 

By applying i in (11), we can obtain the inequality (46). 

2

3 2 2 4 6 Tˆ( ) .
2i

m

m i i i i m i i i i

i

hb
hb z g k h hb z z S S

a
   − + −       (45) 

In addition, similarly to (30), the following inequality holds. 

3 4 4 4

1 1

3 1
.

4 4im i i i m i m M ihb z z g hb z hb b z+ + +             (46) 

Substituting (44), (45) and (46) into (43) finally leads to 
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                       (47) 

with
 

2 0j j mc k hb=  .
 

Step n : Because of 1n n nz x  −= − , one has  

( )1

1
T1

1

( , ( ))
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n n n n n n

n
n
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where 
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    (49) 

Choose the quartic auxiliary Lyapunov function candidate 

as 

4

0

1
= ,

4
n m nV hb z k+                              (50) 

with 0 0k   being an arbitrarily small constant. 

Remark 5: Here, the added 0k  will not influence the 

analysis of system stability. It serves as an auxiliary constant 

for bounded-H∞ performance proof, and 0k  is not used in the 

design of the controller. 

Next, it follows from (50) that: 
1
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           (51)                             

Utilizing Young’s Inequality, it produces 
2

1
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3 2 6 2 21
.

4
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From (52) ~ (54), (51) can be expressed as 

3 2 3

1

1
3 3 21

1

8
1

3 2 41

12
11

3 21

1

1
(( ( , ( )) ( ))

4

1
( ( )
4

1 9
)

164

ˆ( ( ) ) .      
ˆ

n m n n n m n n n n n

n
n

m n m n j

j j

n
n

m n n j m n

j j

n
n

m n n n j

j

LV hb z f x Q u b z Z

hb z b z
x

b z l h b z
xl

hb z Z h

  





 


  



−

−
−

=

−
−

=

−

=

 + − −


+




+ − + +




+ − +









 (55) 

Define an auxiliary function 

222 2
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Combining (56) with (55) results in 
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with 
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Note that / 0n u  = , we can get 
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( , ( ))= 0.
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g x Q u b

Q u
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       (59) 

On the basis of the implicit function theorem, for every 

value of nx  and n , there exists a smooth ideal control input 

*( ) ( , )n n nQ u x =  , it yields 

( , ) 0.n n n nf x   + =                          (60) 

Adopting the mean-value theorem, same as the previous 

step, there exists (0 1)n n    , it can make the following 

inequality holds 

( , ( )) ( , ) ( ( ) ),
nn n n n n n nf x Q u f x g Q u  = + −       (61) 

where ( 1) ( 1): ( , ),  ( ) (1 )
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+ += = + − .  

Note that Assumption 1 is still valid for 
nng  . 

Further, according to (59) ~ (61) and ( ) ( )Q u J u=  

( ) ( )u t L t+  with min( )L t u , the following inequality can be 

derived. 
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  By utilizing Young’s Inequality, it produces 
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An RBFNN is employed to approximate 
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the processing method as (28), one has 
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Now, substituting the actual control input (12) into the item 
3 ( )

nm n nhb z g J u u in (62), we can get 
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   (66) 

where 
2 0j j mc k hb=  . 

Next, by using ̂  in (13), we can get 
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Next, in order to ensure that 
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ˆ
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 is negative, we 

apply
 
Lemma 1 and

 
the adaptive law ̂

 
in (13), it follows 
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The auxiliary function ( )j jZ  can be obtained. 
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It follows from ˆ=  −  and the complete square 

inequality 
2 2

ˆ
2 2

 
  − +  that 
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Then, we can rewrite the function nH   
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According to the formula (70), choose the design parameter 
2/ 1h n = + , one has 
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Considering (15), (34) and (50), we can choose the whole 

Lyapunov function as 
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with 1[ , , , ]nZ z z = . Due to 0 0k  , so 
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According to 
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Next, the proof of stability and bounded-H∞ performance 

for the system (1) will be given according to (74). It should be 

noted that the formula (74) is obtained under the condition 

that control laws (11) ~ (13) hold.  

Based on the above deduction, Theorem 1 is able to be 

gained. 

Theorem 1 For the system (1) satisfying Assumption 1-2. 

If the control laws and adaptive law are selected as (11) ~ (13) 

with the given positive design parameters  , 0m , ia , ik , h  

and the quantized input parameters  , minu , afterwards all 

the signals are uniformly ultimately bounded in probability. 

At the meanwhile, the system has a good tracking 

performance and an H∞ performance against disturbance.  

Proof  1) For the stability  

Consider the stability analysis of the system (1). Let 

( ) 0,  1i t i n =   , then 0 = . It can be gotten from (74) 

that 
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Then (75) can be rewritten as 

0 0 ,   0.LV a V b t − +                           (76) 

Therefore, the stochastic nonlinear system (1) is uniformly 

ultimately bounded in probability. 

Further, the inequality (77) can be proved from (76). 
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Thus, from (79), we can easily learn that all the signals are 

semi-globally uniformly ultimately bounded by our proposed 

control strategy. In addition, the convergence bound of the 

error variables is independent of the constant 0k . 

2) For the H∞ performance 

From (56), one has 
2 22 2

1= + ( )nH LV h z  −  .                  (80) 

According to (71), we know that there must be a positive 

constant q  such that 
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Combining (80) with (81), (82) can be obtained.  
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For (82), we take integrations and expectations, it yields 
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Applying Gronwall Inequality in [19] to (84) gives 
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Next, in order to prove  ( ) 0E t  , we utilize the method 

of reduction to absurdity. At the first time, we assume 

 ( ) 0,E t                                  (86) 

then, it yields 
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0
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Combining (86) with (87) results in 

 ( ( )) 0.E V Z t                               (88) 

It is noticeable that (88) and (73) contradict each other. So, 

we can know  ( ) 0E t  . Afterwards, we can get 
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1
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                                 + ( (0)) .

t t

E h z s ds E h s ds

E V Z

    
       

        (89) 

because of 1h  , (90) can be obtained. 

 
2 22

1
0 0

( ) ( ) + ( (0)) .
t t

E z s ds E s ds E V Z    
        (90) 

So far, the designed controller has satisfied bounded-H∞ 

performance index. Hence, we know that the system (1) has 

the H∞ performance. 

IV. SIMULATION EXAMPLE 

A practical model in this section is given to demonstrate 

the performance and advantage of the proposed controller. 

Consider the following Brusselator model in [22],  
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+
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 +
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(89) 

where ( )Q u  denotes the quantized input defined in (2), 

3

1 1 2 2( , ) 0.3x x x = , 3 5

1 1 2 1 2( , ) 0.4x x x x = , 3

1 1 1( ) 0.2sin( )x x = , 

2 2 1 2( ) 0.6 cos( )x x x = , the reference signal is chosen as 

0.5(sin sin 0.5 )dy t t= + , the external disturbance functions 

are 0.02

1 sin( ) tt e −=  and 0.05

2 cos(2 ) tt e −= . According to 

Theorem 1, the design parameters and the quantized input 

parameters are chosen as 1C = , 0.5D = , 1 20k = , 2 20k = , 

1 2 1a a= = , 1 = , 0 0.6m = , 0.1 = , min 0.3u = . To avoid 

the excessive controller gain, we choose 2h =  when 

0.05t   and 8h =  when 0.05t  . Then control laws 

1 1( )Z , 2( )u Z  and adaptive law ̂  can be obtained. The 

initial values of the simulation are T

1 2[ (0),  (0)]x x =  

T[0.3,  0.2] and ˆ(0) 0 = . RBFNNs are chosen as follows: 

T

1 1 1( )W S Z contains 7 nodes with centers ( 1, ,7)lu l =  

evenly distributed in interval [ 3,3]− , and the widths 2lr = , 

T

2 2 2( )W S Z  contains 73 nodes with centers ( 1, ,343)lu l =  

evenly distributed in interval [ 3,3] [ 3,3] [ 3,3]−  −  − , and the 

widths are 2lr = . The simulation results are shown in 

Fig.1~Fig.6. 

In order to verify the effect of disturbance attenuation, the 

simulation results with external disturbances or without 

external disturbances are given at the same time in 

Fig.1~Fig.6. Among them, Fig.1~Fig.4 denote the system 

output y , the tracking error 1z , the control signal u and the 

quantized signal ( )Q u , respectively. Fig.5 and Fig. 6 show 

the curves of the state variable 2x and the adaptive parameter 

̂ . For a comparison, in these figures, the simulation results 

for the proposed scheme in this paper and the method 

proposed in [23] are given simultaneously under the same 

external disturbances. Here, the simulation parameters of the 

method in [23] are chosen as same as the paper [23]. 

As can be seen from Fig.1-Fig.4, the quantized adaptive 

bounded-H∞ tracking controller designed in this paper has a 

better tracking effect and the disturbance attenuation 

performance than the control method in [23]. In addition, in 

the simulation results, it is demonstrated that the tracking 

error can converge to a small neighborhood of the origin, all 

the signals of the system are uniformly ultimately bounded in 

probability. 

V. CONCLUSION 

Aiming at a class of nonaffine pure-feedback stochastic 

nonlinear systems with external disturbances and quantized 

input, a novel quantized adaptive bounded-H∞ tracking 

control method in this paper is designed for the first time by  

  
  Fig. 1. Comparison of system tracking effect  

      

 
 Fig. 2.  Comparison of tracking error 

1z  curves    

 
 Fig. 3. Comparison of control input u  curves  

 

using the backstepping technique and H∞ control theory. A 

developed quantized adaptive bounded-H∞ tracking control 

strategy ensures that all the signals remain bounded in 

probability. In addition, the system is guaranteed to have an 

H∞ disturbance attenuation performance. This is a 

meaningful work for nonlinear system control theory. 

Eventually, the results illustrate the effectiveness and 

advantage of the designed controller.  
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   Fig.4.  Comparison of quantized signal ( )Q u  curves 

 Fig. 5.  Comparison of system state 
2x curves 

 

  Fig. 6. Comparison of estimation ̂  curves 
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