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Abstract—In this paper, we focus on multiobjective bimatrix
games with fuzzy random payoffs. Using reference membership
values and possibility measure, an equilibrium solution concept
is introduced. To circumvent the computational difficulties
to obtain an equilibrium solution, equilibrium conditions in
the membership function space are replaced into equilibrium
conditions in the expected payoff space. Under the assumption
that a player can estimate the opponent player’s reference mem-
bership values, an interactive algorithm is proposed to obtain a
satisfactory solution of the player from among an equilibrium
solution set by updating his/her reference membership values.

Index Terms—multiobjective bimatrix games, fuzzy random
variables, expectation model, possibility measure, reference
membership values, interactive algorithm.

I. INTRODUCTION

To deal with bimatrix games with triangular fuzzy num-
bers, Maeda [9] defined an equilibrium solution concept
using possibility measure and the threshold values for the
level sets [2]. He formulated the corresponding mathematical
programming problem to obtain such parametric equilibrium
solutions. Using the expected value concept for possibility
measure and necessity measure, Li et.al. [6], [7] formulated
quadratic programming problems to obtain the corresponding
Nash equilibrium solutions for bimatrix games with triangu-
lar fuzzy numbers. Mako et al. [10] focused on bimatrix
games with LR fuzzy numbers. Corresponding to the fuzzy
Nash-equilibrium solution concept, they proposed the fuzzy
correlated equilibrium solution concept, which is based on a
joint distribution for mixed strategies of both players. Gao
[3] introduced three kinds of uncertain equilibrium solution
concepts based on uncertainty theory [8], which depend on
the values of confidence levels. From a similar point of view
based on uncertainty theory, Tang et al. [16] proposed an
uncertain equilibrium solution concept based on the Hurwicz
criterion.

For multiobjective bimatrix games, Corley [1] first de-
fined a Pareto equilibrium solution concept, and formulated
quadratic programming problems to obtain Pareto equi-
librium solutions through the Karush-Kuhn-Tucker condi-
tions, in which multiobjective functions are scalarized by
the weighting coefficients. Nishizaki et al. [12] formulated
multiobjective bimatrix games incorporating fuzzy goals.
They transformed multiobjective bimatrix games into usual
bimatrix games by applying the weighting methods or the
minimum operator [14], [23], and defined the corresponding
equilibrium solution concepts. They formulated the nonlinear
programming problems to obtain such equilibrium solutions.
Using dominance cones proposed by Yu [22], Nishizaki et
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al.[11] defined a nondominated equilibrium solution con-
cept which is a generalization of Nash-equilibrium solution
concept, and formulate nonlinear programming problem to
obtain nondominated equilibrium solutions by applying the
Karush-Kuhn-Tucker conditions.

On the other hand, the concept of fuzzy random variable
was first introduced by Kwakernaak [4], and its definition
in an n-dimensional Euclidean space were given by Puri
and Ralescu [13]. Roughly speaking, fuzzy random variables
defined by Wang and Zhang [17] can be interpreted as
random variables whose realized values are not real values,
but rather are fuzzy sets. From the perspective that both
randomness and fuzziness are often involved simultaneously
in real-world decision making problems, we have already
formulated several kinds of multiobjective fuzzy random
Stackerberg games with simple recourses, introduced the
equilibrium solution concepts, and proposed the interactive
algorithms to obtain a satisfactory solution of the player
from among an equilibrium solution set [18], [19], [20].
Similar to multiobjective fuzzy random Stackerberg games,
we have formulated multiobjective fuzzy random bimatrix
games [21], and introduced an equilibrium solution concept
based on the fuzzy decision [14], [23] using possibility mea-
sure [2] and an expectation model [15]. However, the fuzzy
decision may not be adequate as an aggregation function
which reflects the preference of each player.

From such a point of view, in this paper, we propose an
interactive algorithm for multiobjectve bimatrix games with
fuzzy payoffs. Using possibility measure [2] and reference
membership values [14], an equilibrium solution concept is
introduced. In general, it is very difficult to directly obtain
such an equilibrium solution because of the computational
complexity. To circumvent such computational difficulties,
equilibrium conditions in the membership function space
are replaced into equilibrium conditions in the expected
payoff space. Under the assumption that a player can es-
timate the opponent player’s reference membership values,
an interactive algorithm is proposed to obtain a satisfactory
solution of the player from among an equilibrium solution
set by updating the reference membership values. In sec-
tion II, multiobjective fuzzy random bimatrix games are
formulated. In section III, by applying possibility measure
[2], an expectation model [15] for stochastic programming
problems, and the reference membership values [14], [23]
specified by the player, the corresponding equilibrium solu-
tion is defined. To circumvent the computational difficulties
to obtain such an equilibrium solution depending on the
reference membership values, an interactive algorithm based
on the bisection method is proposed to obtain a satisfactory
solution of the player from among an equilibrium solution
set, in which equilibrium conditions in the membership
function space are replaced into equilibrium conditions in the
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expected payoff space. In section IV, a numerical example
of two-objective bimatrix games with fuzzy random payoffs
illustrates interactive processes under a hypothetical player
to show the efficiency of the proposed method.

II. MULTIOBJECTIVE FUZZY RANDOM BIMATRIX GAMES

In this section, we consider multiobjective bimatrix games
with fuzzy payoffs. Let i ∈ {1, 2, · · · ,m} be a pure strategy
of Player 1 and j ∈ {1, 2, · · · , n} be a pure strategy of
Player 2. ˜̄Ak

def
= (˜̄akij), k = 1, . . . ,K are Player 1’s (m×n)-

payoff matrices, and ˜̄Bl
def
= (˜̄blij), l = 1, · · · , L are Player

2’s (m × n)-payoff matrices, whose elements ˜̄akij and ˜̄blij
are fuzzy random variables [4] (The symbols ”-” and ”˜”
mean randomness and fuzziness respectively). Throughout
this paper, we assume that under the occurrence of scenarios
sk ∈ {1, · · · , Sk} and tl ∈ {1, · · · , Tl}, ãkskij and b̃ltlij are
realizations of fuzzy random variables ˜̄akij and ˜̄blij , which
are fuzzy numbers whose membership functions are defined
as follows.

µãkskij
(u) =

max
{
1− akskij−u

αkij
, 0
}
, u ≤ akskij

max
{
1− u−akskij

βkij
, 0
}
, u > akskij

i = 1, · · · ,m, j = 1, · · · , n, sk = 1, · · · , Sk,

k = 1, · · · ,K (1)

µb̃ltlij
(v) =

max
{
1− bltlij−v

γlij
, 0
}
, v ≤ bltlij

max
{
1− v−bltlij

δlij
, 0
}
, v > bltlij

i = 1, · · · ,m, j = 1, · · · , n, tl = 1, · · · , Tl,

l = 1, · · · , L (2)

where the spread parameters αkij > 0, βkij > 0, γlij > 0
and δlij > 0 are constants and the mean value akskij and
bltlij vary depending on the scenarios sk and tl. Moreover,
we assume that a scenario sk occurs with a probability p1ksk ,
where

∑Sk

sk=1 p1ksk = 1, and a scenario tl occurs with a
probability p2ltl , where

∑Tl

tl=1 p2ltl = 1.
Then, a multiobjective bimatrix game with fuzzy random

payoffs can be formulated as follows, where T means
transportation.
P1

maximize
x∈X

(xT ˜̄A1y, · · · ,xT ˜̄AKy)

maximize
y∈Y

(xT ˜̄B1y, · · · ,xT ˜̄BLy)

where

X
def
= {x ∈ Rm |

m∑
i=1

xi = 1, xi ≥ 0, i = 1, · · · ,m},

Y
def
= {y ∈ Rn |

n∑
i=1

yj = 1, yj ≥ 0, j = 1, · · · , n},

are mixed strategies for Player 1 and Player 2. It should
be noted here that, the expected payoffs for the scenarios
sk ∈ {1, · · · , Sk} and tl ∈ {1, · · · , Tl} can be expressed as

fuzzy numbers whose membership functions can be defined
as follows [2].

µxT Ãksk
y(u) =


max

{
1− xTAksk

y−u

xTαky , 0
}
,

u ≤ xTAksky

max
{
1− u−xTAksk

y
xTβky

, 0
}
,

u > xTAksky

sk = 1, · · · , Sk, k = 1, · · · ,K (3)

µxT B̃ltl
y(v) =


max

{
1− xTBltl

y−v

xTγly
, 0
}
,

v ≤ xTBltly

max
{
1− v−xTBltl

y
xTδly

, 0
}
,

v > xTBltly

tl = 1, · · · , Tl, l = 1, · · · , L (4)

where Ãksk
def
= (ãkskij), B̃ltl

def
= (b̃ltlij), Aksk

def
= (akskij),

Bltl
def
= (bltlij), αk

def
= (αkij), βk

def
= (βkij), γl

def
= (γlij),

δl
def
= (δlij).

Considering the imprecise nature of each player’s judg-
ment, it is natural to assume that Players 1 and 2 have
fuzzy goals G̃1k, k = 1, · · · ,K and G̃2l, l = 1, · · · , L for
the expected payoffs. In this paper, it is assumed that such
fuzzy goals can be quantified by eliciting the corresponding
membership function defined as follows.

µG̃1k
(u)

def
=

u− Ek10

Ek11 − Ek10
, k = 1, · · · ,K (5)

µG̃2l
(v)

def
=

v − El20

El21 − El20
, l = 1, · · · , L (6)

where Ek10, El20 represent the maximum value of an un-
acceptable level of the expected payoffs, and Ek11, El21

represent the minimum value of a sufficiently satisfactory
level of the payoffs. Throughout this section, we make the
following assumption.

Assumption 1: The membership functions µG̃1k
(u), k =

1, · · · ,K and µG̃2l
(v), l = 1, · · · , L are continuous and

strictly monotone increasing on the corresponding supports
for the membership functions of xT Ãksky, sk = 1, · · · , Sk

and xT B̃ltly, tl = 1, · · · , Tl, respectively.

[Ek10, Ek11] ⊃
∪

sk=1,··· ,Sk

{u ∈ R1 | µxT Ãksk
y(u) > 0,

∀x ∈ X, ∀y ∈ Y }, k = 1, · · · ,K (7)

[El20, El21] ⊃
∪

tl=1,··· ,Tl

{v ∈ R1 | µxT B̃ltl
y(v) > 0,

∀x ∈ X, ∀y ∈ Y }, l = 1, · · · , L (8)

III. AN EQUILIBRIUM SOLUTION CONCEPT BASED ON
POSSIBILITY MEASURE

To deal with P1, we first apply a concept of possibility
measure [2] to each objective function in P1.
P2

maximize
x∈X

(
ΠxT ˜̄A1y

(G̃11), . . . ,ΠxT ˜̄AKy
(G̃1K)

)
maximize

y∈Y

(
ΠxT ˜̄B1y

(G̃21), . . . ,ΠxT ˜̄BLy
(G̃2L)

)
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By applying an expectation model [15] to each objective
function in P2, P2 can be transformed into a usual multiob-
jective bimatrix game as follows.
P3

maximize
x∈X

(E[ΠxT ˜̄A1y
(G̃11)], · · · , E[ΠxT ˜̄AKy

(G̃1K)])

maximize
y∈Y

(E[ΠxT ˜̄B1y
(G̃21)], · · · , E[ΠxT ˜̄BLy

(G̃2L)])

From Assumption 1, the following relations always hold.

0 < ΠxT Ãksk
y(G̃1k) < 1, sk = 1, . . . , Sk,

∀x ∈ X, ∀y ∈ Y (11)

0 < ΠxT B̃ltl
y(G̃2l) < 1, tl = 1, . . . , Tl,

∀x ∈ X, ∀y ∈ Y (12)

To define an equilibrium solution concept to P3, we
introduce Player 1’s reference membership values µ̂1k, k =
1, . . . ,K for E[ΠxT ˜̄Aky

(G̃1k)] and Player 2’s reference

membership values µ̂2l, l = 1, . . . , L for E[ΠxT ˜̄Bly
(G̃2l)],

respectively [14]. Then, P3 can be reduced to the following
bimatrix game.
P4(µ̂1, µ̂2)

maximize
x∈X

min
k=1,...,K

(E[ΠxT ˜̄Aky
(G̃1k)]− µ̂1k) (13a)

maximize
y∈Y

min
l=1,...,L

(E[ΠxT ˜̄Bly
(G̃2l)]− µ̂2l) (13b)

Now, we can introduce an equilibrium solution concept to
P4(µ̂1, µ̂2).

Definition 1: (x∗,y∗) ∈ X×Y is an equilibrium solution
to P4(µ̂1, µ̂2), if the following inequalities hold.

min
k=1,...,K

(E[Πx∗T ˜̄Aky∗(G̃1k)]− µ̂1k)

≥ min
k=1,...,K

(E[ΠxT ˜̄Aky∗(G̃1k)]− µ̂1k), ∀x ∈ X (14a)

min
l=1,...,L

(E[Πx∗T ˜̄Bly∗(G̃2l)]− µ̂2l)

≥ min
l=1,...,L

(E[Πx∗T ˜̄Bly
(G̃2l)]− µ̂2l), ∀y ∈ Y (14b)

From the definition of the membership functions (5), (6)
and Assumption 1, E[ΠxT ˜̄Aky

(G̃1k)] and E[ΠxT ˜̄Bly
(G̃2l)]

can be expressed as the following forms.

E[ΠxT ˜̄Aky
(G̃1k)]

=

Sk∑
sk=1

p1ksk ·ΠxT Ãksk
y(G̃1k)

=

Sk∑
sk=1

p1ksk ·

(∑m
i=1

∑n
j=1(akskij + βkij)xiyj − Ek10

Ek11 − Ek10 +
∑m

i=1

∑n
j=1 βkijxiyj

)

=

∑m
i=1

∑n
j=1(

∑Sk

sk=1 p1ksk · (akskij + βkij))xiyj − Ek10

Ek11 − Ek10 +
∑m

i=1

∑n
j=1 βkijxiyj

def
=ΠxT Ãk(p1k)y(G̃1k) (15)

E[ΠxT ˜̄Bly
(G̃2l)]

=

Tl∑
tl=1

p2ltl ·ΠxT B̃ltl
y(G̃2l)

=

Tl∑
tl=1

p2ltl ·

(∑m
i=1

∑n
j=1(bltlij + δlij)xiyj − El20

El21 − El20 +
∑m

i=1

∑n
j=1 δlijxiyj

)

=

∑m
i=1

∑n
j=1(

∑Tl

tl=1 p2ltl · (bltlij + δlij))xiyj − El20

El21 − El20 +
∑m

i=1

∑n
j=1 δlijxiyj

def
=ΠxT B̃l(p2l)y(G̃2l) (16)

where

Ãk(p1k)
def
= (

Sk∑
sk=1

p1ksk · ãkskij),

B̃l(p2l)
def
= (

Tl∑
tl=1

p2ltl · b̃ltlij),

are (m × n)-fuzzy payoff matrices, respectively, which de-
pends on the probability vectors p1k

def
= (p1k1, · · · , p1kSk

)

and p2l
def
= (p2l1, · · · , p1lTl

).
It is very difficult to obtain the equilibrium solution

to P4(µ̂1, µ̂2) in the computational aspect, since (15) and
(16) are bilinear fractional functions. To circumvent such a
difficulty, at first, we consider the following bimatrix game,
which is equivalent to P4(µ̂1, µ̂2).
P5(µ̂1, µ̂2)

maximize
x∈X, v1∈R1

v1

subject to

(E[ΠxT ˜̄Aky
(G̃1k)]− µ̂1k) ≥ v1, k = 1, . . . ,K (17a)

maximize
y∈Y, v2∈R1

v2

subject to

(E[ΠxT ˜̄Bly
(G̃2l)]− µ̂2l) ≥ v2, l = 1, . . . , L (17b)

Assume that (x∗,y∗, v∗1 , v
∗
2) is an equilibrium solu-

tion to P5(µ̂1, µ̂2). Then, the following equalities hold at
(x∗,y∗, v∗1 , v

∗
2).

min
k=1,...,K

(E[Πx∗T ˜̄Aky∗(G̃1k)]− µ̂1k)− v∗1 = 0 (18a)

min
l=1,...,L

(E[Πx∗T ˜̄Bly∗(G̃2l)]− µ̂2l)− v∗2 = 0 (18b)

From (15) and (16), (18a) and (18b) are equivalent to the
following equalities.

min
k=1,...,K

Πx∗T Ãk(p1k)y∗(G̃1k)− (v∗1 + µ̂1k) = 0 (19a)

min
l=1,...,L

Πx∗T B̃l(p2l)y∗(G̃2l)− (v∗2 + µ̂2l) = 0 (19b)

Consider the (v∗1 + µ̂1k)-level set for the fuzzy numbers
x∗T Ãk(p1k)y

∗ and the (v∗2 + µ̂2l)-level set for the fuzzy
numbers x∗T B̃l(p2l)y

∗ as follows.

(x∗T Ãk(p1k)y
∗)v∗

1+µ̂1k

def
= [x∗TAL

k, v∗
1+µ̂1k

(p1k)y
∗,x∗TAR

k, v∗
1+µ̂1k

(p1k)y
∗]

(x∗T B̃l(p2l)y
∗)v∗

2+µ̂2l

def
= [x∗TBL

l, v∗
2+µ̂2l

(p2l)y
∗,x∗TBR

l, v∗
2+µ̂2l

(p2l)y
∗]
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where

AL
k, v∗

1+µ̂1k
(p1k)

def
= (

Sk∑
sk=1

p1ksk · aLkskij, v∗
1+µ̂1k

)

AR
k, v∗

1+µ̂1k
(p1k)

def
= (

Sk∑
sk=1

p1ksk · aRkskij, v∗
1+µ̂1k

)

BL
l, v∗

2+µ̂2l
(p2l)

def
= (

Tl∑
tl=1

p2ltl · bLltlij, v∗
2+µ̂2l

)

BR
l, v∗

2+µ̂2l
(p2l)

def
= (

Tl∑
tl=1

p2ltl · bRltlij, v∗
2+µ̂2l

)

AL
k, v∗

1+µ̂1k
(p1k), AR

k, v∗
1+µ̂1k

(p1k), BL
l, v∗

2+µ̂2l
(p2l), and

BR
l, v∗

2+µ̂2l
(p2l) are (m × n)-matrices. aLkskij, v∗

1+µ̂1k
,

aRkskij, v∗
1+µ̂1k

, bLltlij, v∗
2+µ̂2l

bRltlij, v∗
2+µ̂2l

mean the extreme
points of the (v∗1 + µ̂1k)-level set for ãkskij and the extreme
points of the (v∗2 + µ̂2l)-level set for b̃ltlij .

It is obvious that (19a) is equivalent to the following
equalities, since µG̃1k

(·) is strictly monotone increasing and
the right hand side function of the membership function of
xT Ãk(p1k)y is strictly monotone decreasing.

min
k=1,...,K

(
x∗TAR

k, v∗
1+µ̂1k

(p1k)y
∗ − µ−1

G̃1k
(v∗1 + µ̂1k)

)
= 0

(20)
Similarly, (19b) is equivalent to the following equalities.

min
l=1,...,L

(
x∗TBR

l, v∗
2+µ̂2l

(p2l)y
∗−µ−1

G̃2l
(v∗2+µ̂2l)

)
= 0 (21)

Corresponding to (20) and (21), we consider the following
bimatrix game, in which (v∗1 , v

∗
2) are given as parameters in

advance.
P6(µ̂1, µ̂2; v

∗
1 , v

∗
2)

maximize
x∈X

min
k=1,...,K

{xTAR
k, v∗

1+µ̂1k
(p1k)y − µ−1

G̃1k
(v∗1 + µ̂1k)}

maximize
y∈Y

min
l=1,...,L

{xTBR
l, v∗

2+µ̂2l
(p2l)y − µ−1

G̃2l
(v∗2 + µ̂2l)}

For P6(µ̂1, µ̂2; v
∗
1 , v

∗
2), we introduce an equilibrium solution

concept.
Definition 2: (x∗,y∗) is an equilibrium solution to

P6(µ̂1, µ̂2; v
∗
1 , v

∗
2), if the following inequalities hold.

min
k=1,...,K

{x∗TAR
k, v∗

1+µ̂1k
(p1k)y

∗ − µ−1

G̃1k
(v∗1 + µ̂1k)}

≥ min
k=1,...,K

{xTAR
k, v∗

1+µ̂1k
(p1k)y

∗ − µ−1

G̃1k
(v∗1 + µ̂1k)},

∀x ∈ X (23a)

min
l=1,...,L

{x∗TBR
l, v∗

2+µ̂2l
(p2l)y

∗ − µ−1

G̃2l
(v∗2 + µ̂2l)}

≥ min
l=1,...,L

{x∗TBR
l, v∗

2+µ̂2l
(p2l)y − µ−1

G̃2l
(v∗2 + µ̂2l)},

∀y ∈ Y (23b)

Then, the following relationships between equilibrium
solutions to P6(µ̂1, µ̂2; v

∗
1 , v

∗
2) and equilibrium solutions to

P5(µ̂1, µ̂2) hold.
Theorem 1: If (x∗,y∗, v∗1 , v

∗
2) is an equilibrium solution

to P5(µ̂1, µ̂2), then (x∗,y∗) is an equilibrium solution to
P6(µ̂1, µ̂2; v

∗
1 , v

∗
2).

(Proof) : Assume that (x∗,y∗) is not an equilibrium
solution to P6(µ̂1, µ̂2; v

∗
1 , v

∗
2). Then, there exists some x ∈ X

such that

min
k=1,...,K

{
x∗TAR

k,v∗
1+µ̂1k

(p1k)y
∗ − µ−1

G̃1k
(v∗1 + µ̂1k)

}
< min

k=1,...,K

{
xTAR

k,v∗
1+µ̂1k

(p1k)y
∗ − µ−1

G̃1k
(v∗1 + µ̂1k)

}
,

(24)

or, there exists some y ∈ Y such that

min
l=1,...,L

{
x∗TBR

l,v∗
2+µ̂2l

(p1k)y
∗ − µ−1

G̃2l
(v∗2 + µ̂2l)

}
< min

l=1,...,L

{
x∗TBR

l,v∗
2+µ̂2l

(p1k)y − µ−1

G̃2l
(v∗2 + µ̂2l)

}
.

(25)

Assume that there exists some x ∈ X such that the inequality
(24) is satisfied. Then, from (20), the following relation
holds.

0 = min
k=1,··· ,K

(
x∗TAR

k,v∗
1+µ̂1k

(p1k)y
∗ − µ−1

G̃1k
(v∗1 + µ̂1k)

)
< min

k=1,··· ,K

(
xTAR

k,v∗
1+µ̂1k

(p1k)y
∗ − µ−1

G̃1k
(v∗1 + µ̂1k)

)
Since µG̃1k

(·) is strictly monotone increasing and the
right hand side function of the membership function of
xT Ãk(p1k)y is strictly monotone decreasing, the above
relation is equivalent to the following inequality.

v∗1 = min
k=1,··· ,K

Πx∗T Ãk(p1k)y∗(G̃1k)− µ̂1k

= min
k=1,...,K

(E[Πx∗T ˜̄Aky∗(G̃1k)]− µ̂1k)

< min
k=1,··· ,K

ΠxT Ãk(p1k)y∗(G̃1k)− µ̂2l

= min
k=1,...,K

(E[ΠxT ˜̄Aky∗(G̃1k)]− µ̂2l).

This contradicts the fact that (x∗,y∗, v∗1 , v
∗
2) is an equilib-

rium solution to P5(µ̂1, µ̂2). Similarly, we can prove for the
case that there exists y ∈ Y such that (25) is satisfied.

Theorem 2: If (x∗,y∗) is an equilibrium solution to
P6(µ̂1, µ̂2; v

∗
1 , v

∗
2), where the following relations hold,

min
k=1,··· ,K

(
x∗TAR

k,v∗
1+µ̂1k

(p1k)y
∗ − µ−1

G̃1k
(v∗1 + µ̂1k)

)
= 0

(26)

min
l=1,··· ,L

(
x∗TBR

l,v∗
2+µ̂2l

(p1k)y
∗ − µ−1

G̃2l
(v∗2 + µ̂2l)

)
= 0,

(27)

then, (x∗,y∗, v∗1 , v
∗
2) is an equilibrium solution to

P5(µ̂1, µ̂2).
(Proof) : Assume that (x∗,y∗, v∗1 , v

∗
2) is not an equilib-

rium solution to P5(µ̂1, µ̂2). Then, there exists some x ∈ X
such that

v∗1 = min
k=1,...,K

(E[Πx∗T ˜̄Aky∗(G̃1k)]− µ̂1k)

< min
k=1,...,K

(E[ΠxT ˜̄Aky∗(G̃1k)]− µ̂1k)

or, there exists some y ∈ Y such that

v∗2 = min
l=1,...,L

(E[Πx∗T ˜̄Bly∗(G̃2l)]− µ̂2l)

< min
l=1,...,L

(E[Πx∗T ˜̄Bly
(G̃2l)]− µ̂2l).
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From (15) and (16), this means that there exists some x ∈ X
such that

v∗1 = min
k=1,...,K

Πx∗T Ãk(p1k)y∗(G̃1k)− µ̂1k

< min
k=1,...,K

ΠxT Ãk(p1k)y∗(G̃1k)− µ̂1k, (28)

or, there exists some y ∈ Y such that

v∗2 = min
l=1,...,L

Πx∗T B̃l(p2l)y∗(G̃2l)− µ̂2l

< min
l=1,...,L

Πx∗T B̃l(p2l)y(G̃2l)− µ̂2l. (29)

Assume that there exists some x ∈ X such that (28) is
satisfied. Then, the following relation holds.

0 = min
k=1,··· ,K

(
x∗TAR

k,v∗
1+µ̂1k

(p1k)y
∗ − µ−1

G̃1k
(v∗1 + µ̂1k)

)
< min

k=1,··· ,K

(
xTAR

k,v∗
1+µ̂1k

(p1k)y
∗ − µ−1

G̃1k
(v∗1 + µ̂1k)

)
This contradicts the fact that (x∗,y∗) is an equilibrium
solution to P6(µ̂1, µ̂2; v

∗
1 , v

∗
2). Similarly, we can prove for

the case that there exists y ∈ Y such that (29) is satisfied.
From the above theorems, instead of solving P5(µ̂1, µ̂2)

directly, we can obtain an equilibrium solution to P5(µ̂1, µ̂2)
by solving P6(µ̂1, µ̂2; v

∗
1 , v

∗
2), where (v∗1 , v

∗
2) satisfies the

equality conditions (26) and (27). On the other hand, an
equilibrium solution to P6(µ̂1, µ̂2; v

∗
1 , v

∗
2) is obtained by

solving the following nonlinear programming problem [12].
P7(µ̂1, µ̂2; v

∗
1 , v

∗
2)

maximize
x∈X, y∈Y, p, q, σ1, σ2

σ1 + σ2 − p− q (30a)

subject to

AR
k, v∗

1+µ̂1k
(p1k)y − µ−1

G̃1k
(v∗1 + µ̂1k)e1 ≤ pe1, k = 1, . . . ,K

(30b)

xTBR
l, v∗

2+µ̂2l
(p2l)− µ−1

G̃2l
(v∗2 + µ̂2l)e2 ≤ qe2, l = 1, . . . , L

(30c)

xTAR
k, v∗

1+µ̂1k
(p1k)y − µ−1

G̃1k
(v∗1 + µ̂1k) ≥ σ1, k = 1, . . . ,K

(30d)

xTBR
l, v∗

2+µ̂2l
(p2l)y − µ−1

G̃2l
(v∗2 + µ̂2l) ≥ σ2, l = 1, . . . , L,

(30e)

where e1 and e2 are (m × 1) and (n × 1) column vectors
whose elements are all ones. It should be noted here that
p ≥ σ1, q ≥ σ2, and σ1 + σ2 − p − q ≤ 0 always hold,
because of the constraints in P7(µ̂1, µ̂2; v

∗
1 , v

∗
2).

The following theorem shows the relationship between
an optimal solution to P7(µ̂1, µ̂2; v

∗
1 , v

∗
2) and an equilibrium

solution to P5(µ̂1, µ̂2).
Theorem 3: Let (x∗,y∗, p∗, q∗, σ∗

1 , σ
∗
2) be an optimal

solution to P7(µ̂1, µ̂2; v
∗
1 , v

∗
2). If σ∗

1 = p∗ = 0, σ∗
2 = q∗ = 0,

then (x∗,y∗) is an equilibrium solution to P5(µ̂1, µ̂2).
(Proof) : Since x∗, y∗, p∗ = q∗ = σ∗

1 = σ∗
2 = 0 is a feasible

solution to P7(µ̂1, µ̂2; v
∗
1 , v

∗
2), the following inequalities hold.

AR
k, v∗

1+µ̂1k
(p1k)y

∗ − µ−1

G̃1k
(v∗1 + µ̂1k)e1 ≤ 0, k = 1, . . . ,K

(31a)

x∗TBR
l, v∗

2+µ̂2l
(p2l)− µ−1

G̃2l
(v∗2 + µ̂2l)e2 ≤ 0, l = 1, . . . , L

(31b)

x∗TAR
k, v∗

1+µ̂1k
(p1k)y

∗ − µ−1

G̃1k
(v∗1 + µ̂1k) ≥ 0, k = 1, . . . ,K

(31c)

x∗TBR
l, v∗

2+µ̂2l
(p2l)y

∗ − µ−1

G̃2l
(v∗2 + µ̂2l) ≥ 0, l = 1, . . . , L,

(31d)

From (31c) and (31d), it holds that

min
k=1,··· ,K

(
x∗TAR

k, v∗
1+µ̂1k

(p1k)y
∗ − µ−1

G̃1k
(v∗1 + µ̂1k)

)
= 0,

min
l=1,··· ,L

(
x∗TBR

l, v∗
2+µ̂2l

(p2l)y
∗ − µ−1

G̃2l
(v∗2 + µ̂2l)

)
= 0.

This means that the following equalities hold.

v∗1 = min
k=1,...,K

Πx∗T Ãk(p1k)y∗(G̃1k) (32a)

v∗2 = min
l=1,...,L

Πx∗T B̃l(p2l)y∗(G̃2l) (32b)

On the other hand, from (31a) and (31c), the following
inequality holds.

min
k=1,··· ,K

(
x∗AR

k, v∗
1+µ̂1k

(p1k)y
∗ − µ−1

G̃1k
(v∗1 + µ̂1k)

)
≥ min

k=1,...,K

(
xTAR

k, v∗
1+µ̂1k

(p1k)y
∗ − µ−1

G̃1k
(v∗1 + µ̂1k)

)
,

∀x ∈ X (33a)

From (31b) and (31d), the following inequality holds.

min
l=1,··· ,L

(
x∗BR

l, v∗
2+µ̂2l

(p2l)y
∗ − µ−1

G̃2l
(v∗2 + µ̂2l)

)
≥ min

l=1,...,L

(
x∗TBR

l, v∗
2+µ̂2l

(p2l)y − µ−1

G̃2l
(v∗2 + µ̂2l)

)
,

∀y ∈ Y (34a)

The above inequalities (32a), (32b), (33a) and (34a) can be
equivalently expressed as follows.

v∗1 = min
k=1,...,K

Πx∗T Ãk(p1k)y∗(G̃1k)− µ̂1k

≥ min
k=1,...,K

ΠxT Ãk(p1k)y∗(G̃1k)− µ̂1k,∀x ∈ X

v∗2 = min
l=1,...,L

Πx∗T B̃l(p2l)y∗(G̃2l)− µ̂1k

≥ min
l=1,...,L

Πx∗T B̃l(p2l)y(G̃2l)− µ̂1k,∀y ∈ Y

From (15) and (16), it holds that

min
k=1,...,K

(E[Πx∗T ˜̄Aky∗(G̃1k)]− µ̂1k)

≥ min
k=1,...,K

(E[ΠxT ˜̄Aky∗(G̃1k)]− µ̂1k), ∀x ∈ X,

min
l=1,...,L

(E[Πx∗T ˜̄Bly∗(G̃2l)]− µ̂2l)

≥ min
l=1,...,L

(E[Πx∗T ˜̄Bly
(G̃2l)]− µ̂2l), ∀y ∈ Y.

This means that an optimal solution to P7(µ̂1, µ̂2; v
∗
1 , v

∗
2) is

an equilibrium solution to P5(µ̂1, µ̂2).
Unfortunately, we cannot obtain an equilibrium solution

to P5(µ̂1, µ̂2) by solving P7(µ̂1, µ̂2; v
∗
1 , v

∗
2), because the

parameters (v∗1 , v
∗
2) are unknown. However, since the first
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term xTAR
k, v∗

1+µ̂1k
(p1k)y in the left hand of the inequality

constraint (30d) is strictly monotone decreasing with respect
to v∗1 , and the second term µ−1

G̃1k
(v∗1+µ̂1k) in the left hand of

the inequality constraint (30d) is strictly monotone increasing
with respect to v∗1 , there exists some value of v∗1 such that
xTAR

k, v∗
1+µ̂1k

(p1k)y = µ−1

G̃1k
(v∗1+µ̂1k). In a similar way, we

can fined v∗2 such that xTBR
l, v∗

2+µ̂2l
(p2l)y = µ−1

G̃2l
(v∗2+ µ̂2l).

From such a point of view, we can develop the inter-
active algorithm to find the values of (v∗1 , v

∗
2) such that

σ∗
1 = 0,σ∗

2 = 0 by updating (v∗1 , v
∗
2) sequentially, in which

the conditions (26) and (27) are satisfied. Using the bisection
method with respect to (v∗1 , v

∗
2), we can find the values of

(v∗1 , v
∗
2) such that σ∗

1 = σ∗
2 = 0. Now, we can develop an

interactive algorithm to obtain an satisfactory solution of the
player from among an equilibrium solution set by updating
the reference membership values.
Interactive algorithm 1

Step 1 Each player elicits his/her membership functions
µG̃1k

(·), k = 1, · · · ,K ( or µG̃2l
(·), l = 1, · · · , L )

for his/her expected payoffs.
Step 2 Player 1 sets his/her initial reference membership

values as µ̂1k = 1, k = 1, . . . ,K, and estimates
Player 2’s reference membership values µ̂2l, l =
1, . . . , L.

Step 3 Set the initial values of the parameter (v∗1 , v
∗
2) as

follows.

v∗1 ← { max
k=1,...,K

(−µ̂1k) + min
k=1,...,K

(1− µ̂1k)}/2

v∗2 ← { max
l=1,...,L

(−µ̂2l) + min
l=1,...,L

(1− µ̂2l)}/2

Step 4 Solve P7(µ̂1, µ̂2; v
∗
1 , v

∗
2), and obtain the optimal

solution (x∗,y∗, p∗, q∗, σ∗
1 , σ

∗
2).

Step 5 If σ∗
1 > ε, then v∗1 ← v∗1 +∆v1, else if σ∗

1 < −ε,
then v∗1 ← v∗1 −∆v1. If σ∗

2 > ε, then v∗2 ← v∗2 +
∆v2, else if σ∗

2 < −ε, v∗2 ← v∗2−∆v2, where ∆v1,
∆v2 and ε are sufficiently small positive constants,
and return to Step 4. If | σ∗

1 |≤ ε and | σ∗
2 |≤ ε,

then go to Step 6.
Step 6 If Player 1 is not satisfied with the current values

of the membership functions:

µG̃1k
(x∗TAR

k, v∗
1+µ̂1k

(p1k)y
∗)

≈ E[Πx∗T ˜̄Aky∗(G̃1k)]), k = 1, . . . ,K,

then he/she updates the reference membership val-
ues µ̂1k, k = 1, . . . ,K and return to Step 3.
Otherwise, stop.

IV. A NUMERICAL EXAMPLE

To show the efficiency of the proposed algorithm, consider
the following numerical example, in which each player
has two kinds of fuzzy random payoff matrices ˜̄A1,

˜̄A2,
˜̄B1,

˜̄B2. Assume that under the occurrence of scenarios
sk ∈ {1, 2, 3}, k = 1, 2 and tl ∈ {1, 2, 3}, l = 1, 2,
realizations of fuzzy random payoff matrices are expressed
as the following fuzzy payoff matrices Ã1s1 , s1 = 1, 2, 3,
Ã2s2 , s2 = 1, 2, 3, B̃1t1 , t1 = 1, 2, 3, B̃2t2 , t2 = 1, 2, 3,

respectively.

Ã11 =

[
(100, 40, 40) (180, 50, 50)
(170, 42, 42) (70, 21, 21)

]
Ã12 =

[
(110, 40, 40) (228, 50, 50)
(176, 42, 42) (88, 21, 21)

]
Ã13 =

[
(150, 40, 40) (240, 50, 50)
(230, 42, 42) (130, 21, 21)

]
Ã21 =

[
(40, 20, 20) (70, 30, 30)
(40, 15, 15) (120, 40, 40)

]
Ã22 =

[
(60, 20, 20) (100, 30, 30)
(30, 15, 15) (100, 40, 40)

]
Ã23 =

[
(50, 20, 20) (100, 30, 30)
(26, 15, 15) (80, 40, 40)

]
B̃11 =

[
(100, 30, 30) (16, 10, 10)
(37, 20, 20) (75, 25, 25)

]
B̃12 =

[
(110, 30, 30) (21, 10, 10)
(47, 20, 20) (93, 25, 25)

]
B̃13 =

[
(150, 30, 30) (35, 10, 10)
(60, 20, 20) (120, 25, 25)

]
B̃21 =

[
(40, 20, 20) (85, 25, 25)
(25, 10, 10) (13, 5, 5)

]
B̃22 =

[
(65, 20, 20) (70, 25, 25)
(35, 10, 10) (15, 5, 5)

]
B̃23 =

[
(45, 20, 20) (76, 25, 25)
(30, 10, 10) (17, 5, 5)

]
In the above matrices, each element is a triangular-type fuzzy
number denoted as (akskij , αkij , βkij) and (bltlij , γlij , δlij),
respectively. The corresponding probabilities are set as
p1ksk = 1/3, k = 1, 2, sk = 1, 2, 3 and p2ltl = 1/3, l =
1, 2, tl = 1, 2, 3, respectively. Assume that hypothetical
players set their membership functions as follows.

µG̃11
(u) =

u− 0

230− 0
, µG̃12

(u) =
u− 0

110− 0

µG̃21
(v) =

v − 0

150− 0
, µG̃22

(v) =
v − 0

90− 0

At Step 2, Player 1 sets his/her initial reference membership
values as (µ11, µ12) = (1, 1), and estimates Player 2’s
reference membership values as (µ21, µ22) = (1, 1). At Step
5, the step sizes are set as ∆v1 = ∆v2 = 0.0005 and
ε = 0.05. By applying Interactive algorithm 1, the interactive
processes under the hypothetical player (Player 1) are shown
in Table 1. In Table 1, at the third iteration, the satisfactory
solution of Player 1 is obtained.

V. CONCLUSION

In this paper, we have formulated multiobjective fuzzy
random bimatrix games, and introduced an equilibrium
solution concept depending on the reference membership
values specified by a player, in which the expectation model
and possibility measure are applied to deal with fuzzy
random payoffs. Under the assumption that a player can
estimate the opponent player’s reference membership values,
an interactive algorithm is proposed to obtain a satisfactory
solution of the player from among an equilibrium solution
set by updating his/her reference membership values. In the
proposed method, it is assumed that a realization of each
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TABLE I
INTERACTIVE PROCESSES.

Iteration 1 2 3
µ̂11 1 0.8 0.75
µ̂12 1 0.55 0.55
x∗
1 0.3222 0.3222 0.3222

x∗
2 0.6779 0.6778 0.6778

y∗
1 0.6431 0.8305 0.7788

y∗
2 0.3569 0.1695 0.2212

µG̃11
(x∗TAR

1, v∗
1+µ̂11

(p11)y
∗) 0.7432 0.7514 0.7443

µG̃12
(x∗TAR

2, v∗
1+µ̂12

(p12)y
∗ 0.6178 0.5253 0.5495

µG̃21
(x∗TBR

1, v∗
2+µ̂21

(p21)y
∗) 0.5563 0.5556 0.5557

µG̃22
(x∗TBR

2, v∗
2+µ̂22

(p22)y
∗) 0.4729 0.4772 0.4760

element of fuzzy random payoffs is a triangular-type fuzzy
number, and fuzzy goals for the objective functions of two
player are expressed as linear membership functions. In the
near future, we would like to deal with more generalized
models of multiobjective fuzzy random bimatrix games, in
which nonlinear membership functions are involved.
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