
 

  

Abstract— This paper aims to propose a new design known 

as array cyclic (𝒌∗, 𝟒)-𝒄𝒚𝒄𝒍𝒆 design. The development of this 

design is by forming a combination between a cyclic (𝒌𝟏, 𝒌𝟐)-
𝒄𝒚𝒄𝒍𝒆 𝒔𝒚𝒔𝒕𝒆𝒎 and a near-two-factor that will be constructed. 

To do so, we need to introduce a new 𝐜𝐲𝐜𝐥𝐞 system, namely a 

(𝟑∗, 𝟒)-𝒄𝒚𝒄𝒍𝒆 system. Thereafter, we present an analysis for the 

case, 𝒗 ≡ 𝟖, 𝟒 (𝐦𝐨𝐝 𝟏𝟐). 

 
Index Terms— Near-two-factor, simple cyclic, difference set, 

cyclic (𝒌𝟏, … , 𝒌𝒓)-𝐜𝐲𝐜𝐥𝐞 system.  

 

I. INTRODUCTION 

hroughout this paper, all graphs will be finite and 

undirected. A 𝑘-𝑐𝑦𝑐𝑙𝑒, written 𝐶𝑘 = (𝑏0, 𝑏1, … , 𝑏𝑘−1), 
consists of 𝑘 distinct vertices 𝑏0, 𝑏1, … , 𝑏𝑘−1, and 𝑘 

edges {𝑏𝑖 , 𝑏𝑖+1}, 0 ≤ 𝑖 ≤ 𝑘 − 2 and {𝑏0, 𝑏𝑘−1}. Let 𝑘1, … , 𝑘𝑟 

be integers greater than two, a (𝑘1, … , 𝑘𝑟)-𝑐𝑦𝑐𝑙𝑒 is the union 

of edge-disjoint 𝑘𝑖-𝑐𝑦𝑐𝑙𝑒𝑠 for 1 ≤ 𝑖 ≤ 𝑟. A (𝑘1, … , 𝑘𝑟)-
𝑐𝑦𝑐𝑙𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 of a graph 𝐺 is a pair (V, C), where V is the 

vertex set of 𝐺 and C is a collection of (𝑘1, … , 𝑘𝑟)-𝑐𝑦𝑐𝑙𝑒𝑠 

whose edges partition the edges of 𝐺. If 𝐺 = 𝐾𝑣, the complete 

graph with 𝑣 vertices, then such a (𝑘1, … , 𝑘𝑟)-𝑐𝑦𝑐𝑙𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 

is called a (𝑘1, … , 𝑘𝑟)-𝑐𝑦𝑐𝑙𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 𝑜𝑓 𝑜𝑟𝑑𝑒𝑟 𝑣. In 

particular, if 𝑘1 = ⋯ = 𝑘𝑟 = 𝑘, this is known as a 𝑘-

𝑐𝑦𝑐𝑙𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 of a graph 𝐺, or (𝐺, 𝐶𝑘)-design. A 𝑘-

𝑐𝑦𝑐𝑙𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 is Hamiltonian if 𝑘 = |𝑉|. A trivial counting 

show that the number of cycles of a Hamiltonian cycle system 

of 𝐾𝑣 is (𝑣 − 1) 2⁄ . Hence, a necessary condition for its 

existence is that 𝑣 must be odd [1, 2, 3]. 

 

Given a 𝑘-cycle 𝐶𝑘 = (𝑏0, 𝑏1, … , 𝑏𝑘−1), by 𝐶𝑘 + 𝑗 we 

mean (𝑏0 + 𝑗, 𝑏1 + 𝑗,… , 𝑏𝑘−1 + 𝑗), where 𝑗 ∈ 𝑍𝑣. 

Analogously, if C = {𝐶𝑘1 , … , 𝐶𝑘1} is a (𝑘1, … , 𝑘𝑟)-𝑐𝑦𝑐𝑙𝑒, we 

use C +𝑗 instead of {𝐶𝑘1 + 𝑗,… , 𝐶𝑘1 + 𝑗}. A (𝑘1, … , 𝑘𝑟)-

cycle system of order 𝑣, (V, C), is said to be 𝑚-𝑐𝑦𝑐𝑙𝑖𝑐 if V 

= 𝑍𝑣 and for 𝑚 ∈ 𝑍𝑣, 𝐶 +𝑚 ∈ C whenever 𝐶 ∈ C and is said 

to be simple when its cycles are all distinct. In particular, if 

𝑚 = 1, then it is simply called cyclic. A cyclic (𝑘1, … , 𝑘𝑟)-
𝑐𝑦𝑐𝑙𝑒 𝑠𝑦𝑠𝑡𝑒𝑚, of course, is also an  

𝑚-𝑐𝑦𝑐𝑙𝑖𝑐 (𝑘1, … , 𝑘𝑟)-𝑐𝑦𝑐𝑙𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 for 𝑚 ∈ 𝑍𝑣. A set of 

cycles that generates the cyclic (𝑘1, … , 𝑘𝑟)-cycle system of 

𝐾𝑣 by repeated addition of 1 modular 𝑣 is called 

a 𝑠𝑡𝑎𝑟𝑡𝑒𝑟 𝑠𝑒𝑡. 
 

The existence problem of 𝑘 − 𝑐𝑦𝑐𝑙𝑒 systems of the 
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complete multigraph 𝜆𝐾𝑣, a graph where any two vertices are 

joined by 𝜆 distinct edges, has received much attention in 

recent years. For the important case of 𝜆 = 1, this existence 

problem has been completely solved by Alspach and Gavlas 

[4] for 𝑘 odd, by Sajna [5] for 𝑘 even; and by Alspach et al. 

[6] for the case 𝜆 = 2. The necessary and sufficient 

conditions for the existence of a 𝑘-𝑐𝑦𝑐𝑙𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 of 𝜆𝐾𝑣 have 

been established by Bryant et al. in [7] for all values of 𝜆. 

More general results, such as the existence problem for 

decomposing 𝜆𝐾𝑣 into cycles of varying lengths, have been 

presented in [8, 9]. Furthermore, the necessary and sufficient 

conditions for the existence of cyclic 𝑣-cycle system of 𝜆𝐾𝑣 

and for the existence of simple cyclic 𝑝-cycle system of 𝜆𝐾𝑝, 

where 𝑝 is a prime, have been provided by Buratti et al. [10]. 

 

A 𝑘-factor in a graph 𝐺 is a subgraph of 𝐺 each of whose 

vertices has degree 𝑘, while a near-𝑘 factor is a subgraph of 

𝐺 in which all but one vertex has degree 𝑘 with the remaining 

vertex having degree 0 (isolated vertex). Note that an almost 

2-regular graph is equivalent to a near-2-factor [11]. 

 

The partition of an edge set of a graph 𝐺 into 𝑘-factor 

(respectively, near- 𝑘-factor) called a 𝑘-factorisation 

(respectively, near- 𝑘-factorisation). The decomposition of 

𝜆𝐾𝑣 into 𝑛𝑒𝑎𝑟 −  𝜆 −  𝑓𝑎𝑐𝑡𝑜𝑟 for 𝜆 ∈ {2, 4} and 𝑣 ≡
2, 9, 10(𝑚𝑜𝑑 12) has been recently constructed in [12, 13, 

14].   

 

The main concern of the literature is limited to the 

existence problem of cyclic 𝑘-𝑐𝑦𝑐𝑙𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 of 𝜆𝐾𝑣  with 𝜆 >
1, which lacks a complete solution given by Colbourn and 

Colbourn [15] for the very special case of 𝑘 = 3. In this 

paper, we propose a new design that is called an array cyclic 
(3∗, 4)-𝑐𝑦𝑐𝑙𝑒 design denoted by 𝐴𝐶𝐶((3∗, 4), 2𝐾𝑣), which is 

obtained by merging an 𝑚-𝑐𝑦𝑐𝑙𝑖𝑐 (𝑘1, … , 𝑘𝑟)-𝑐𝑦𝑐𝑙𝑒 system 

of a graph 𝐺 = 2𝐾𝑣  for 𝑘𝑖 = 4, except for 𝑘1 = 3 and near-

two-factor. In addition, 𝐴𝐶𝐶((3∗, 4), 2) is an (𝑣 ×
𝑣

4
) array 

design that satisfies the following conditions:  

 

1. The cycles in row r form a near-two-factor with focus r. 

2. The cycle associated with the rows contains no 

repetitions.  

II. PRELIMINARY DEFINITIONS 

The main results of this paper will be obtained by using the  
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T 

The main results of this paper will be obtained by using the 

method of difference set that we are going to explain in this 

section.  

 

 Let 𝐺 be a group of order 𝑣, with the operation +. A 𝑘-

subset 𝐷 of 𝐺, is a (𝑣, 𝑘, λ) difference set of 𝐺 if each non-

identity element g ∈ 𝐺 can be written in precisely 𝜆 different 

ways in the form of 𝑥 − 𝑦 for  𝑥 , 𝑦 ∈ 𝐷, where 𝜆 is constant. 
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To construct cyclic designs or difference families, we will 

use the following notations: The vertices of 𝐾𝑣 will always be 

understood as elements of 𝑍𝑣. Let 𝑍𝑣
∗ = 𝑍𝑣 − {0} and 

arithmetic 𝑚𝑜𝑑𝑣 as follows: for 𝑥 ≠ 𝑦 ∈  𝑍𝑣
∗, the difference 

𝑑 of a pair {𝑥, 𝑦} is defined as 𝑑 = 𝑚𝑖𝑛{𝑦 − 𝑥, 𝑥 − 𝑦}. 
Arithmetic 𝑚𝑜𝑑𝑣 so 1 ≤ 𝑑 ≤ ⌊𝑣 2⁄ ⌋. the orbit of the pairs 

corresponding to the difference 𝑑 is {{𝑥, 𝑥 + 𝑑}: 𝑥 ∈ 𝑍𝑣}. 

 

Note that the orbit of any edge {𝑥, 𝑦} has full length 𝑣 apart 

from the case that 𝑣 is even and 𝑥 − 𝑦 = 𝑣 2⁄ , the case in 

which Orbit {𝑥, 𝑦} has length (𝑣 2⁄ ). For this reason, we say 

that an edge of 𝐾𝑣 is full or short according to whether its 

orbit has length 𝑣 or 𝑣 2⁄ , respectively. Of course, if 

Orbit {𝑥, 𝑦} has length (𝑣 2⁄ ) and full, then any edge in a 

multi-set {{𝑥, 𝑥 + 𝑣 2⁄ }: 𝑥 ∈ 𝑍𝑣} appears twice.  

 

Now, if 𝐺 = 2𝐾𝑣 , then each difference 𝑑 appears twice 

except for the middle difference 𝑣 2⁄  which appears once. 

 

III. ARRAY CYCLIC (𝟑∗, 𝟒)-CYCLE DESIGN 

In this section, we provide some definitions and results 

of 𝐴𝐶𝐶((3∗, 4), 2𝐾𝑣), which will be needed in the sequel. 

 

Definition 1 A (3∗, 4)-cycle system of a graph 2𝐾𝑣  is an 

𝑚-𝑐𝑦𝑐𝑙𝑖𝑐 (𝑘1, … , 𝑘𝑟)-𝑐𝑦𝑐𝑙𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 of a graph 𝐺 = 2𝐾𝑣  

for 𝑘𝑖 = 4 𝑖𝑓 𝑖 = 2,… ,
𝑣

4
 and 𝑘1 = 3.  

 

Definition 2 Let 𝐵𝑖 = {(𝑏𝑖1, 𝑏𝑖2, 𝑏𝑖3, 𝑏𝑖4)ǀ 𝑖 = 2,… ,
𝑣

4
} and 

𝐵∗ = {(𝑏1
∗, 𝑏2

∗, 𝑏3
∗)} be cycles with vertices in 𝑍𝑣, the list of 

differences from Bi and B
∗ is the multi-set. 

 

Definition 3 Let Ƒ = {𝐵1
∗, 𝐵2, … , 𝐵𝑣 4⁄ } be a set of cycles of 

𝜆𝐾𝑣  for 𝜆 and 𝑣 are even, Ƒ is called a (𝜆𝐾𝑣 , Ƒ)-difference 

set (𝐷(𝑍𝑣)), if the multi-set 𝐷(Ƒ) = (⋃ 𝐷(𝐵𝑖) 
𝑣 4⁄
𝑖=2 ∪ 𝐷(𝐵1

∗)) 

covers each non-zero element of  𝑍𝑣+2
2

 exactly 𝜆 times except 

for the middle difference 𝑣 2⁄  which appears 
𝜆

2
 times. 

 

The following lemma is a consequence of the theory 

developed in [16]. Accordingly, it will be crucial to prove our 

main results. 

 

Lemma 1 Let Ƒ be a multi-set of cycles of 𝜆𝐾𝑣  for 𝜆 and 𝑣 

are even. Then, Ƒ is a starter of cyclic (𝑘1, … , 𝑘𝑟)-
𝑐𝑦𝑐𝑙𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 of 𝜆𝐾𝑣 , if and only if Ƒ is a (𝜆𝐾𝑣 , Ƒ)-
difference set. 

 

Definition 4 The array cyclic (3∗, 4)-𝑐𝑦𝑐𝑙𝑒 design of a 

graph 𝐺 = 2𝐾𝑣 , denoted by 𝐴𝐶𝐶((3∗, 4), 2𝐾𝑣), is an (𝑣 ×
𝑣

4
) 

array design that satisfies the following conditions:  

1) The cycles in row r form a near-two-factor with focus r. 

2) The set of cycles in the first row that generates all the 

cycles in (𝑣 ×
𝑣

4
) array by repeated addition of 1 

modular(𝑣). 
3) The cycle associated with the rows contains no 

repetitions. 

Now, we will present the following example to illustrate 

the construction of 𝐴𝐶𝐶((3∗, 4), 2𝐾𝑣), when 𝑣 = 4. 

 

Example 1 Let 𝐺 = 2𝐾4, 𝐵∗ = {(2, 3, 4)} and Bi = ∅, the 

list of differences from 𝐵𝑖  and 𝐵
∗ is the multi-set ∆𝐵𝑖 =

∅ , ∆𝐵∗ = {±(𝑏𝑖
∗ −  𝑏𝑖−1

∗ ) ǀ 𝑖 = 1, … , 4} and D(B∗) =
{min{|bi

∗ −  bi−1
∗ |, v − |bi

∗ −  bi−1
∗ |} ǀ i = 1, … , 4} 

where 𝑏1
∗ = 𝑏4

∗ = 2. 

 

 Ƒ = 𝐵∗ = {(2, 3, 4)}, ∆Ƒ = ∆𝐵∗ = {1, 3, 1, 3, 2, 2} and 

𝐷(𝐵∗) = D(Ƒ) = {𝑑1
∗, 𝑑2

∗, 𝑑3
∗} = {1, 1, 2}  see Table I. 

 

TABLE I 

∆𝐵∗OF 2𝐾4 

 

- 3 2 

3 0 1 

2 3 0 

𝑑1
∗ = 1 = 

𝑚𝑖𝑛{1, 3} 

- 4 3 

4 0 1 

3 3 0 

𝑑2
∗ = 1 = 

𝑚𝑖𝑛{1, 3} 

- 2 4 

2 0 2 

4 2 0 

𝑑3
∗ = 2 = 

𝑚𝑖𝑛{2, 2} 

Difference set (1, 1, 2) 
Starter cycles (2, 3, 4) 

 

It can be seen from Table I that each non-zero integer 1, 2, 

3 in 𝑍4 occurs exactly twice in the off-diagonal position. In 

addition, D(Ƒ) covers each non-zero element of 𝑍2 exactly 

twice except for the middle difference (4 2⁄ ) = 2 which 

appears once. 

 

Now consider the graph 𝐺 = 2𝐾4 of 4 vertices and one is 

focus. The starter on Table I which is a near-two-factor, has 

a 𝐶3 cycle and any difference in 𝐷(Ƒ) appears twice in the 

cycle edges, except for the middle difference (2) which 

appears once. It follows then, that a 𝐴𝐶𝐶((3∗, 4), 2𝐾4) is a 

(4 × 1) array design and the starter cycles (2, 3, 4) in the first 

row generate all the cycles in the (4 × 1) array by repeated 

addition of 1 modular(4) (see Table II). 

 

TABLE II 

𝐴𝐶𝐶((3∗, 4), 2𝐾4) 

Focus 𝐴𝐶𝐶((3∗, 4), 2𝐾4) 
𝑖 = 1 (2, 3, 4) 
𝑖 = 2 (3, 4, 1) 
𝑖 = 3 (4, 1, 2) 
𝑖 = 4 (1, 2, 3) 

 

In Table II, we can see that every edge in 𝐾4 appears two 

times and is able to generate all cycles by addition of modular 

4. In the next part, we will be able to find the solution for a 

general case of 𝑣 = 12𝑛 + 4. 

 

Lemma 2 There exists a 𝐴𝐶𝐶((3∗, 4), 2 𝐾12𝑛+4).  
Proof: Let the starter cycles be   𝐴𝐶𝐶((3∗, 4), 2 𝐾12𝑛+4), 

as shown in Fig. 1: 
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Fig. 1.  Starter 𝐴𝐶𝐶((3∗, 4), 2𝐾12𝑛+4) 

 

Let us breakdown the proof into five parts as follows:   

Part 1: We will calculate the vertices.  

𝑣𝑗 = {
⋃ 𝑣(𝑗,𝑖)
⌊
3𝑛−1

2
⌋

𝑖=1
     if  𝑗 = {1, 2, 3, 4}  

⋃ 𝑣(𝑗,𝑖)
⌊
3𝑛

2
⌋

𝑖=1
        if  𝑗 = {5, 6, 7, 8}  

  

and  {𝑣𝑗
∗ ∶ 𝑗 = 1,… ,7}   then 

 

• 𝑣1 = {
{12𝑛 + 3, 12𝑛 + 1,… ,9𝑛 + 7}    𝑖𝑓 𝑛 𝑒𝑣𝑒𝑛
{12𝑛 + 3, 12𝑛 + 1,… ,9𝑛 + 6}    𝑖𝑓 𝑛 𝑜𝑑𝑑 

 

• 𝑣2 = {
{3, 5,… ,3𝑛 − 1}    𝑖𝑓 𝑛 𝑒𝑣𝑒𝑛
{3, 5, … ,3𝑛}           𝑖𝑓 𝑛 𝑜𝑑𝑑 

 

• 𝑣3 =

{
 

 
{6, 10,… ,3𝑛 − 2,… ,6𝑛 − 2}  𝑖𝑓 𝑛 ≡ 0(𝑚𝑜𝑑 4)

{6, 10,… ,3𝑛 − 1,… ,6𝑛}          𝑖𝑓 𝑛 ≡ 1(𝑚𝑜𝑑 4) 
{6, 10,… ,3𝑛, … ,6𝑛 − 2}          𝑖𝑓 𝑛 ≡ 2(𝑚𝑜𝑑 4)

{6, 10,… ,3𝑛 + 1,… ,6𝑛}          𝑖𝑓 𝑛 ≡ 3(𝑚𝑜𝑑 4) 

 

• 𝑣4 =

{
 

 
{12𝑛, 12𝑛 − 4,… ,9𝑛 + 4,… ,6𝑛 + 8} 𝑖𝑓 𝑛 ≡ 0(𝑚𝑜𝑑 4)

{12𝑛, 12𝑛 − 4,… ,9𝑛 + 3,… ,6𝑛 + 6} 𝑖𝑓 𝑛 ≡ 1(𝑚𝑜𝑑 4) 
{12𝑛, 12𝑛 − 4,… ,9𝑛 + 2,… ,6𝑛 + 8} 𝑖𝑓 𝑛 ≡ 2(𝑚𝑜𝑑 4)

{12𝑛, 12𝑛 − 4,… ,9𝑛 + 1,… ,6𝑛 + 6} 𝑖𝑓 𝑛 ≡ 3(𝑚𝑜𝑑 4) 

 

• 𝑣5 =

{
 

 
{12𝑛 + 2, 12𝑛 − 2,… ,9𝑛 + 6,… ,6𝑛 + 6} 𝑖𝑓 𝑛 ≡ 0(𝑚𝑜𝑑 4)

{12𝑛 + 2, 12𝑛 − 2,… ,9𝑛 + 5,… ,6𝑛 + 8}  𝑖𝑓 𝑛 ≡ 1(𝑚𝑜𝑑 4) 
{12𝑛 + 2, 12𝑛 − 2,… ,9𝑛 + 4,… ,6𝑛 + 6}  𝑖𝑓 𝑛 ≡ 2(𝑚𝑜𝑑 4)

{12𝑛 + 2, 12𝑛 − 2,… ,9𝑛 + 3,… ,6𝑛 + 8}  𝑖𝑓 𝑛 ≡ 3(𝑚𝑜𝑑 4) 

 

•  

• 𝑣6 =

{
 

 
{4, 8,… ,3𝑛,… ,6𝑛}                     𝑖𝑓 𝑛 ≡ 0(𝑚𝑜𝑑 4)

{4, 8,… ,3𝑛 + 3,… ,6𝑛 − 2}     𝑖𝑓 𝑛 ≡ 1(𝑚𝑜𝑑 4) 
{4, 8,… ,3𝑛 − 2,… ,6𝑛}             𝑖𝑓 𝑛 ≡ 2(𝑚𝑜𝑑 4)

{4, 8,… ,3𝑛 − 1,… ,6𝑛 − 2}     𝑖𝑓 𝑛 ≡ 3(𝑚𝑜𝑑 4) 

 

• 𝑣7 = {
{6𝑛 + 5, 6𝑛 + 7,… ,9𝑛 + 3}      𝑖𝑓 𝑛 𝑒𝑣𝑒𝑛
{6𝑛 + 5, 6𝑛 + 7,… , 9𝑛 + 2}       𝑖𝑓 𝑛 𝑜𝑑𝑑 

 

• 𝑣8 = {
{6𝑛 + 1, 6𝑛 − 1,… ,3𝑛 + 3}    𝑖𝑓 𝑛 𝑒𝑣𝑒𝑛
{6𝑛 + 1, 6𝑛 − 1,… , 3𝑛 + 4}    𝑖𝑓 𝑛 𝑜𝑑𝑑 

 

• 𝑣1
∗ = (6𝑛 + 3),  𝑣2

∗ = (6𝑛 + 4),  𝑣3
∗ = (6𝑛 + 2), 𝑣4

∗ = (12𝑛 +
4),  𝑣5

∗ = (2), 

• 𝑣6
∗ = (2 × ⌊

9𝑛+4

2
⌋ + 1) = {

9𝑛 + 5      𝑖𝑓 𝑛 𝑒𝑣𝑒𝑛
9𝑛 + 4        𝑖𝑓 𝑛 𝑜𝑑𝑑

 

• 𝑣7
∗ = (2 × ⌊

3𝑛+1

2
⌋ + 1) = {

3𝑛 + 1      𝑖𝑓 𝑛 𝑒𝑣𝑒𝑛
3𝑛 + 2       𝑖𝑓 𝑛 𝑜𝑑𝑑

. 

 

Part 2: We need to prove that the ((⋃ (𝑣𝑗)
8
𝑗=1 ) ∪

(⋃ (𝑣𝑗
∗)7

𝑗=1 )) covers all vertices in 𝐾12𝑛+4, except for the 

focus one. 
𝑣5
∗ ∪ (𝑣6 ∪ 𝑣3) ∪ (𝑣3

∗ ∪ 𝑣2
∗) ∪ (𝑣5 ∪ 𝑣4) ∪ 𝑣4

∗ = 

{

{2, 4,… , 3𝑛,… ,6𝑛 + 2,… , 9𝑛 + 4,… ,12𝑛 + 4} 𝑖𝑓 
𝑛 𝑒𝑣𝑒𝑛

{2, 4,… , 3𝑛 + 1,… , 6𝑛 + 2,… , 9𝑛 + 3,… ,12𝑛 + 4} 𝑖𝑓 
𝑛 𝑜𝑑𝑑 

          (1) 

 

(𝑣2 ∪ 𝑣7
∗ ∪ 𝑣8 ∪ 𝑣1

∗ ∪ 𝑣7 ∪ 𝑣6
∗ ∪ 𝑣1) = 

{

{3, 5, … , 3𝑛 + 1,… , 6𝑛 + 3,… , 9𝑛 + 5,… ,12𝑛 + 3} 𝑖𝑓 
𝑛 𝑒𝑣𝑒𝑛

{3, 5,… , 3𝑛 + 2,… , 6𝑛 + 3,… , 9𝑛 + 4,… ,12𝑛 + 3}  𝑖𝑓 
𝑛 𝑜𝑑𝑑 

          (2) 

We will use (1) and (2) 

 ((⋃ (𝑣𝑗)
8
𝑗=1 ) ∪ (⋃ (𝑣𝑗

∗)7
𝑗=1 )) = {2, 3, … , 12𝑛 + 3, 12𝑛 +

4 }. 
 

Part 3: We will check for the difference 𝐷 = {𝑑(𝑗,𝑖) ∶ 𝑗 =

1,… ,8} ∪ { 𝑑𝑗
∗ ∶ 𝑗 = 1,… ,7} 

• 𝑑(1,𝑖) = 𝑚𝑖𝑛{|𝑣(1,𝑖) − 𝑣(2,𝑖)|, 12𝑛 + 4 − |𝑣(1,𝑖) − 𝑣(2,𝑖)|} 

since (1) ≤ 𝑖 ≤ ⌊
3𝑛−1

2
⌋ then 𝑑(1,𝑖) = (12𝑛 + 4) −

(12𝑛 − 4𝑖 + 4) = 4𝑖. 

• 𝑑(2,𝑖) = 𝑚𝑖𝑛{|𝑣(3,𝑖) − 𝑣(2,𝑖)|, 12𝑛 + 4 − |𝑣(3,𝑖) − 𝑣(2,𝑖)|} 

since (1) ≤ 𝑖 ≤ ⌊
3𝑛−1

2
⌋ then 𝑑(2,𝑖) = (2𝑖 + 1).  

• 𝑑(3,𝑖) = 𝑚𝑖𝑛{|𝑣(4,𝑖) − 𝑣(3,𝑖)|, 12𝑛 + 4 − |𝑣(4,𝑖) − 𝑣(3,𝑖)|} 

Since (1) ≤ 𝑖 ≤ ⌊
3𝑛−1

2
⌋ then  

𝑑(3,𝑖) = {
8𝑖 + 2                   𝑖𝑓  𝑖 ≤

3𝑛

4

12𝑛 − 8𝑖 + 2       𝑖𝑓  𝑖 >
3𝑛

4

  = min {8𝑖 +

2, 12𝑛 − 8𝑖 + 2}. 

• 𝑑(4,𝑖) = 𝑚𝑖𝑛{|𝑣(1,𝑖) − 𝑣(4,𝑖)|, 12𝑛 + 4 − |𝑣(1,𝑖) − 𝑣(4,𝑖)|} 

since (1) ≤ 𝑖 ≤ ⌊
3𝑛−1

2
⌋ then  𝑑(4,𝑖) = (2𝑖 + 1).  

• 𝑑(5,𝑖) = 𝑚𝑖𝑛{|𝑣(5,𝑖) − 𝑣(6,𝑖)|, 12𝑛 + 4 − |𝑣(5,𝑖) − 𝑣(6,𝑖)|} 

since (1) ≤ 𝑖 ≤ ⌊
3𝑛

2
⌋ then  

4𝑖 

min
{8𝑖+2,12𝑛−8𝑖+2}

  

2𝑖 + 1 2𝑖 + 1 

𝑣(1,𝑖) = 

12𝑛 − 2𝑖 + 5 

 

𝑣(1,𝑖) = 

2𝑖 + 1 

 

𝑣(3,𝑖) = 

4𝑖 + 2 

 

𝑣(4,𝑖) = 

12𝑛 − 4𝑖 + 4 

 

ራ  

⌊
3𝑛−1
2

⌋

𝑖=1

        

4𝑖 

min
{8𝑖+2,12𝑛−8𝑖+2}

  

6𝑛 − 2𝑖 + 3 6𝑛 − 2𝑖 + 3 

𝑣(5,𝑖) = 

12𝑛 − 4𝑖 + 6 

 

𝑣(6,𝑖) = 

4𝑖 

𝑣(7,𝑖) = 

6𝑛 + 2𝑖 + 3 

 

𝑣(8,𝑖) = 

6𝑛 − 2𝑖 + 3 

 

ራ 

⌊
3𝑛
2
⌋

𝑖=1

       

4 ඌ
3𝑛 + 1

2
ඐ 

2 

2 ඌ
3𝑛 + 1

2
ඐ + 1 

 

2 ඌ
3𝑛 + 1

2
ඐ + 1 

𝑣(4)
∗ = 12𝑛 + 4 

 

𝑣(5)
∗ = 2 

𝑣(6)
∗ = 

2 ඌ
9𝑛 + 4

2
ඐ + 1 

𝑣(7)
∗ = 

2 ඌ
3𝑛 + 1

2
ඐ + 1 

 

ራ 

 

 

        1 

𝑣(1)
∗ = 

6𝑛 + 3 

1 

 

2 𝑣(2)
∗ = 

6𝑛 + 4 

𝑣(3)
∗ = 

6𝑛 + 2 
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𝑑(5,𝑖) = {
8𝑖 − 2                   𝑖𝑓  𝑖 ≤

3𝑛+2

4

12𝑛 − 8𝑖 + 6       𝑖𝑓  𝑖 >
3𝑛+2

4

 = min 

{8𝑖 − 2, 12𝑛 − 8𝑖 + 6}. 

• 𝑑(6,𝑖) = 𝑚𝑖𝑛{|𝑣(7,𝑖) − 𝑣(6,𝑖)|, 12𝑛 + 4 − |𝑣(7,𝑖) − 𝑣(6,𝑖)|} 

since (1) ≤ 𝑖 ≤ ⌊
3𝑛

2
⌋ then  𝑑(6,𝑖) = (6𝑛 − 2𝑖 + 3).  

• 𝑑(7,𝑖) = 𝑚𝑖𝑛{|𝑣(7,𝑖) − 𝑣(8,𝑖)|, 12𝑛 + 4 − |𝑣(7,𝑖) − 𝑣(8,𝑖)|} 

since (1) ≤ 𝑖 ≤ ⌊
3𝑛

2
⌋ then  𝑑(7,𝑖) = (4𝑖).  

• 𝑑(8,𝑖) = 𝑚𝑖𝑛{|𝑣(5,𝑖) − 𝑣(8,𝑖)|, 12𝑛 + 4 − |𝑣(5,𝑖) − 𝑣(8,𝑖)|} 

since (1) ≤ 𝑖 ≤ ⌊
3𝑛

2
⌋ then  𝑑(8,𝑖) = (6𝑛 − 2𝑖 + 3).  

• 𝑑1
∗ = 𝑚𝑖𝑛{|𝑣1

∗ − 𝑣3
∗|, 12𝑛 + 4 − |𝑣1

∗ − 𝑣3
∗|} = 1. 

• 𝑑2
∗ = 𝑚𝑖𝑛{|𝑣2

∗ − 𝑣1
∗|, 12𝑛 + 4 − |𝑣2

∗ − 𝑣1
∗|} = 1. 

• 𝑑3
∗ = 𝑚𝑖𝑛{|𝑣2

∗ − 𝑣3
∗|, 12𝑛 + 4 − |𝑣2

∗ − 𝑣3
∗|} = 2. 

• 𝑑4
∗ = 𝑚𝑖𝑛{|𝑣4

∗ − 𝑣5
∗|, 12𝑛 + 4 − |𝑣4

∗ − 𝑣5
∗|} = 2. 

• 𝑑5
∗ = 𝑚𝑖𝑛{|𝑣6

∗ − 𝑣5
∗|, 12𝑛 + 4 − |𝑣6

∗ − 𝑣5
∗|} =

{
3𝑛 + 1        𝑖𝑓 𝑛 ≡ 0, 2(𝑚𝑜𝑑 4)

3𝑛 + 2        𝑖𝑓 𝑛 ≡ 1, 3(𝑚𝑜𝑑 4)
=   2 × ⌊

(3𝑛+1)

2
⌋ + 1. 

• 𝑑6
∗ = 𝑚𝑖𝑛{|𝑣6

∗ − 𝑣7
∗|, 12𝑛 + 4 − |𝑣6

∗ − 𝑣7
∗|} =

{
(6𝑛)               𝑖𝑓 𝑛 ≡ 0, 2(𝑚𝑜𝑑 4)

(6𝑛 + 2)       𝑖𝑓 𝑛 ≡ 1, 3(𝑚𝑜𝑑 4)
= (4 × ⌊

(3𝑛+1)

2
⌋). 

• 𝑑7
∗ = 𝑚𝑖𝑛{|𝑣4

∗ − 𝑣7
∗|, 12𝑛 + 4 − |𝑣4

∗ − 𝑣7
∗|} =

{
(3𝑛 + 1)        𝑖𝑓 𝑛 ≡ 0, 2(𝑚𝑜𝑑 4)

(3𝑛 + 2)        𝑖𝑓 𝑛 ≡ 1, 3(𝑚𝑜𝑑 4)
= 2 × ⌊

(3𝑛+1)

2
⌋ + 1. 

 
Part 4: We will calculate the difference 𝐷 = {𝑑(𝑗,𝑖) ∶ 𝑗 =

1,… ,8} ∪ { 𝑑𝑗
∗ ∶ 𝑗 = 1,… ,7} 

Suppose 𝑑𝑗 = {
⋃ 𝑑(𝑗,𝑖)
⌊
3𝑛−1

2
⌋

𝑖=1
     if  𝑗 = {1, 2, 3, 4}  

⋃ 𝑑(𝑗,𝑖)
⌊
3𝑛

2
⌋

𝑖=1
        if  𝑗 = {5, 6, 7, 8}  

  then 

• 𝑑1 = {
{4, 8, … ,6𝑛 − 4}  𝑖𝑓 𝑛 ≡ 0, 2(𝑚𝑜𝑑 4)

{4, 8, … ,6𝑛 − 2}  𝑖𝑓 𝑛 ≡ 1, 3(𝑚𝑜𝑑 4)
 

• 𝑑2 = {
{3, 5, … ,3𝑛 − 1}        𝑖𝑓 𝑛 ≡ 0, 2(𝑚𝑜𝑑 4)

{3, 5, … ,3𝑛}                𝑖𝑓 𝑛 ≡ 1, 3(𝑚𝑜𝑑 4)
. 

• 𝑑3 =

{
 

 
{10, 18,… ,6𝑛 + 2} ∪ {6𝑛 − 6,… ,18, 10 }  𝑖𝑓 𝑛 ≡ 0(𝑚𝑜𝑑 4)

{10, 18,… ,6𝑛 − 4} ∪ {6𝑛,… ,14, 6 }           𝑖𝑓  𝑛 ≡ 1(𝑚𝑜𝑑 4)

{10, 18,… ,6𝑛 − 2} ∪ {6𝑛 − 2,… ,18, 10 } 𝑖𝑓  𝑛 ≡ 2(𝑚𝑜𝑑 4)

{10, 18,… ,6𝑛} ∪ {6𝑛 − 4,… ,14, 6 }           𝑖𝑓  𝑛 ≡ 3(𝑚𝑜𝑑 4)

 

• 𝑑4 = {
{3, 5, … ,3𝑛 − 1}        𝑖𝑓 𝑛 ≡ 0, 2(𝑚𝑜𝑑 4)

{3, 5, … ,3𝑛}                𝑖𝑓 𝑛 ≡ 1, 3(𝑚𝑜𝑑 4)
. 

• 𝑑5 =

{
 

 
{6, 14,… ,6𝑛 − 2} ∪ {6𝑛 − 2,… ,14, 6 }   𝑖𝑓 𝑛 ≡ 0(𝑚𝑜𝑑 4)

{6, 14,… ,6𝑛} ∪ {6𝑛 − 4,… ,18, 10 }         𝑖𝑓  𝑛 ≡ 1(𝑚𝑜𝑑 4)

{6, 14,… ,6𝑛 + 2} ∪ {6𝑛 − 6,… ,14, 6 }    𝑖𝑓  𝑛 ≡ 2(𝑚𝑜𝑑 4)

{6, 14,… ,6𝑛 − 4} ∪ {6𝑛,… ,18, 10 }         𝑖𝑓  𝑛 ≡ 3(𝑚𝑜𝑑 4)

 

• 𝑑6 =

{
{6𝑛 + 1, 6𝑛 − 1,… ,3𝑛 + 3}      𝑖𝑓 𝑛 ≡ 0, 2(𝑚𝑜𝑑 4)

{6𝑛 + 1, 6𝑛 − 1,… ,3𝑛 + 5}       𝑖𝑓 𝑛 ≡ 1, 3(𝑚𝑜𝑑 4)
. 

• 𝑑7 = {
{4, 8, 12, … ,6𝑛}                𝑖𝑓 𝑛 ≡ 0, 2(𝑚𝑜𝑑 4)

{4, 8, 12, … ,6𝑛 − 2}        𝑖𝑓 𝑛 ≡ 1, 3(𝑚𝑜𝑑 4)
. 

• 𝑑8 =

{
{6𝑛 + 1, 6𝑛 − 1,… ,3𝑛 + 3}        𝑖𝑓 𝑛 ≡ 0, 2(𝑚𝑜𝑑 4)

{6𝑛 + 1, 6𝑛 − 1,… ,3𝑛 + 5}        𝑖𝑓 𝑛 ≡ 1, 3(𝑚𝑜𝑑 4)
. 

 

Part 5: We need to prove that each difference in 𝑍∗6𝑛+3 =
{1, 2, … ,6𝑛 + 1, 6𝑛 + 2} appears two times in 𝐷 =

((⋃ (𝑑𝑗)
8
𝑗=1 ) ∪ (⋃ (𝑑𝑗

∗)7
𝑗=1 )), except for the middle 

difference (6𝑛 + 2) which appears once. 

(𝑑3
∗ ∪ 𝑑7 ∪ (𝑑5 ∪ 𝑑3) ∪ 𝑑1 ∪ 𝑑6

∗ ∪ 𝑑4
∗) = 

{
 

 
{2, 4, 6, … ,6𝑛, 6𝑛 + 2} ∪ {6𝑛, 6𝑛 − 2,… , 6, 4, 2}    𝑖𝑓

 𝑛 ≡ 0, 2(𝑚𝑜𝑑 4)

{2, 4, 6, … ,6𝑛 − 2,6𝑛} ∪ {6𝑛 + 2, 6𝑛, … ,6, 4, 2}     𝑖𝑓

  𝑛 ≡ 1, 3(𝑚𝑜𝑑 4)

     (3) 

(𝑑1
∗ ∪ 𝑑4 ∪ 𝑑7

∗ ∪ 𝑑8) = (𝑑2
∗ ∪ 𝑑2 ∪ 𝑑5

∗ ∪ 𝑑6) = 

{
{1, 3, 5, … ,3𝑛 + 1,… ,6𝑛 + 1}        𝑖𝑓 𝑛 ≡ 0, 2(𝑚𝑜𝑑 4)

{1, 3, 5, … ,3𝑛 + 2,… ,6𝑛 + 1}        𝑖𝑓 𝑛 ≡ 1, 3(𝑚𝑜𝑑 4)
    (4) 

We will use (3) and (4). 
(𝑑1

∗ ∪ 𝑑4 ∪ 𝑑7
∗ ∪ 𝑑8) ∪ (𝑑3

∗ ∪ 𝑑7 ∪ 𝑑5 ∪ 𝑑3 ∪ 𝑑1 ∪ 𝑑6
∗ ∪ 𝑑4

∗)
∪ (𝑑2

∗ ∪ 𝑑2 ∪ 𝑑5
∗ ∪ 𝑑6) = 

{
 

 
{1, 2, … ,6𝑛 + 1,6𝑛 + 2} ∪ {6𝑛, 6𝑛 + 1,… , 2, 1}        𝑖𝑓 

𝑛 ≡ 0, 2(𝑚𝑜𝑑 4)

{2, 4, 6, … ,6𝑛, 6𝑛 + 1} ∪ {6𝑛 + 2,6𝑛 + 1,… , 2, 1}     𝑖𝑓 

𝑛 ≡ 1, 3(𝑚𝑜𝑑 4)

 

It can then be seen that every difference in 𝑍∗6𝑛+3 appears 

twice in 𝐷 = ((⋃ (𝑑𝑗)
8
𝑗=1 ) ∪ (⋃ (𝑑𝑗

∗)7
𝑗=1 )), except for the 

middle difference (6𝑛 + 2) which appears once.  

 

Lemma 3 There exists a 𝐴𝐶𝐶((3∗, 4), 2 𝐾12𝑛−4).  
Proof: Let the starter cycles be 𝐴𝐶𝐶((3∗, 4), 2 𝐾12𝑛−4), as 

shown in Fig. 2: 

If we breakdown the proof into five parts as follows:  

Part 1: We will calculate the vertices {𝑣(𝑗,𝑖) ∶ 𝑗 = 1,… ,8} 

and {𝑣𝑗
∗ ∶ 𝑗 = 1, 2, 3}: 

Suppose 𝑣𝑗 = {
⋃ 𝑣(𝑗,𝑖)
⌊
3𝑛−1

2
⌋

𝑖=1
     if  𝑗 = {1, 2, 3, 4}  

⋃ 𝑣(𝑗,𝑖)
⌊
3𝑛−2

2
⌋

𝑖=1
        if  𝑗 = {5, 6, 7, 8}  

  then 

• 𝑣1 = ⋃ 𝑣(1,𝑖)
⌊
3𝑛−1

2
⌋

𝑖=1
=

{
{12𝑛 − 4,12𝑛 − 6,… ,9𝑛 + 2, 9𝑛}              𝑖𝑓 𝑛 𝑒𝑣𝑒𝑛

{12𝑛 − 4,12𝑛 − 6,… ,9𝑛 + 1, 9𝑛 − 1}      𝑖𝑓 𝑛 𝑜𝑑𝑑 
 

• 𝑣2 = ⋃ 𝑣(2,𝑖)
⌊
3𝑛−1

2
⌋

𝑖=1
=

{
{2,4,6, … ,3𝑛 − 4, 3𝑛 − 2}                             𝑖𝑓 𝑛 𝑒𝑣𝑒𝑛

{2,4,6, … ,3𝑛 − 3, 3𝑛 − 1}                             𝑖𝑓 𝑛 𝑜𝑑𝑑 
 

• 𝑣3 = ⋃ 𝑣(3,𝑖)
⌊
3𝑛−1

2
⌋

𝑖=1
=

{
{12𝑛 − 5,12𝑛 − 7,… ,9𝑛 + 1, 9𝑛 − 1}      𝑖𝑓 𝑛 𝑒𝑣𝑒𝑛

{12𝑛 − 5,12𝑛 − 7,… ,9𝑛, 9𝑛 − 2}              𝑖𝑓 𝑛 𝑜𝑑𝑑 
 

• 𝑣4 = ⋃ 𝑣(4,𝑖)
⌊
3𝑛−1

2
⌋

𝑖=1
=

{
{3,5,7, … ,3𝑛 − 3, 3𝑛 − 1}                              𝑖𝑓 𝑛 𝑒𝑣𝑒𝑛

{3,5,7, … ,3𝑛 − 2, 3𝑛}                                    𝑖𝑓 𝑛 𝑜𝑑𝑑 
 

• 𝑣5 = ⋃ 𝑣(5,𝑖)
⌊
3𝑛−2

2
⌋

𝑖=1
=

{
{6𝑛 + 2, 6𝑛 + 4,… ,9𝑛 − 4, 9𝑛 − 2}            𝑖𝑓 𝑛 𝑒𝑣𝑒𝑛

{6𝑛 + 2, 6𝑛 + 4,… ,9𝑛 − 5, 9𝑛 − 3}            𝑖𝑓 𝑛 𝑜𝑑𝑑 
 

• 𝑣6 = ⋃ 𝑣(6,𝑖)
⌊
3𝑛−2

2
⌋

𝑖=1
=

{
{6𝑛 − 4, 6𝑛 − 6,… ,3𝑛 + 2, 3𝑛}                    𝑖𝑓 𝑛 𝑒𝑣𝑒𝑛

{6𝑛 − 4, 6𝑛 − 6,… ,3𝑛 + 3, 3𝑛 + 1}            𝑖𝑓 𝑛 𝑜𝑑𝑑 
 

• 𝑣7 = ⋃ 𝑣(7,𝑖)
⌊
3𝑛−2

2
⌋

𝑖=1
=

{
{6𝑛 + 1, 6𝑛 + 3,… ,9𝑛 − 5, 9𝑛 − 3}            𝑖𝑓 𝑛 𝑒𝑣𝑒𝑛

{6𝑛 + 1, 6𝑛 + 3,… ,9𝑛 − 6, 9𝑛 − 4}            𝑖𝑓 𝑛 𝑜𝑑𝑑 
 

• 𝑣8 = ⋃ 𝑣(8,𝑖)
⌊
3𝑛−2

2
⌋

𝑖=1
=

{
{6𝑛 − 3, 6𝑛 − 5,… ,3𝑛 + 3, 3𝑛 + 1}            𝑖𝑓 𝑛 𝑒𝑣𝑒𝑛

{6𝑛 − 3, 6𝑛 − 5,… ,3𝑛 + 4, 3𝑛 + 2}            𝑖𝑓 𝑛 𝑜𝑑𝑑 
 

• 𝑣1
∗ = (6𝑛 − 1),  𝑣2

∗ = (6𝑛 − 2),  𝑣3
∗ = (6𝑛). 
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Fig. 2.  Starter 𝐴𝐶𝐶((3∗, 4), 2𝐾12𝑛−4) 

 

 

Part 2: We need to prove that ((⋃ (𝑣𝑗)
8
𝑗=1 ) ∪ (⋃ (𝑣𝑗

∗)7
𝑗=1 )) 

covers all vertices in 𝐾12𝑛−4 except for the focus one. 
(𝑣2 ∪ 𝑣6) ∪ (𝑣2

∗ ∪ 𝑣3
∗) ∪ (𝑣5 ∪ 𝑣1) = 

{

{2,4,… ,3𝑛 ,… , 6𝑛 − 2,6𝑛, 6𝑛 + 2,… ,9𝑛,… ,12𝑛 − 4 } 𝑖𝑓 
𝑛 𝑒𝑣𝑒𝑛

{2,4,… ,3𝑛 + 1 ,… , 6𝑛 − 2,6𝑛, 6𝑛 + 2,… ,9𝑛 − 1,… ,12𝑛 − 4 }  𝑖𝑓 
𝑛 𝑜𝑑𝑑 

    (5) 

 
(𝑣4 ∪ 𝑣8) ∪ (𝑣1

∗) ∪ (𝑣7 ∪ 𝑣3) = 

{

{3,5, … ,3𝑛 + 1 , … , 6𝑛 − 3,6𝑛 − 1, 6𝑛 + 1,… ,9𝑛 − 1,… ,12𝑛 − 5 } 
𝑖𝑓 𝑛 𝑒𝑣𝑒𝑛

{3,5,… ,3𝑛 + 2 ,… , 6𝑛 − 3,6𝑛 − 1, 6𝑛 + 1,… , ,9𝑛 − 2,… ,12𝑛 − 5 } 
𝑖𝑓 𝑛 𝑜𝑑𝑑 

(6) 

We will use (5) and (6) 

 ((⋃ (𝑣𝑗)
8
𝑗=1 ) ∪ (⋃ (𝑣𝑗

∗)3
𝑗=1 )) = {2, 3, … , 12𝑛 − 5, 12𝑛 −

4 }. 

 

Part 3: We will check for the difference 𝐷 = {𝑑(𝑗,𝑖) ∶ 𝑗 =

1,… ,8} ∪ { 𝑑𝑗
∗ ∶ 𝑗 = 1,… ,7} 

• 𝑑(1,𝑖) = 𝑚𝑖𝑛{|𝑣(1,𝑖) − 𝑣(2,𝑖)|, 12𝑛 − 4 − |𝑣(1,𝑖) − 𝑣(2,𝑖)|} 

since (1) ≤ 𝑖 ≤ ⌊
3𝑛−1

2
⌋ then 𝑑(1,𝑖) = (12𝑛 − 4) −

(12𝑛 − 2 − 4𝑖) = 4𝑖 − 2. 

• 𝑑(2,𝑖) = 𝑚𝑖𝑛{|𝑣(3,𝑖) − 𝑣(2,𝑖)|, 12𝑛 − 4 − |𝑣(3,𝑖) − 𝑣(2,𝑖)|} 

since (1) ≤ 𝑖 ≤ ⌊
3𝑛−1

2
⌋ then 𝑑(2,𝑖) = (12𝑛 − 4) −

(12𝑛 − 3 − 4𝑖) = 4𝑖 − 1. 

• 𝑑(3,𝑖) = 𝑚𝑖𝑛{|𝑣(3,𝑖) − 𝑣(4,𝑖)|, 12𝑛 − 4 − |𝑣(3,𝑖) − 𝑣(4,𝑖)|} 

since (1) ≤ 𝑖 ≤ ⌊
3𝑛−1

2
⌋ then 𝑑(3,𝑖) = (12𝑛 − 4) −

(12𝑛 − 4 − 4𝑖) = 4𝑖. 

• 𝑑(4,𝑖) = 𝑚𝑖𝑛{|𝑣(1,𝑖) − 𝑣(4,𝑖)|, 12𝑛 − 4 − |𝑣(1,𝑖) − 𝑣(4,𝑖)|} 

since (1) ≤ 𝑖 ≤ ⌊
3𝑛−1

2
⌋ then 𝑑(4,𝑖) = (12𝑛 − 4) −

(12𝑛 − 3 − 4𝑖) = 4𝑖 − 1. 

• 𝑑(5,𝑖) = 𝑚𝑖𝑛{|𝑣(5,𝑖) − 𝑣(6,𝑖)|, 12𝑛 − 4 − |𝑣(5,𝑖) − 𝑣(6,𝑖)|} 

since (1) ≤ 𝑖 ≤ ⌊
3𝑛−2

2
⌋ then 𝑑(5,𝑖) = 4𝑖 + 2. 

• 𝑑(6,𝑖) = 𝑚𝑖𝑛{|𝑣(7,𝑖) − 𝑣(6,𝑖)|, 12𝑛 − 4 − |𝑣(7,𝑖) − 𝑣(6,𝑖)|} 

since (1) ≤ 𝑖 ≤ ⌊
3𝑛−2

2
⌋ then 𝑑(6,𝑖) = 4𝑖 + 1. 

• 𝑑(7,𝑖) = 𝑚𝑖𝑛{|𝑣(7,𝑖) − 𝑣(8,𝑖)|, 12𝑛 − 4 − |𝑣(7,𝑖) − 𝑣(8,𝑖)|} 

since (1) ≤ 𝑖 ≤ ⌊
3𝑛−2

2
⌋ then 𝑑(7,𝑖) = 4𝑖. 

• 𝑑(8,𝑖) = 𝑚𝑖𝑛{|𝑣(5,𝑖) − 𝑣(8,𝑖)|, 12𝑛 − 4 − |𝑣(5,𝑖) − 𝑣(8,𝑖)|} 

since (1) ≤ 𝑖 ≤ ⌊
3𝑛−2

2
⌋ then 𝑑(8,𝑖) = 4𝑖 + 1. 

• 𝑑1
∗ = 𝑚𝑖𝑛{|𝑣1

∗ − 𝑣2
∗|, 12𝑛 − 4 − |𝑣1

∗ − 𝑣2
∗|} = 1.  

• 𝑑2
∗ = 𝑚𝑖𝑛{|𝑣3

∗ − 𝑣2
∗|, 12𝑛 − 4 − |𝑣3

∗ − 𝑣2
∗|} = 2.  

• 𝑑3
∗ = 𝑚𝑖𝑛{|𝑣3

∗ − 𝑣1
∗|, 12𝑛 − 4 − |𝑣3

∗ − 𝑣1
∗|} = 1.  

 

Part 4: We will calculate the difference 𝑑𝑗 =

{
⋃ 𝑑(𝑗,𝑖)
⌊
3𝑛−1

2
⌋

𝑖=1
     if  𝑗 = {1, 2, 3, 4}  

⋃ 𝑑(𝑗,𝑖)
⌊
3𝑛−2

2
⌋

𝑖=1
        if  𝑗 = {5, 6, 7, 8}  

   then 

• 𝑑1 = ⋃ 𝑑(1,𝑖)
⌊
3𝑛−1

2
⌋

𝑖=1
=

{
{2,6,10, … ,6𝑛 − 10, 6𝑛 − 6}     𝑖𝑓 𝑛 𝑒𝑣𝑒𝑛

{2,6,10, … ,6𝑛 − 8, 6𝑛 − 4}        𝑖𝑓 𝑛 𝑜𝑑𝑑
 

• 𝑑2 = ⋃ 𝑑(2,𝑖)
⌊
3𝑛−1

2
⌋

𝑖=1
=

{
{3,7,11, … ,6𝑛 − 9, 6𝑛 − 5}       𝑖𝑓 𝑛 𝑒𝑣𝑒𝑛

{3,7,11, … ,6𝑛 − 7, 6𝑛 − 3}        𝑖𝑓 𝑛 𝑜𝑑𝑑
 

• 𝑑3 = ⋃ 𝑑(3,𝑖)
⌊
3𝑛−1

2
⌋

𝑖=1
=

{
{4,8,12, … ,6𝑛 − 8, 6𝑛 − 4}      𝑖𝑓 𝑛 𝑒𝑣𝑒𝑛

{4,8,12, … ,6𝑛 − 6, 6𝑛 − 2}        𝑖𝑓 𝑛 𝑜𝑑𝑑
 

• 𝑑4 = ⋃ 𝑑(4,𝑖)
⌊
3𝑛−1

2
⌋

𝑖=1
=

{
{3,7,11, … ,6𝑛 − 9, 6𝑛 − 5}      𝑖𝑓 𝑛 𝑒𝑣𝑒𝑛

{3,7,11, … ,6𝑛 − 7, 6𝑛 − 3}        𝑖𝑓 𝑛 𝑜𝑑𝑑
 

• 𝑑5 = ⋃ 𝑑(5,𝑖)
⌊
3𝑛−2

2
⌋

𝑖=1
=

{
{6,10,14, … ,6𝑛 − 6, 6𝑛 − 2}      𝑖𝑓 𝑛 𝑒𝑣𝑒𝑛

{6,10,14, … ,6𝑛 − 8, 6𝑛 − 4}        𝑖𝑓 𝑛 𝑜𝑑𝑑
 

• 𝑑6 = ⋃ 𝑑(6,𝑖)
⌊
3𝑛−2

2
⌋

𝑖=1
=

{
{5,9,13, … ,6𝑛 − 7, 6𝑛 − 3}      𝑖𝑓 𝑛 𝑒𝑣𝑒𝑛

{5,9,13, … ,6𝑛 − 9, 6𝑛 − 5}        𝑖𝑓 𝑛 𝑜𝑑𝑑
 

• 𝑑7 = ⋃ 𝑑(7,𝑖)
⌊
3𝑛−2

2
⌋

𝑖=1
=

{
{4,8,12, … ,6𝑛 − 8, 6𝑛 − 4}      𝑖𝑓 𝑛 𝑒𝑣𝑒𝑛

{4,8,12, … ,6𝑛 − 10, 6𝑛 − 6}        𝑖𝑓 𝑛 𝑜𝑑𝑑
 

• 𝑑8 = ⋃ 𝑑(8,𝑖)
⌊
3𝑛−2

2
⌋

𝑖=1
=

{
{5,9,13, … ,6𝑛 − 7, 6𝑛 − 3}      𝑖𝑓 𝑛 𝑒𝑣𝑒𝑛

{5,9,13, … ,6𝑛 − 9, 6𝑛 − 5}        𝑖𝑓 𝑛 𝑜𝑑𝑑
. 

 

Part 5: We must prove that each difference in 𝑍∗6𝑛−1 =
{1, 2, … ,6𝑛 − 3, 6𝑛 − 2} appears two times in  𝐷 =

((⋃ (𝑑𝑗)
8
𝑗=1 ) ∪ (⋃ (𝑑𝑗

∗)3
𝑗=1 )), except for the middle 

difference (6𝑛 − 2) which appears once. 

 

𝑑1
∗ ∪ 𝑑1 ∪ 𝑑2 ∪ 𝑑3 ∪ 𝑑6

= {
{1, 2, 3, 4,5, … ,6𝑛 − 4, 6𝑛 − 3}     𝑖𝑓 𝑛 𝑒𝑣𝑒𝑛

{1, 2, 3, 4,5, … ,6𝑛 − 3, 6𝑛 − 2}        𝑖𝑓 𝑛 𝑜𝑑𝑑
                 (7) 

 

𝑑3
∗ ∪ 𝑑2

∗ ∪ 𝑑4 ∪ 𝑑7 ∪ 𝑑8 ∪ 𝑑5

= {
{1, 2, 3, 4,5, 6, … ,6𝑛 − 3, 6𝑛 − 2}      𝑖𝑓 𝑛 𝑒𝑣𝑒𝑛

{1, 2, 3, 4,5, 6, … ,6𝑛 − 4, 6𝑛 − 3}        𝑖𝑓 𝑛 𝑜𝑑𝑑
             (8) 

 

4𝑖 − 2 

4𝑖   

4𝑖 − 1 4𝑖 − 1 

𝑣(1,𝑖) = 

12𝑛 − 2𝑖 − 2 

 

𝑣(2,𝑖) = 

2𝑖 
 

𝑣(3,𝑖) = 

12𝑛 − 2𝑖 − 3 

 

𝑣(4,𝑖) = 

2𝑖 + 1 

 

ራ  

⌊
3𝑛−1
2

⌋

𝑖=1

       

4𝑖 

4𝑖 + 2   

4𝑖 + 1 4𝑖 + 1 

𝑣(5,𝑖) = 

6𝑛 + 2𝑖 
 

𝑣(6,𝑖) = 

6𝑛 − 2𝑖 − 2 

𝑣(7,𝑖) = 

6𝑛 + 2𝑖 − 1 

 

𝑣(8,𝑖) = 

6𝑛 − 2𝑖 − 1 

 

ራ  

⌊
3𝑛−2
2

⌋

𝑖=1

       
1 

𝑣(1)
∗ = 

6𝑛 − 1 

1 

 

2 𝑣(2)
∗ = 

6𝑛 − 2 

𝑣(3)
∗ = 

6𝑛 
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We will use (3) and (4). 

(𝑑1
∗ ∪ 𝑑1 ∪ 𝑑2 ∪ 𝑑3 ∪ 𝑑6) ∪ (𝑑3

∗ ∪ 𝑑2
∗ ∪ 𝑑4 ∪ 𝑑7 ∪ 𝑑8 ∪ 𝑑5) 

=

{
 
 

 
 {1, 2, … ,6𝑛 − 4, 6𝑛 − 3}} ∪ {1, 2, … ,6𝑛 − 3, 6𝑛 − 2}}         

𝑖𝑓 𝑛 𝑒𝑣𝑒𝑛

{1, 2, … ,6𝑛 − 4, 6𝑛 − 2}} ∪ {1, 2, … ,6𝑛 − 4, 6𝑛 − 3}}       

𝑖𝑓 𝑛 𝑜𝑑𝑑

 

It can then be seen that every difference in 𝑍∗6𝑛−1 appears 

twice in 𝐷 = ((⋃ (𝑑𝑗)
8
𝑗=1 ) ∪ (⋃ (𝑑𝑗

∗)3
𝑗=1 )), except for the 

middle difference (6𝑛 − 2) which appears once.  

 

Example 2 let 𝐺 = 2𝐾8, By Lemma 3,  𝐵∗ = {(4, 5, 6)} 
and 𝐵1 = {(8, 2, 7, 3)}, the list of differences set 

from 𝐵1 and 𝐵
∗ is the multi-set 𝐷(𝐵∗) = {1, 1, 2} 

and 𝐷(𝐵1) = {(2, 3, 4, 3)}. 
 Ƒ = 𝐵∗ ∪ 𝐵1 = {(4, 5, 6), (2, 3, 4, 3)}, 𝐷(Ƒ) =
{1, 1, 2, 2, 3, 4, 3}, see Table III. 

 

 

 

TABLE III 

∆(Ƒ) AND 𝐷(Ƒ) OF 2𝐾8 

 

- 5 6 

5 0 7 

6 1 0 

𝑑∗1
= 1 

- 5 4 

5 0 1 

4 7 0 

𝑑∗2 = 1 

- 2 8 

2 0 2 

8 6 0 

𝑑1 = 2 

- 7 2 

7 0 5 

2 3 0 

𝑑2 = 3 

- 6 4 

6 0 2 

4 6 0 

𝑑∗3 = 2 

- 3 7 

3 0 4 

7 4 0 

𝑑3 = 4 

- 8 3 

8 0 5 

3 3 0 

𝑑4 = 3 

 

Thence, a 𝐴𝐶𝐶((3∗, 4), 2𝐾8) is an (8 × 2) array design and 

the starter cycles (4, 5, 6), (2, 3, 4, 3) in the first row generate 

all the cycles in (8 × 2) array by repeated addition of 1 

modular(8) (see Table IV). 

 

 

TABLE IV 

𝐴𝐶𝐶((3∗, 4), 2𝐾8) 

Focus 𝐴𝐶𝐶((3∗, 4), 2𝐾8) 

𝑖 = 1 (4, 5, 6) (8, 2, 7, 3) 
𝑖 = 2 (5, 6, 7) (1, 3, 8, 4) 
𝑖 = 3 (6, 7, 8) (2, 4, 1, 5) 
𝑖 = 4 (7, 8, 1) (3, 5, 2, 6) 
𝑖 = 5 (8, 1, 2) (4, 6, 3, 7) 
𝑖 = 6 (1, 2, 3)  (5, 7, 4, 8) 
𝑖 = 7 (2, 3, 4) (6, 8, 5, 1) 
𝑖 = 8 (3, 4, 5) (7, 1, 6, 2) 

 

In Table IV, we can see that every edge in 𝐾8 appears twice 

and is able to generate all cycles by addition of modular 8. 

IV.   CONCLUSION 

This presents an analysis for array cyclic (𝑘∗, 4)-
𝑐𝑦𝑐𝑙𝑒 design for case 𝑣 ≡ 8, 4 (𝑚𝑜𝑑 12). Furthermore, 

several definitions and concepts were formulated to 

construct 𝐴𝐶𝐶((𝑘∗, 4), 2𝐾𝑣). The algorithm proposed in 

Lemma 2 and Lemma 3 will be a basis for further research in 

developing designs for v = 12n. However, we are unable find 

a method to construct 𝐴𝐶𝐶((𝑘∗, 4), 2𝐾𝑣) in general. 
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